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Abstract: The accurate prediction of offshore platform and ship motion is crucial for motion compen-
sation devices and for helping the crew make informed decisions. Traditional time series and physical
models are being replaced by machine learning models due to their simplicity and lower training
cost. However, insufficient data has hindered model training, making evaluating and comparing
different models difficult. This paper introduces a comprehensive motion dataset containing data
of more than 400 pieces from tens of offshore platform tests conducted at the State Key Laboratory
of Ocean Engineering, Shanghai Jiao Tong University. The dataset is divided into subsets tailored
for four application scenarios, including specific types of offshore platforms, wave conditions, noise
addition data, and transfer learning. A Convolutional Attention-based LSTM model that combines
convolution and self-attention mechanisms is proposed to validate the dataset and improve the
accuracy of motion prediction. The proposed model is compared with classical models using our
introduced dataset, achieving 5–10% improvement and confirming the dataset’s high reliability and
applicability, as well as the effectiveness of the Conv-Att-LSTM model. This development sets a new
standard for motion prediction and furthers the application of machine learning in ocean engineering.

Keywords: motion dataset; real-time motion prediction; machine learning; LSTM; self-attention

1. Introduction

Marine offshore platform and ship motions present significant challenges to sensitive
offshore operations, such as aircraft landing on carriers, rocket launches from vessels, heavy
lifting by floating cranes, and dynamic positioning control [1]. Variations in environmental
factors, such as waves, wind, and ocean currents, can result in significant motion changes
in offshore platforms and ships. Generally, six degrees of freedom (6 DoFs) motions can
be modeled as a linear mass-damping spring system, and its equations of motion can be
governed by coefficients of mass-damping spring and the external forces applied to it with
Newton’s second law. Real-time motion prediction, unlike long-term or short-term motion
forecasting [2], for offshore platforms or vessels focuses on predicting motions within the
next several tens of seconds (equivalent to one or two wave periods). Accurate predictions
can enhance motion compensation systems and offer valuable early warning information
critical for operational safety and efficiency [3].

Numerous studies have been conducted to develop motion prediction methods for
marine offshore platforms and ships. In an early study, Kaplan [4] proposed a convolution
method for ship motion prediction, using the Wiener filter to forecast the motion response of
an aircraft carrier. In pioneering studies [5,6], state-space models based on Kalman filtering
techniques were employed, thus necessitating comprehensive information regarding wave
kinetics and ship dynamics. Owing to the frequency dependencies of added mass, damping,
and wave excitation forces, accurately estimating the peak frequency of the wave spectrum
is critical. Yumori [7] introduced an auto-regressive (AR) moving average model to predict
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ship behavior a few seconds in advance. The AR models are based solely on time series
analyses. Duan et al. [8–10] and Jiang et al. [11] investigated the effects of ship hull scale on
real-time motion prediction using an AR model. Although different methods are applied
in motion prediction for ships and offshore platforms, some disadvantages impede their
further application in real-time prediction, e.g., laborious calculations and parameters
requiring pre-acknowledgment.

The neural network (NN) approach originated in computer science and relies on the
difference between calculated and actual values, iteratively updating model parameters
through gradient descent to improve predictions. Due to their ease of modeling, superior
performance, and high accuracy, NNs have increasingly surpassed conventional methods
for offshore platform and ship motion prediction. Notably, they were first introduced by
Lainiotis et al. [12]. In a subsequent study, Khan et al. [13,14] predicted roll motion for up
to 7 s using linear NN layers, and Yin et al. [15] combined a discrete wavelet transform with
radial basis function networks to enhance accuracy. A recurrent neural network (RNN) is a
specific network that considers the inherent order of data. Therefore, RNNs are suitable for
applications such as natural language processing and analysis of time-series data and have
shown promising results in offshore platform and ship motion prediction [16].

