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Abstract: An event-triggered neural adaptive cooperative control is proposed for the towing system 
(TS) with model parameter uncertainties and unknown disturbances. Different from ordinary multi-
vessel formation control, the tugs and unactuated offshore platform in the TS are connected together 
by towlines, and the resultant tension of the towlines serves as the actual drag force for the platform. 
Initially, based on the radial basis function neural network (RBFNN), an adaptive RBFNN is de-
signed to compensate unknown disturbances and model parameter uncertainties of the TS, and we 
use minimal learning parameter (MLP) algorithm to reduce the online learning parameters of adap-
tive RBFNN. Combined with dynamic surface technology and event-triggered control (ETC) mech-
anism, an event-triggered neural adaptive virtual controller is designed to obtain the desired drag 
force of the platform. According to the quadratic programming algorithm, the desired drag force is 
allocated as the desired tensions of towlines. Subsequently, the desired towline length and the de-
sired position information of the tugs are obtained sequentially through the towline model and the 
position relationship between the tugs and the platform. Then, according to the desired positions of 
tugs, an event-triggered neural adaptive distributed cooperative controller is designed for achieving 
the multi-tug towing of the offshore platform. The ETC mechanism is introduced to reduce the com-
munication burden within the TS and the execution frequency of the tugs’ thrusters. Finally, the 
stability of the closed-loop system is proven using the Lyapunov theory, and the ETC mechanism 
proves that no Zeno behavior occurs. The effectiveness of the ETC mechanism and the MLP-based 
adaptive RBFNN on the controllers of TS is verified through simulations and comparison analysis. 

Keywords: towing system; event triggered; neural network; minimum learning parameter  
algorithm 
 

1. Introduction 
Multi-tug towing is a common water transportation method for unactuated offshore 

platforms. Different from ordinary multi-vessel formation control, the tugs and platform 
in the towing system (TS) are connected together by towlines, and the combined tension 
of the towlines serves as the actual drag force for the platform. Compared to the umbilical 
cable [1] of underwater vehicles, the damping coefficient of the towlines in the TS is rela-
tively large, and even a slight change in length can significantly impact the combined ten-
sion. This poses strict requirements for the precision of the TS cooperative control. In ac-
tual water operations, unknown disturbances and model uncertain parameters are the 
main reasons affecting control effect for the marine vehicles, such as the autonomous 
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underwater vehicle [2], unmanned surface vessel [3], and TS [4]. Additionally, the pro-
posed cooperative control schemes [5–9] did not account for unknown disturbances, re-
sulting in poor applicability. Ref. [10] proposed a parameter adaptive method to handle 
the environmental disturbances of the TS, but the model parameters of the system were 
assumed to be known. Therefore, how to deal with the unknown disturbances and uncer-
tainties on multi-tug cooperative control is still a key issue that urgently needs to be ad-
dressed. 

Due to the strong approximation and learning ability, the radial basis function neural 
network (RBFNN) has been widely applied to deal with the uncertainties [11–13]. Although 
there are few studies on RBFNN for the TS, we can still learn from the applications of 
RBFNN in multi-agent control systems and vessels control systems. Ref. [14] proposed a 
local RBFNN distributed cooperative learning control strategy for multi-agent collaborative 
systems with uncertain dynamics. Ref. [15] used the Chebyshev neural network to approx-
imate the bounded external disturbances of spacecraft. Ref. [16] proposed an adaptive neu-
ral network based on a backstepping strategy, which can effectively mitigate the impact of 
disturbances on vessels. Ref. [17] employed an RBFNN to mitigate the effects of unknown 
nonlinearities on vessels with unidentified dead zones in their rudder angles. However, 
there are a large number of learning parameters that need to be adjusted online in these 
schemes, which will lead to an increase in the computational complexity of the TS. The 
amount of computation will limit the application of the adaptive RBFNN in the TS. 

In addition, the TS requires low-velocity navigation during transportation, which re-
sults in long towing task completion time. On one hand, long time navigation will result 
in the long-term high-frequency action of tugs’ thrusters, reducing the service life of 
thrusters. On the other hand, the tugs need to communicate continuously with the plat-
form and adjacent tugs during the navigation, but traditional continuous trigger control 
(CTC) will lead to wasted resources and energy [18]. To the best of our knowledge, there 
is no relevant research that has addressed the high-frequency response and communica-
tion resource waste of the TS. Fortunately, event-triggered control (ETC) has gained atten-
tion for its advantages in reducing transmission and computational burdens [19–22]. 

At present, ETC is widely applied in control systems. Ref. [19] introduced a drone 
control system with an event-driven mechanism that responds to specific triggers, effec-
tively reducing communication frequency and enhancing the system’s flexibility. Ref. [20] 
discussed the time-varying formation problem of high-order multi-agent system under 
external disturbances and proposed an event-triggered integral sliding mode control 
strategy, which saves energy consumption and avoids triggering Zeno behavior in time 
series. Ref. [21] designed an interleaved periodic ETC for cooperative unmanned surface 
vessels to prevent communication delays and actuator faults. Ref. [22] designed an asyn-
chronous event-triggered scheme for nonlinear entities, conserving the network resources 
of networked control systems. Obviously, we can introduce ETC mechanism in the dis-
tributed collaborative control scheme of TS, which can reduce the communication burden 
and the action frequency for tugs’ thrusters. 

Based on the above discussion, we propose an event-triggered neural adaptive coop-
erative control for the TS with model parameter uncertainties and unknown disturbances. 
Firstly, an adaptive RBFNN is designed to compensate for disturbances and model pa-
rameter uncertainties of the TS based on the minimal learning parameter (MLP) and 
RBFNN. Based on the adaptive RBFNN, an event-triggered neural adaptive virtual con-
troller of the platform is designed to obtain the desired drag force of the platform. Subse-
quently, according to the quadratic programming (QP) algorithm, the desired drag force 
is allocated as the desired tensions of towlines, and the desired towline length and the 
desired position information of the tugs are obtained sequentially through the towline 
model and the position relationship between the tugs and the platform. Then, according 
to the desired positions of tugs, we design an event-triggered neural adaptive distributed 
cooperative controller, where the ETC mechanism is introduced to reduce the 
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communication burden and the action frequency for tugs’ thrusters, and the prominent 
highlights of this paper are organized as follows: 
• Different from the simplified model of TS in [5–10], the parameter uncertainty and 

unknown disturbances are considered in our paper to establish a more realistic math-
ematical model for TS. Then, an MLP-based adaptive RBFNN is designed to compen-
sate uncertainty and disturbances. Compared to the RBFNNs in [12–15], only three 
online learning parameters need to be considered for our MLP-based adaptive 
RBFNN, thus reducing the design and computational burden caused by the large 
number of learning parameters. 

• Unlike the collaborative control methods of the TS [4–10], we design an event-trig-
gered neural adaptive cooperative controller to reduce the communication burden 
and the frequency of actions for the tugs’ thrusters. Moreover, the ETC mechanism 
does not significantly affect the control performance of the TS. 
The principal contents of this paper include the following: Section 2 introduces the 

RBFNN, the mathematical model of the TS, and the control objectives; Section 3 proposes 
an event-triggered neural adaptive cooperative control for the TS and stability analysis; 
Section 4 validates the effectiveness of the proposed MLP-based adaptive RBFNN and 
ETC mechanism; and Section 5 provides a summary of the entire paper. 

Lastly, to enhance the overall readability of this paper, a dedicated nomenclature sec-
tion has been added for the abbreviations and symbols as below. 

2. Preliminaries and Problem Formulation 
2.1. Radial Basis Function Neural Network 

Lemma 1. Based on [23], for a continuous nonlinear function ( ) : n kV R Rδ →  and any positive 

constant µ , the RBFNN can approximate ( )V δ  as follows: 
TV( )= W h( )+δ δ µ  (1) 

where  nRδδ∀ ∈Ω ⊂ , m kW R ×∈  is the optimal weight matrix; m  represents the number of hid-
den layer neurons; 

1
1( ) [ ( ) ( )] m

mh h h Rδ δ δ ×= ∈   represents the neuron basis function, where 
( )h hδ ≤  and h  is a positive constant; and 

kRµ ∈  represents the approximation error, where 
µ µ≤ . 

2.2. Towline Model 
We use the catenary model to represent the towlines connecting the tugs and the 

platform [24,25]. In Figure 1, we denote the tension in the towline as RT ,  HT  is the effec-
tive force applied to the platform and tugs, and HD  and R L  represent the horizontal 
and actual length of the towlines. RG  denotes the gravitational force acting on the tow-
lines. The catenary model is as follows: 

12 sinh
2

H R
H H

H R

T L EAT D
T L

σ
σ

−  
= −       

(2) 

where HT  refers to the horizontal tension of the towlines, σ  is the density of towlines, 
and E  and A  are the towlines’ elastic modulus and cross-sectional area. 
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Figure 1. Towline model. 