Recently, new motion prediction models have been combined with RNNs and their vari-
ants, such as long short-term memory (LSTM) and gated recurrent units. Liu et al. [17,18]
predicted the roll motion of a container ship using an LSTM model and optimized the input
vector space of the model using techniques based on impulse response and autocorrela-
tion functions. Guo et al. [19] proposed an LSTM model to predict the heave and surge
motions of a floating semi-submersible 20–50 s ahead with high accuracy. In addition, they
showed that the trained model can operate effectively with noise levels up to a variance of
0.8. The model was further extended via noise incorporation to quantify its uncertainty in
predicting time series [20]. Similarly, Sun et al. [21] combined Gaussian process regression
(GPR) with LSTM networks to predict ship attitudes (roll and pitch angles). Additionally,
Zhang et al. [22] proposed a multiscale attention-based LSTM method, where the motion
signal was first decomposed via wavelet transform, and the weights at each scale were ob-
tained via an attention mechanism. Li et al. [23] compared prediction results for 0, 6, and 12 s
lead times. Wei et al. [24] and Fu et al. [25] used a bidirectional LSTM NN for ship motion
prediction, incorporating empirical wavelet transform and channel attention, respectively.
Taskar et al. [26] performed motion prediction based on different wave conditions and
discussed the relationship between the length of the input window and the output window.
Similarly, Xun et al. [27] proposed a self-attention LSTM (SALSTM) model and verified its
effectiveness under three representative working conditions. Recently, several scholars have
applied neural networks to various fields of marine engineering. Chen et al. [28] accurately
predicted heave, pitch, and roll motions within an 8 s range using an LSTM model, achieving
an error of less than 15%, thereby enhancing the safety and efficiency of shipborne helicopter
landings. Burak et al. [29] employed an artificial neural network (ANN) to predict the
residual resistance coefficient of a trimaran model, effectively replacing traditional model
tests and numerical simulations. Ayhan et al. [30] used both an ANN and the Adaptive
Neuro-Fuzzy Inference System (ANFIS) to estimate hawser tensions and displacements in
a spread mooring system (SMS), successfully solving the optimization design challenges
of the SMS. Meanwhile, Ibrahim et al. [31] predicted 14 parameters, such as maximum
speed, ship type, and deadweight tonnage (DWT), across different ship types, achieving
more accurate results. They also optimized the ANN parameters to further enhance perfor-
mance. Figure 1 shows an overview of the research development of motion prediction using
different methods.

Although many methods demonstrate high prediction accuracy on their respective
datasets, comparing these models and methods is not recommended owing to the different
datasets used. The scales of the data and the research objects differed significantly between
these two studies. Table 1 shows the differences among related studies.
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Figure 1. An overview of motion prediction research history [4–15,17–25,32–36].

Quality datasets are crucial for the practical training of NN models. In computer vision,
comprehensive datasets, such as ImageNet [37], which contains approximately 15 million
images across 22,000 categories, are instrumental. Datasets such as Kinetic [38], UCF [39],
and HMDB [40] are crucial in video comprehension and classification. Additionally, well-
established datasets such as MNIST [41] for handwritten digit recognition, CelebA [42] for
face recognition, and SEED [43] for EEG signal classification are widely used. However,
owing to issues such as the confidentiality of motion data, developing a unified and
comprehensive dataset remains challenging in ship and ocean engineering. Therefore, a
standardized dataset must be established as a benchmark for the training and evaluation of
various prediction models. This paper introduces a comprehensive motion dataset from
model tests of tens of offshore platforms at the State Key Laboratory of Ocean Engineering
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(SKLOE) of Shanghai Jiao Tong University, which has proven effective and robust in
different situations. The motion dataset contains data from tens of offshore platforms under
various wave conditions from 1-year to 1000-year waves and the data have been cleaned
and normalized to ensure the practicality of the dataset. In addition, the dataset has been
used in many applications in different scenarios with high reliability.

Table 1. Different datasets and models used in related studies.

Model Paper Data Source Datasets Scale Prediction Motions

LSTM [19] Semi-submersible model
(Reduction ratio = 1:60) 8 wave cases Surge, Heave

LSTM [20] Semi-submersible model
(Reduction ratio = 1:60) 8 wave cases Heave

LSTM-GPR [21] A large military ship 1000 steps selected
from 250 s Roll, Pitch

MSA-LSTM [22] A certain ship Not mentioned 6 DoFs

LSTM [23] Semi-submersible model
(Reduction ratio = 1:56) 40 wave cases Surge, Heave, Pitch

Hybrid BiLSTM [24] A scientific research ship (SHIYAN-1) 3 sets of roll series data
from 1200 s Roll

Bi-ConvLSTM-CA [25] A certain ship 10,000 s Pitch

The remainder of this paper is organized as follows: Section 2 introduces and describes
the proposed motion dataset, in particular the data sources, platforms, and wave conditions,
as well as the methods for data processing. Section 3 presents a Conv-Att-LSTM model
for motion prediction and different case studies to assess the reliability of the dataset and
shows a comparison among different models trained on the dataset. The experimental
results demonstrate that the model achieves superior accuracy in different cases and that
the dataset could effectively evaluate the performance of various models. Finally, Section 4
presents detailed information regarding the motion dataset, including its advantages and
effectiveness under different scenarios.

2. Motion Dataset
2.1. Data Description

The proposed motion dataset currently contains approximately 200 sets of experimen-
tal model test data for more than ten offshore platforms from the SKLOE of Shanghai Jiao
Tong University. Each experimental dataset includes the platform’s 6 DoF motion and wave
time-series data.

Based on experimental wave conditions, the motion time-series data of different
platforms were classified and selected for various cases, including 1-year to 1000-year wave
conditions. The dataset contains 13 platforms, each categorized into training, validation,
and test sets. Figure 2A,B show the relationship between the data over different platforms
and wave conditions; Figure 2A shows that the dataset includes a wide range of offshore
platforms, and the characteristic length denotes pontoon intervals for semi-submersible
platforms or pontoon diameters for FWPSO (floating workover production storage and
offloading system); Figure 2B shows 1-year to 1000-year wave conditions in the dataset.

Figure 2C illustrates the cross-correlation between various offshore platform and ship
motions and wave patterns. Red indicates a positive correlation, blue signifies a negative
correlation, and white indicates the absence of a relationship. Clearly, the wave shows the
highest correlation with the heaving motion. Hence, the heave motion is primarily utilized
for subsequent predictions.
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Figure 2. Data description in dataset (A) The dataset includes a wide range of offshore platforms.
(B) The dataset includes 1-year to 1000-year wave conditions. Tp stands for average peak period and
Hs stands for wave height. (C) Cross-correlation between different channels in the dataset. (D) The
time and spectrum domain of wave and motion data

Among the 6 DoF motions, the inherent period of the heave motion is aligned with
the general wave frequency range. The heave motion was predominantly affected by
wave excitation and characterized by a wave-induced, wave-frequency motion response
without low-frequency motion components. Consequently, focusing on the heave motion
for motion prediction, particularly when combined with wave time-history information,
significantly enhances motion prediction accuracy. This approach is practical for evaluating
the performance of the prediction models. Figure 2D provides a spectral analysis of both
the motion and wave time-series data, where (a) shows the motions and waves in the
time domain and (b) presents the data in the spectrum domain. The gray region in these
graphs represents the wave spectrum. Furthermore, this analysis reaffirms that the heave
motion is predominantly wave-dominated, thus underscoring its relevance in motion
prediction studies.

The proposed dataset extends beyond the cleansing of experimental data. It includes
various subsets customized to different usage scenarios, including motion datasets specific
to each platform, datasets categorized by wave conditions, datasets with added Gaussian
noise, and datasets designed for transfer learning. Each subset was intended to address
particular aspects of motion prediction and model training, thus offering a comprehensive
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resource for diverse research and applications. The specifics of these datasets are detailed
in the following subsection.

2.2. Data Processing

The data were initially recorded in a specific format. The first step in data processing
involved cleaning the raw data, which included normalization, phase alignment, and
outlier rejection, to ensure data validity. The data-acquisition frequency differed across the
trials due to the varying test conditions and experimental environments. All test data were
resampled to a consistent frequency of 10 Hz via linear interpolation to standardize the
prediction timescale for subsequent analysis. Furthermore, considering the variation in the
total sampling duration between experiments, the data were artificially sliced to manage
the time-scale length effectively. This approach allows for more controlled management of
the total training data volume based on the number of data files used; however, one can
continue using the original complete data.

Additionally, the initial and final phases of the experiments, which typically feature
prolonged periods of irrelevant data, were removed during the slicing process. This ensures
a uniform and relevant dataset for robust analysis and model training. Table 2 shows the
data size in the dataset for each platform, including the total number of segments in the
dataset and the number of segments for different wave conditions.