2.3. Dynamic Models of Tugs and the Offshore Platform 
In this paper, the connection relationship between the platform and tugs of the TS 

are shown in Figure 2. 
The mathematical model of i th−  ( 1, , 4)i = …  tug is described by [26]: 

( ) ,i i i
i i

i i i i i i h w

J v
M D vv g

η ψ
τ τ τ

=
+ + = + +



 
(3) 

where [ , , ]T
i i i ix yη ψ=  represents the north and east positions of the tug in the earth-fixed 

coordinate system, [ , , ]T
i i i iv u v r=   represents the velocity in the body-fixed coordinate 

system, ( )iJ ψ  is the transformation matrices, and iM  and iD  are inertial matrices and 
damping matrices, respectively. 

i
wτ  and ig  refer to disturbance forces and unmodeled 

dynamics. 
i i
h i HB Tτ =  denotes the effort vector induced by the horizontal tension, where 

[cos( ),sin( ),0]T
i i iB φ φ=  and the definitions of iφ  are described in Figure 2. 

Due to the similarity between the platform and tug models, the platform model is 
shown below: 

0 0 0
0

0 0 0 0 0 0

(
 

)

w

J v
M v D v g

η ψ
τ τ

=
+ + = +



  
(4) 

where 0 0B Tτ =   represents the drag force exerted by the tugs though towlines, and 
1 2 3 4, , ,

T

H H H HT T T T T =    and 0B  are given below: 

1 2 3 4

0 1 2 3 4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

cos( ) cos( ) cos( ) cos( )

sin( ) sin( ) sin( ) sin( )

sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( )x y x y x y x y

B

l l l l l l l l

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ θ θ

=

− − − −

 
 
 
  

 (5) 

where iθ   refers to the angle between the towlines and the platform’s heading in the 
earth-fixed coordinate system, ( , )xi yil l  specifies the location of the tow point on the plat-
form, and other definitions are consistent with the tug model (3). 
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Figure 2. The connection relationship of the TS. 

2.4. The Time-Variant Relative Position 
To obtain the desired position information of the tugs, we introduce the time-variant 

relative position 
3t v t v t v t v

i xi yi zi Rη η η η− − − −  ∈=   [10]: 
dt

i i
v

iq pη − = +  (6) 

where 0
tow

i iq η η= −  , 
tow
iη   is the attachment point of each towlines on the platform, 

(3) 0iq =  ; 
d H d
i i idp B=  , 

H
id   refers to the towlines’ desired horizontal length; 

0 0[cos( ),sin( ) /, ]d H T
i i i iiB dθ ψ θ ψ ρ= + +  with constant iρ . 

Assumption 1. The parameters 0M  , iM  , 0D  , and iD   ( 1, , 4)i = …  of the TS model are un-
known. 

Assumption 2. The desired trajectory dη  of the platform and the desired trajectory 0
t v
iη η −+ of 

the i th−  tug are continuous and bounded. 

Assumption 3. The unmodeled dynamics and disturbance 0g , ig , 0
wτ , and 0

wτ  are continuous 
and bounded. 

2.5. Control Objective 
The objective is to design an event-triggered neural adaptive distributed cooperative 

controller for the TS under unknown disturbances and uncertain parameters, with the 
following aims: 

P1. The designed adaptive RBFNN with MLP can compensate the uncertain param-
eters and unknow disturbances of the TS. 
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P2. The platform can be towed by the tugs to follow the reference trajectory dη , and 
tugs can follow i

dη , where 0
vi

d
t
iη ηη −= + . 

P3. The designed ETC mechanism can effectively reduce the communication fre-
quency of the TS and the action frequency of the tugs’ thrusters. 

3. Main Results 
To enhance the clarity and comprehensibility of our detailed implementation, the 

schematic for the event-triggered neural adaptive distributed cooperative control scheme 
of the TS is given in Figure 3. An event-triggered neural adaptive cooperative control is 
proposed for multi-tug coordinated towing of unactuated offshore platform under the 
disturbances and uncertainties in this section. Initially, we proposed an event-triggered 
neural adaptive virtual controller to acquire desired drag force for the offshore platform. 
Subsequently, the desired drag force is allocated to the desired tensions by the proposed 
allocation scheme. Then, we designed an event-triggered neural adaptive distributed co-
operative controller to achieve the multi-tug towing of offshore platform. Finally, the sta-
bility of the closed-loop system is proven using the Lyapunov theory, and the ETC mech-
anism proves that no Zeno behavior occurs. 