Table 2. Statistics of segments on each platform.

Platform Wave Total1y 10y 100y 1000y

1 9 18 0 0 27
2 0 7 30 30 67
3 18 0 21 0 39
4 0 0 36 0 36
5 9 9 18 0 36
6 6 6 0 0 12
7 8 0 4 0 12
8 6 0 6 0 12
9 6 0 6 0 12

10 9 0 3 0 12
11 24 0 54 0 78
13 0 0 65 64 129
14 9 0 3 0 12

Total 104 40 246 94 484

After initial processing, all data were stored in pickle files to ensure efficient manage-
ment. To enhance the utility of the dataset, it was further organized into several subsets,
each serving a specific purpose. First, data from identical platforms were clustered into
individual datasets. This allows users to train and test their prediction models on different
datasets, thereby allowing them to assess the generalization capabilities of the models
across various platforms. Second, data under the same wave conditions, ranging from
1-year to 1000-year events, were collated. This subset enables users to evaluate the model
performance under different wave intensities, e.g., the model might excel using 10-year
data but falter using 1000-year data. Additionally, various levels of Gaussian noise were
introduced into the original data via the approach described in [20]; subsequently, the
robustness of the prediction models against noise interference was tested. Finally, a com-
prehensive pretraining dataset was constructed, encompassing data from diverse platforms
and under various wave conditions. Users can initially train their models on this mixed
dataset and fine-tune them on specific data subsets. This process allows one to determine
whether pretraining enhances model performance compared with direct training on the
target data. All these steps and the structure of the dataset are depicted in Figure 3, which
provides a visual guide for the organization of the dataset and its potential applications.
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An open-source dataset demo (Github Link https://github.com/v1ctorpan/SKLOE-
dataset accessed on 18 August 2024) that contains several data series is available, and users
can apply the data to their model training.

Figure 3. Data processing progress.

3. Case Study

This section presents various case studies conducted using the proposed dataset. In
these case studies, the model training and the performance evaluation of the dataset across
different scenarios are performed.

(1) Training on different platforms: This involves assessing the model’s adaptability and
effectiveness when trained on data from various platforms, thus demonstrating the
model’s performance across diverse platforms.

(2) Training under various wave conditions: The models were trained using data rep-
resentative of wave conditions, as illustrated in Table 2, i.e., from mild to extreme
conditions. This evaluates the management and prediction capability of the model
under varying environmental factors.

(3) Training with additional noise conditions: The models were trained on data with
added noise levels. This approach evaluates the robustness of the model against
disturbances and uncertainties, which are typical in real-world scenarios.

(4) Performance comparison with and without pretraining: This assesses the effect
of pretraining on model performance. The model was trained directly on specific
datasets and preliminarily on a broader, mixed dataset. This comparison allows one
to determine the effectiveness of pretraining in enhancing the model accuracy and
generalizability.

These cases collectively aim to rigorously test the proposed dataset’s efficacy in improv-
ing the training and performance of predictive models under various maritime conditions.
Before discussing the case studies, this paper introduces the predictive model used for
dataset testing, as depicted in Figure 4, known as the Conv-Att-LSTM model. This model
comprises a sophisticated series of layers, including convolutional layers, which filter data

https://github.com/v1ctorpan/SKLOE-dataset
https://github.com/v1ctorpan/SKLOE-dataset
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and eliminate phase, self-attention layers, which further correct the discrepancy between
the model’s output and the desired value, recurrent layers, which process time series
information, and linear layers for final fitting. Table 3 lists the model’s hyperparameters.
The subsequent case studies focus on the model’s performance and validating the dataset’s
robustness and applicability in motion prediction. These studies aim to demonstrate that
the dataset effectively supports and enhances the model’s predictive capabilities, thereby
proving its value and utility in the field.

Figure 4. Illustration of Conv-Att-LSTM model.

Table 3. Hyperparameters for Conv-Att-LSTM model.

No. Layer Input Dim Output Dim

1 inputs - (−1, 180, 2)
2 cnn (−1, 180, 2) (−1, 180, 512)
3 linear—Q, K, V (−1, 180, 512) (−1, 180, 512)
4 self-attention (−1, 180, 512) (−1, 180, 512)
5 lstm—1∼6 (−1, 180, 512) (−1, 180, 512)
6 linear—1 (−1, 180, 512) (−1, 180, 256)
7 linear—2∼6 (−1, 180, 256) (−1, 180, 256)
8 outputs (−1, 180 × 256) (−1, 60)

3.1. Training on Platform-Based Datasets

The dataset contains data from various platforms, providing users access to training
data across different platforms. The experimental conditions, which include environmental
and wave conditions, can vary significantly across different experiments. Such variations
can manifest in different simulated seawater depths and wave patterns, such as the height
and period. Data normalization, segmentation, and other process steps can be performed
to ensure accuracy and reliability. Notably, models trained on data from different platforms
may yield varying outputs. This is attributable to differences in the structural design of
the models.

Therefore, a subset was introduced to show the training on data from these different
platforms, which included data from platforms 2, 3, 4, 5, 11, and 13, all of which were under
the 100-year wave condition. Data were randomly segregated within each platform into
training, validation, and testing sets. Table 2 provides a comprehensive overview of the
data from each platform.

Figure 5A shows the model’s results trained on data from the different platforms
mentioned earlier. The top chart illustrates the accuracy achieved by training on data from
various platforms, which predominantly ranged between 0.7 and 0.9. Platforms 3 and
13 exhibited higher accuracies compared with the other platforms. This shows that the
performance of the same model can vary when trained on different datasets. Platforms
with higher accuracy can serve as users’ references. The bottom chart shows the loss values
across various platforms, with Platform 3 performing commendably in reduced loss.
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Figure 5. Box plots showing training results on (A) platform-based and (B) wave condition-based
subsets. The left and right figures show accuracy and loss variation, respectively.

3.2. Training on Wave-based Datasets

Similarly, a regrouped dataset based on various wave conditions was introduced
to provide datasets under different wave conditions. As shown in Table 2, each wave
condition contained motion data from several platforms.

Figure 5B illustrates the results of the model trained on data from the various wave
conditions. In general, because each wave condition contained data from several different
platforms, the accuracy and performance loss during training were not favorable. However,
as shown in Section 3.4, by utilizing the abundance of such datasets for pretraining and
then fine-tuning specific data, we can significantly reduce the training cost by reducing the
training time. Moreover, this approach generalizes the model to some extent, thus resulting
in improved accuracy.

3.3. Training on Noise Addition Datasets

In this subsection, we describe how we used the data in the dataset and incorporated
further additions and modifications. For the model test data in the datasets, the training
data can be increased by adding noise to the data to train the model more effectively.
Guo et al. [20] demonstrated that adding an appropriate amount of noise to training data
improved the robustness of a model, thus allowing it to adapt to a broader range of noisy
input data and provide more accurate motion predictions. Figure 6A shows a comparison
before and after noise was added to the dataset. We set two noise specifications to compare
whether different noise levels and no-noise data improved or degraded the forecast accuracy
during training. Table 4 outlines the specific noise specifications. This methodology is
crucial for fine-tuning the model to achieve optimal performance in real-world, noise-
affected scenarios.

Table 4. Noise level.

Noise Level Noise Type Motion Wave
Mean Var Mean Var

lv. 1 Gauss 0 1 0 1/5
lv. 2 Gauss 0 1 0 1/2
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The deep learning prediction models were trained on noise-free data, level 1 noise
data, and level 2 noise data, and then finally tested on noise-free data. The variations in
the accuracy and loss are shown in Figure 6B, and the final motion prediction obtained is
shown in Figure 6C. The figure only shows the motion 40 time steps ahead of the prediction,
and the actual model input comprises 180 time steps.

Figure 6. Training on different noise levels. (A) shows the data under different added noise levels;
(B) shows the box plots of training results; (C) shows the motion prediction under different noise
situations.

This is intuitive because the noise signal did not disturb the training data, which is
typically unrelated to the original data. Therefore, using these training data in the model
naturally yields a high accuracy. However, as the figure shows, the noisy data demonstrated
better prediction performance at certain intervals. In other words, the noisy signals provide
some degree of robustness to the model, thus allowing it to adapt to the uncertainty caused
by noise or measurement errors, ultimately resulting in more accurate prediction of the
motion time history.