 
Figure 3. The schematic for the event-triggered neural adaptive distributed cooperative control 
scheme of the TS. 

3.1. Event-Triggered Neural Adaptive Virtual Controller for Offshore Platform 
In this subsection, an event-triggered neural adaptive virtual controller is proposed 

for the offshore platform. Firstly, the two error of the platform is defined as follows: 

10 0

20 0 0

d= −
 = −

E
E v

η η
ϑ  

(7) 

where 
20 20,1 20,2 20,3

T
E E E E =    , the control law 3

0 Rϑ ∈   for the platform can be ob-

tained as follows: 

0 0 10 10( ) ( ).T
d= − + J K Eϑ ψ η  (8) 

To simplify the computation of the derivative of 0ϑ , a first-order filter is introduced 
to obtain 0ϑ  as follows: 
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 0 0 0 0 0,   (0) (0)= − =kϑ ϑ ϑ ϑ ϑ  (9) 

where 0>k  is a predetermined time constant. 
Based on the (9), (4), we can obtain the derivative of (7) as follows: 

2 0

10 0 0

0 0 0

( ) d

M
 = −


= +







E J v
E d

ψ η
τ  

(10) 

where 0
0 0 0 0 0 0w= − −− d D v g Mτ ϑ   represents the total disturbances and uncertainties of 

the platform. Since 0d  is unknown in the actual towing system, this scheme employs the 
RBFNN to estimate 0d  as follows: 

0 0 0 0 0
ˆ T ( )+=d W h δ μ  (11) 

where 
0d̂  is the estimation of 0d , 

1 1 1

0 1 2 1

1 1 3

0 0
0 0
0 0

T
m m
T

m m
T

m m

W
W

W

× ×

× ×

× ×

 
 =  
  

W  is the optimal weight matrix,

1( 1, 2,3)m
nW R n×∈ =  , m   represents the number of neurons, 

0 0 0,1 0,1 0,2 0,2 0,3 0,3

TT T T( ) h ( ) h ( ) h ( )δ δ δ =  h δ  , with 1m
n nh ( ) Rδ ×∈  , 

0 0 01
T

T Tvϑ =  
δ  , and 

0 0,1 0,2 0,3µ µ µ =  µ . 

According to Lemma 1, the norm of 0d  satisfies the following inequality: 

0, 0, 0, 0, 0, 0,( )T
n n n n n nd W h δ µ χ ξ= + ≤  (12) 

where { }0, 0, 0,max ,  n n nWχ µ=
, 0, 0, 0,1 ( )n n nhξ δ= +

. 
Based on the MLP algorithm, the control effort 0 _ ( )c tτ  is designed as follows: 

0 _ 20 20 0
ˆ( )c t E= − −K dτ  (13) 

where 0 0 0 20
ˆ ˆ E=d ρ ε  , 0 _ 0 _ ,1 0 _ ,2 0 _ ,3( ) ( ) ( ) ( )c c c ct t t tτ τ τ =  τ

 , 0 0,1 0,2 0,3( ,  , )diag ρ ρ ρ=ρ  , 
0 0,1 0,2 0,3ˆ ˆ ˆ ˆ( ,  , )diag ρ ρ ρ=ρ   is the estimation of ρ  , 

2
0, 0 ( 1, 2,3)n n nρ χ= =  , 

0 0,1 0,2 0,3( ,  ,  )diag ε ε ε=ε , with 
2 2

0, 0, 0,(4 )n n nε ξ δ= , and 0,nδ  represents the positive constant. 

The update rate of 0ρ̂  as follows: 

{ }2
0, 0, 0, 20, 0, 0, 0,ˆ ˆ ˆ (0)n n n n n n nEρ β ε γ ρ ρ = − − 


 (14) 

According to ETC, the final control law is designed as follows: 
+1

0, 0 _ , 0, 0, 0,( ) ( ),  [ , ),   n=1,2,3s s s
n c n n n nt t t t tτ τ= ∀ ∈  (15) 

where 0 0,1 0,2 0,3( ) ( ) ( ) ( )t t t tτ τ τ =  τ  , and 0,
s

nt   is the triggering time instant of the s-th 

event. The triggering conditions are as follows: 