3.4. Training on Transfer Learning Datasets

Pretraining is a typical training technique in deep learning and is used widely in model
training. Pretraining models are important for NN models with numerous parameters
(e.g., transformers) as they can reduce the time cost spent on training and play a role in
determining the final performance of the model.

The main idea of pretraining a model is to first train it on an existing dataset and then
fine-tune it on an actual application dataset such that the fine-tuned model can attain a
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certain accuracy without excessive training. However, pretraining the model requires a
significant amount of data support, and the data must be valid and reliable such that the
model can adapt to deeper feature extraction; otherwise, the model may only be applied to
a specific situation, i.e., the model’s generalizability is inferior.

Therefore, data loads from diverse offshore platforms were included in the proposed
dataset to ensure generalization. In particular, the dataset for this section comprises only
data for the 100-year wave condition, which accounts for a significant portion of the dataset,
as shown in Table 2. In the actual pretraining process, the prediction results similarly
indicate this dataset’s effectiveness in satisfying the pretraining task’s requirements.

This subsection illustrates the effectiveness of this dataset in pretraining transfer
learning in terms of domain adaptation and domain generalization. Transfer learning
for domain adaptation and domain generalization typically relies on transfer learning
algorithms, such as DANN (domain-adversarial neural network), to eliminate bias between
different domains and achieve the final transfer learning effect. However, in this study, no
additional transfer learning algorithms were applied, and the model was trained on the
subsets and then fine-tuned to achieve the final results. Users can conduct further studies
based on these datasets and use other transfer learning techniques.

3.4.1. Domain Adaptation

Domain adaptation refers to using data from the same domain for training and testing
the prediction model. This implies that the model has already learned specific features
related to the test data in advance, thus allowing it to recognize and interpret similar data
during the testing phase.

The pretrained model initially uses a comprehensive subset of data that includes
hundreds of samples from all 13 platforms. This broad dataset ensures that the model is
exposed to a wide range of features and scenarios, thereby achieving solid foundational
understanding. Subsequently, the model is fine-tuned using additional separate data from
Platform 13, thus allowing it to adapt to and specialize in the specific characteristics of the
platform. By contrast, the model without pretraining is trained and tested directly using
only data from Platform 13. This approach tests the model’s ability to learn and predict
effectively without requiring prior exposure to a broader range of data, thus offering a
comparison to assess the effect and value of the pretraining process.

Figure 7 illustrates the training results related to domain adaptation and generalization,
emphasizing the domain adaptation subsets in Figure 7A. In the first row of the subfigure,
the model’s prediction accuracy is compared five times, both with and without pretraining.
The results clearly show that the pretrained model consistently outperformed the non-
pretrained version in terms of accuracy and exhibited a more stable loss pattern. The
second row focuses on the model’s predictions for a specific motion time-history clip. The
comparison reveals that the predictions of the pretrained model were aligned more closely
with the actual values. In the third row, a comparison of the best prediction results for the
models with and without pretraining is shown, illustrating their training accuracy and
loss over various epochs. As shown, the pretrained model began with a higher training
accuracy, a lower training loss, and fewer epochs to achieve higher accuracy. In comparing
the predicted curves with the actual motion curves shown in the final subfigure, both the
pretrained and non-pretrained models performed similarly, in general, thus demonstrating
the robustness of the pretraining.

Comparisons of various prediction results and processes revealed that the model
with pretraining not only achieved higher accuracy but also required less time for training
compared with the model without pretraining. This outcome was as expected because
the pretraining phase included similar data from the target domain. However, a pertinent
question arises: If pretraining solely involves data from other platforms, excluding any data
from the current platform, will the model still maintain its high accuracy? Conversely, will
the data from different platforms result in a “misleading” prediction trend for the current
platform? These considerations delve into domain generalization, which will be discussed
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in the following subsection. This investigation is crucial for understanding the broader
applicability and limitations of pretraining in predictive modeling.

Figure 7. Training results of (A) domain adaptation and (B) domain generalization.

3.4.2. Domain Generalization

Domain generalization refers to a scenario in which the data utilized for pretraining
originate exclusively from platforms other than the one currently targeted. This implies
that the model is initially exposed to and learns features from the motions of different
platforms, without any prior exposure to a specific platform for which it will be used. This
approach tests the generality and universality of the dataset. If the data in the dataset
are highly platform-specific and do not exhibit general applicability, then the model’s
effectiveness can be limited, thus rendering it suitable only for the motion prediction of
specific offshore platforms. Thus, domain generalization is an important criterion for
evaluating the versatility and broad applicability of both the dataset and predictive model.

For the pretrained version of the model, the training dataset excludes data from
Platform 13; instead, it comprises data from 12 other platforms. Subsequently, the model
is fine-tuned and tested using additional data from Platform 13. The model without
pretraining is consistently trained and tested using only data from Platform 13, similar to the
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case of domain adaptation. Figure 7B shows the training results of domain generalization,
with emphasis on the domain adaptation subsets in Figure 7A.

Similar to the result presented in the previous subsection, the model with pretraining
performed better than that without pretraining; it shows a higher accuracy, lower losses,
and a steadier training process. Furthermore, the model with pretraining learns the features
of the general motion pattern on many platform data rather than on a specific platform;
thus, it can extract the features of the current platform motion data more effectively. This
proves the validity of the data in this dataset.

Based on the findings from Section 3.4.1, whereas the final prediction accuracy between
the models with and without pretraining did not differ significantly, the pretrained models
demonstrated higher learning efficiency throughout the training process. This efficiency is
key in reducing the time and hardware costs of training larger models.

The training results further indicate that the dataset is well distributed and adaptable
for use with multi-platform deep learning prediction models and for transfer learning
algorithm investigations. Its diverse and comprehensive nature renders it an ideal standard
benchmark for evaluating the predictive capabilities of various models. The dataset’s
adaptability and representativeness validate its utility for developing and testing models
across different offshore platforms, reinforcing its value in marine motion prediction.

3.5. Results

In addition to utilizing the models for training on the dataset introduced herein, we
extended the analysis to include models from previously cited references. We compared
their prediction effectiveness using the same dataset. Each of these external models was
trained on the specific sub-datasets shown in Figure 3.

To comprehensively evaluate their performances, several key metrics were calculated
for each model:

1. Mean absolute error (MAE): This metric measures the average magnitude of the errors
in a set of predictions without considering their direction. It can be calculated as
follows:

MAE =
1
n ∑|xi − yi| i = 1, 2, . . . , n

Here, n denotes the length of x and y.
2. Mean squared error (MSE): The MSE assesses the average squared difference between

the estimated and actual values, thus providing insight into the precision of the model.

MSE =
1
n ∑(xi − yi)

2 i = 1, 2, . . . , n

Here, n denotes the length of x and y.
3. Dynamic time warping accuracy (DTWAcc): This metric measures the similarity

between two temporal sequences, which may vary in amplitude and phase. It can be
calculated as follows:

DTWAcc = 1 −
√

DTWDist(x, y)
n

DTWDist denotes the function to calculate the distance between x and y, which was
first introduced in [44]; and n denotes the length of x and y.

4. Area Accuracy (AreaAcc): This metric evaluates the model’s accuracy in predicting the
overall shape and area under the curve of the motion trajectory. It can be calculated
as follows:

AreaAcc = 1 −
∣∣∣∣1 − Area(x)

Area(y)

∣∣∣∣
Here, Area denotes the function used to calculate the area of x and y, such as the
trapezoidal and Simpson rules.
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Table 5 compares the performance of four models (LSTM, BiLSTM, Bi-ConvLSTM-
CA, and ours) across various dataset subsets. Overall, our model demonstrates superior
performance across all subsets. In both the Plat subset and Wave subset, our model stands
out significantly, achieving the highest accuracy (88.4%, 98.2%). As for the Noise subset,
the bi-directional LSTM can simultaneously process data in both forward and backward
time sequences, making it effective at mitigating the impact of noise disturbances, and
demonstrating superior performance with higher accuracy and lower loss. Although the
Noise subset shows slightly higher error rates for our model, it still maintains competitive
accuracy scores. This indicates that while noise impacts error, the overall performance
remains within an acceptable range. In tests of adaptability and generalization (Adaptation
subset and Generalization subset), our model displays strong generalization capabilities
and consistent performance across different conditions, which highlights the model’s
robustness and adaptability when handling complex and varied datasets.