{ }0, 0, 0,

1
0, 0 _ , 0, 0, 0,

inf |

( ) ( )

s
n n n

s s
n c n n n n

t t R E

E t t

α
−

 = ∈ ≥


= − τ τ
 (16) 

where 0,n Rα ∈ , which satisfies 0, 0,0 n nα α< < , with constants 0,nα . If the triggering con-
dition of (16) is not met, 0, ( )n tτ  remains constant 1

0 _ , 0,( )s
c n ntτ − . When triggering condition 

(16) is met, the current triggering time instant is marked as 0,
s

nt , and control input 0, ( )n tτ  

will change to 0 _ , 0,( )s
c n ntτ . 
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Remark 1. For the input signal triggering mechanism, the threshold triggering conditions [27] 
and the dynamic triggering conditions [28] may exhibit Zeno behavior. The fixed threshold trig-
gering condition for the control signal can effectively prevent Zeno behavior. Therefore, this paper 
adopts fixed threshold triggering conditions. 

Based on (10), (13), and (14) and defining 0, 0, 0,ˆn n nρ ρ ρ= − , we obtain the following: 

( )

{ }
20 20 0 0 20 0

2
0, 0, 0, 20, 0, 0, 0,

10 10 10 0 20 0

0 20 ˆ

ˆ ˆ (0

( )

)n n n n n n n

M

E

K

ρ β ε γ ρ ρ


 − −


 = − − 

= −



= +










E E + J E + q
E K E E d

ψ
ρ ε

 

(17) 

where 0 0 0= −q ϑ ϑ . 

3.2. Control Allocation of the Drag Force 
The actual drag force of the offshore platform is provided through towlines linked 

with tugs [10,25]. The optimal desired tension of each towline is computed by the quad-
ratic programming (QP) algorithm [29]. The objective function is constructed as below: 

min T TJ T T s Qs= Ω +  (18) 

subject to 

0 0
min max       1, 2,3, 4

( )
i

h h h

s B T
i

t
T T T

τ= −
= ≤ ≤

 (19) 

where min
hT  and max

hT  represent the minimum and maximum horizontal tensions of tow-
lines, and Ω  and Q  are weighting matrices. 

Then, combined with the 
i

hT  and the towline model (2), the desired horizontal dis-
tance 

H
id  and the actual horizontal tension 

i
HT  can be gained. The time-variant relative 

position iυ  can be obtained by (6). 

Remark 2. There are some typical algorithms to solve the optimal desired tension problem [25,29–
31]. Linear programming (LP) is not suitable for quadratic objective function problems [30]. Non-
linear programming (NLP) [31] and model predictive control (MPC) [25] have shortcomings in 
terms of accuracy and computation efficiency, respectively. The QP algorithm can strike a balance 
between computation efficiency and accuracy, especially when the objective function is quadratic, 
and the constraints are linear. It can be seen from the proposed optimal desired tension allocation 
model (18) and (19) that the objective function and constraints are quadratic and linear, respec-
tively. Therefore, we chose the QP algorithm to achieve the optimal desired tension allocation of TS. 

3.3. Event-Triggered Neural Adaptive Distributed Cooperative Controllers for Tugs 
Similar to the platform, we design a neural adaptive distributed cooperative control-

ler for tugs. 
Step 1: Firstly, the two errors of the ith  ( 1,.., 4i = ) tug is defined as follows: 

1 1 1 0 1

2

( ) ( )
i

i ij i j i i
j

iii

E a a

E
∈

 = − +

 = −

∑ e e e

v ϑ


 
(20) 

where 1 0
t v

i i iη
−= − −e η η , 0, ij ia a  are adjacency matrices, i  is the neighbor set for ith  

tug, and the details can be seen in preliminaries in [10,32]. The control law 3
i R∈ϑ  for the 

platform can be obtained as follows: 

1 001 0( )
( )

( ) ( ))(
i

T
T t v t v T t vi

i i i ji i i ij i
ji

i
d

a a
a
ψ

ψ η η ψ η
∈

− − − 
= − + + − − + 

 
∑   

J
J v J vK Eϑ



 (21) 
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The iϑ  can be obtained through first-order filter as follows: 

,   (0) (0)i i i i ik ϑ= − =ϑ ϑ ϑ ϑ  (22) 

Based on the (20) and (3), we can obtain the derivative of (20) as follows: 

01 0 0

2

( ) ( ) () ))( (
i

t v t v t v
i i

h

ji id ij i
j

i

j i j j

i i ii

a a aψ ψ η η ψ η− − −

∈

 = − + − − +

 = + −

∑

  



JE

M

J v J v v

dE τ τ


 
(23) 

where 
i

i
i ii w i i= − −− d D v g Mτ ϑ  includes total disturbances and uncertainties. The design 

process of the control effort _ ( )i c tτ  of tugs are similar to the process of platform. The 
control effort _ ( )i c tτ  are designed as follows: 

_ 2 2
ˆ( ) ii c i it E= − −K dτ  (24) 

where 
2

ˆ
î i ii E=d ρε  , _ _ ,1 _ ,2 _ ,3( ) ( ) ( ) ( )i c i c i c i ct t t tτ τ τ =  τ  , ,1 ,2 ,3( ,  , )i i i idiag ρ ρ ρ=ρ  , 

,1 ,2 ,3ˆ ˆ ˆ ˆ( ,  , )i i i idiag ρ ρ ρ=ρ   is the estimation of iρ  , 2
, , ( 1, 2,3)i n i n nρ χ= =  , 

,1 ,2 ,3( ,  ,  )i i i idiag ε ε ε=ε  , with 2 2
, , ,(4 )i n i n i nε ξ δ=  , and ,i nδ   represents the positive constant. 

The update rate of ˆnρ  is as follows: 

{ }, , , 2 , , , ,ˆ ˆ ˆ (0)i n i n i n i n i n i n i nEρ β ε γ ρ ρ = − − 
  (25) 

According to event-triggered control, the final control law is designed as follows: 
+1

, _ , , , ,( ) ( ),  [ , ),   =1,2,3s s s
i n i c n i n i n i nt t t t t nτ τ= ∀ ∈  (26) 

where ,1 ,2 ,3( ) ( ) ( ) ( )i i i it t t tτ τ τ =  τ  , ,
s
i nt   is the triggering time instant of the s-th event, 

and the triggering conditions are as follows: 

{ }, ,

1
, _ , , , ,

inf |

( ) ( )

s
i n n i n

s s
i n i c n i n i n i n

t t R E

E t t

α
−

 = ∈ ≥


= − τ τ
 (27) 

where ,i n Rα ∈ , which satisfies , ,0 i n i nα α< < , with constants ,i nα . If the triggering condi-
tion of (27) is not met, , ( )i n tτ  remains constant 1

_ , ,( )s
i c n i ntτ − . When triggering condition (27) 

is met, the current triggering moment is marked as ,
s
i nt  , and control input , ( )i n tτ   will 

change to _ , ( )s
i c n ntτ . 

Based on (23)–(25) and defining , , ,ˆi n i n i nρ ρ ρ= − , we obtain the following: 

( )

{ }
2 2 2

2
, , , 2

1 1 1 2

, , ,

2

,

ˆ

ˆ ˆ (0)

( )

i i i i i i

i n i n i n i n i n i n i n

i i i i i i

i i

E

K
M

ρ β ε γ ρ ρ


 − −


 = − − 

= −



= +










E E + J E + q
E K E E d

ψ
ρε

 

(28) 

where i i i= −q ϑ ϑ . 

3.4. Stability Analysis 

Theorem 1. For the system errors (17) and (28) of the platform and tugs with unknown disturb-
ances and uncertainties, and according to Assumptions 1–3, the proposed control scheme, com-
posed of dynamics control law (15) and (24) and the update rate (16) and (25), can achieve the 
control objectives of this paper. Additionally, in the closed-loop system, all signals of the TS are 
ultimately uniformly bounded. 

Proof. Based on the errors discussed above, we established the following Lyapunov func-
tion as follows: 
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The derivative of (29) as follows: 
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According to references [33], 0q  and iq  are bounded, such that 0 0≤q q , i i≤q q

, where 0q  and iq  are constants. Based on the Young’s inequality, we can obtain the in-
equalities as follows: 
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(31) 

where 0σ  and iσ  are constant. By substituting (31) into (30), we can obtain the follow 
inequality. 
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where ( )1 3min ,  c c c=  , ( )
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= + − +  ∑ ∑ ∑q . minλ  and maxλ  represent the minimum and 

maximum eigenvalues of the matrix, respectively. 2 4 0c c+ >  and 0c > can be obtained 
by choosing parameters. 

Further, the closed-loop system is uniformly ultimately bounded. Finally, Theorem 
1 is proven. 