Table 5. Comparison among different models trained on our dataset. (1) Plat subset primarily
uses data from Platform 13. (2) Wave subset primarily uses data under 100-year wave conditions.
(3) Noise subset primarily uses noise addition data at level 1. (4) Tf subset is classified into pretraining
and fine-tuning sets, and the results shown in the table are those obtained after fine-tuning. * The
bold means the best value in each metrics

Dataset Model MAE ↓ MSE ↓ DTW Acc ↑Area Acc ↑

Plat subset

LSTM 0.441 0.347 73.2 80.7
BiLSTM 0.455 0.363 73.1 79.2
Bi-ConvLSTM-CA 0.432 0.334 74.3 81.5
Ours 0.244 * 0.104 81.8 88.4

Wave subset

LSTM 0.362 0.231 76.1 82.0
BiLSTM 0.344 0.213 77.1 83.3
Bi-ConvLSTM-CA 0.358 0.230 76.6 82.3
Ours 0.027 0.001 96.8 98.2

Noise subset

LSTM 0.472 0.378 72.2 78.7
BiLSTM 0.463 0.358 71.9 79.7
Bi-ConvLSTM-CA 0.472 0.379 72.4 78.9
Ours 0.487 0.386 69.9 76.4

Tf subset

Adaptation

LSTM 0.386 0.266 75.5 82.5
BiLSTM 0.368 0.249 76.2 83.4
Bi-ConvLSTM-CA 0.402 0.289 75.3 82.0
Ours 0.248 0.110 82.7 86.2

Generalization

LSTM 0.429 0.329 73.8 80.8
BiLSTM 0.385 0.268 75.7 82.5
Bi-ConvLSTM-CA 0.432 0.336 74.7 81.6
Ours 0.217 0.079 83.7 89.5

The calculation of these metrics is key in this study as it facilitates a comprehensive
comparison of the predictive capabilities of the various models. This comparative analysis
is crucial for validating the effectiveness and broad applicability of the dataset across
different predictive modeling scenarios. As illustrated in Table 5, the results not only
enable a clear comparison of performance across different models but also highlight the
effectiveness of the model introduced herein.

4. Conclusions

This study introduces a novel dataset with a substantial amount of reliable test data
and a cutting-edge machine learning model that achieves high accuracy across various
tasks. The dataset establishes a new benchmark for motion prediction analysis, allowing
the performance of different machine learning models to be easily assessed across four
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dimensions. Furthermore, the Conv-Att-LSTM model integrates a self-attention mechanism
and convolutional operations, significantly improving prediction accuracy.

(1) The dataset proposed herein contributed significantly to marine motion prediction.
It encompassed extensive model test data from the SKLOE and included 1-year to
1000-year wave environmental conditions. The dataset is a reliable and effective
training resource classified into different usage scenarios. A demonstration version
of this dataset is available to all researchers interested in ship and ocean platform
motion prediction, and the full database can be accessed upon request from the
authors.

(2) In addition to the dataset, this study introduced a novel prediction model known as
the Conv-Att-LSTM model, which integrates LSTM and self-attention mechanisms
to achieve better predictions and lower training costs. The model was trained on the
proposed dataset and benchmarked against several other models, demonstrating
its superior accuracy and utility for motion prediction under different application
scenarios.

This study demonstrates the immediate effectiveness of these methods and facilitates
future related investigations, but there are still some drawbacks to be addressed, such as
more efficient prediction models and comprehensive datasets. Therefore, future efforts will
focus on broadening the scope of the dataset and enhancing its applicability and utility. This
expanded dataset is a foundational tool for developing more sophisticated and effective ma-
chine learning models. The results obtained in this study suggest potential breakthroughs
in marine technology and predictive analysis. Continued research and development in this
area, such as state-of-the-art models with higher accuracy for motion prediction and more
comprehensive datasets involving a wide range of different offshore platforms and ships,
can significantly advance marine navigation, safety, and operational efficiency.
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