Theorem 2. In this paper, the fixed-threshold event-triggering mechanisms (15), (16), 

(26), and (27) can effectively prevent Zeno behavior, and the time intervals 
1

0, 0,
s s

n nt t −−  and 
1

, ,
s s
i n i nt t −−  have lower bound t , where t  is a positive constant. 

Proof. Based on (16), the derivative of 0nE  as follows: 

( ) 1
0, 0, 0, 0 _ 0, 0,,  [ , ]s s

n n n c n nE sign E E t t t−= ≤ ∀ ∈  τ  (33) 

According to (13), the derivative of 0 _ cτ  with respect to 0 _ cτ is as follows: 
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According to Theorem 1, 
20,nE   and 

0,ˆ nρ   are bounded. Based on Lemma 1, ( )h δ  

and first derivative ( )h δ   are bounded, and subsequently, 
0,nε   is bounded as well. 
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Based on (35), the time interval has lower bound t , where { }0 0,min nt α ϖ≥ . There-
fore, the proposed ETC method can avoid Zeno behavior. Similarly, the above proof also 
applies to the neural adaptive distributed cooperative controller for tugs. 

Theorem 2 is proven. □ 

4. Simulation Results and Analysis 
In this section, we employ the towing system (TS) [10] to validate the effectiveness of 

the proposed control method. To show the performance of the designed control method, 
our simulations and experiments were conducted using MATLAB 2023b and Windows 
11. The parameters of the unactuated platform and four tugs of the TS can be seen in [10] 
and Table 1. The following desired trajectory can only be gained by the platform. 

( ) 0.2
( ) 200 (0.001 )

x t t
y t sin t

=
 =  

(36) 

In practice, the TS usually navigates in a moderate sea condition. However, it is also 
essential to consider its reliability under different conditions. Therefore, this paper intro-
duced the following two types of unknown disturbances [34]: 

Case 1. Based on Ref. [35], the unknown disturbances wτ  and the model uncertain-
ties g  of moderate sea conditions are designed as follows: 
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+ 

 (37) 

Case 2. The unknown disturbances wτ  and the model uncertainties g  of adverse 
sea conditions are designed as follows: 
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(38) 

Table 1. Initial positions and initial velocities of the platform and four tugs. 

The Towing System Initial Positions Initial Velocities 

The offshore platform 0 [0,0,0 ]Tη °=  0 [0,0,0(rad / s)]Tv =  

The first tug 1 [271, 167,0 ]Tη °= −  1 [0,0,0(rad / s)]Tv =  

The second tug 2 [271,167,0 ]Tη °=  2 [0,0,0(rad / s)]Tv =  
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The third tug 3 [ 271,167,180 ]Tη °= −  3 [0,0,0(rad / s)]Tv =  

The fourth tug 4 [ 271, 167,180 ]Tη °= − −  4 [0,0,0(rad / s)]Tv =  

Considering that symmetrically distributed tugs can better coordinate the towing 
force on the platform, we use the same transformation matrix 0B  with [10]. The parame-
ters are as follows: 1 330θ °=  , 2 30θ °=  , 3 150θ °=  , 4 210θ °=  ; 1 1( , ) (55 ,  42 )x yl l m m= −  , 

2 2( , ) (55 ,42 )x yl l m m=  , 3 3( , ) ( 55 ,42 )x yl l m m= −  , 4 4( , ) ( 55 ,  42 )x yl l m m= − −  ; 1 3 150φ φ °= =  , 

2 4 210φ φ °= = . 
Based on the Theorem 1, we design the parameters of the proposed control scheme 

by trial and error. And the final designed parameters are as follows: 10 30.55I=K  , 
6

20 310 I=K  , 1 35i I=K  , ( )5 6 7
2 1 ,1 ,1i diag e e e=K  , 01 02 0.02β β= =  , 03 10β =  , 

3
1 2 2i i eβ β −= =

, 3 0.1iβ = ,
3

01 02 1eγ γ −= = , 
4

03 1eγ −= , 
4

1 2 4i i eγ γ −= = , 
3

3 8i eγ −= , 01 02 500δ δ= = , 03 50δ = , 

1 2 800i iδ δ= =  , 3 50iδ =  , 0̂ ˆ(0) (0) 0i= =ρ ρ  , 
4

0,1 0,2 1e Nα α= =  , 
6

0,3 1e Nα =  , 
5

,1 ,2 1i i e Nα α= =

, 
7

,3 1i e Nα = , 0.08iρ = . 
To validate the advantages of the proposed MLP-based adaptive RBFNN, the single-

hidden-layer neural network (SHLNN) is introduced as follows: 
ˆˆ ( ) ( )T

i i it W hρ χ=  (39) 

where [1, , , ]T T T
i i iiχ ν ψη= 

 is the input vector for the single-hidden-layer neural network, 

ˆ
iW  is the estimated weight vector, and 1( )

1 iih
e χχ −=

+
 is the basis function of the neural 

network. 

The adaptive update rule for ˆ
iW  are designed as follows: 

( )1ˆ ˆ( ) ( )T
i i i i i i i wi iW h E k M k Wσ χ η−= −

 (40) 

where iσ  is the gain parameters. 
The simulation results are as follows: 
Figure 4 describes the three adaptive learning parameters designed for the platform 

and tugs. It is evident from Figure 4 that the adaptive learning parameters stabilize at 
around 50 s. Figures 5 and 6 demonstrate that the MLP-based adaptive RBFNNs can ef-
fectively approximate the total disturbances and uncertainties of the TS, which can im-
prove the robustness of the TS. By comparing the curves of MLP-based adaptive RBFNN 
and SHLNN in Figures 5 and 6, it is evident that both methods can achieve similar ap-
proximation results for the total disturbances and uncertainties around 70 s. This means 
that the MLP-based adaptive RBFNN can reduce the design and computational burden 
caused by numerous learning parameters without compromising the performance. 

Figures 7 and 8 illustrate the control forces of the tugs under ETC in Case 1 and Case 
2. Clearly, the tugs’ control forces are not continuously changing, it only adjusts when the 
control input error exceeds the predefined fixed threshold. Although there are some fluc-
tuations in the control forces under Case 2, they remain within an acceptable range. This 
means that the control scheme proposed in our paper has good robustness to different sea 
conditions. To further validate the effectiveness of ETC, the execution frequency and inter-
execution time 1( )s s

n nt t+ − , 0,1,2...s = , are given for the fourth tug under the two control-
lers (ETC and CTC). The comparison of the execution frequency in Figure 9 demonstrates 
that the designed ETC mechanism can effectively reduce the execution frequency of the 
tugs’ thrusters and the communication burden within the TS. Furthermore, it can be seen 
from the detailed enlarged view of Figure 10 that the minimum inter-execution time is 
greater than 0 s, which validates that the proposed scheme can avoid Zeno behavior. 
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Figures 11 and 12 show the trajectories of the TS tracking straight and curved predeter-
mined trajectories, respectively. It can be seen from Figures 11 and 12 that the platform can 
track the arbitrary predetermined trajectory well under the towing of tugs. Figures 13–15 
show the position error curves of the platform and tugs under the two controllers (ETC and 
CTC). Figure 16 shows the deviations in the tugs’ positions under two controllers. It can be 
seen from the first two items of Figure 16 that the north and east deviations are both within 
a small range. And the third item of Figure 16 shows that the heading deviations can con-
verge to a small neighborhood within 100 s. Therefore, although there are slight oscillations 
of the proposed controller under the ETC, the overshoot and the convergence time remain 
basically consistent with those under CTC. Overall, Figures 11–16 show that the designed 
ETC mechanism can effectively reduce the thruster execution frequency and the communi-
cation burden with minimal impact on the performance of controller. 

Figures 17 and 18 represent the horizontal lengths and horizontal tensions of tow-
lines, which demonstrate that the length variation in towlines are relatively small and con-
sistent with the horizontal tension variation in the towlines under the ETC mechanism. 
The relatively small length change in towlines can guarantee the trajectory-tracking per-
formance of the platform. Based on the configuration of the TS in Figure 9 and the desired 
trajectory of the platform, the second and third tugs should provide the main drag forces 
at the initial stage, which is consistent with the horizontal length of towlines shown in 
Figure 13. 

 
Figure 4. The adaptive learning parameters of the RBFNN for the TS in Case 1. 
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Figure 5. The actual total disturbances and uncertainties 0d  of the platform and their 
estimation using MLP-based adaptive RBFNN and SHLNN in Case 1. 

  
Figure 6. The actual total disturbances and uncertainties id  of the tugs and their estimation using 
MLP-based adaptive RBFNN and SHLNN in Case 1. 
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Figure 7. The control forces of the tugs under ETC in Case 1. 

 
Figure 8. The control forces of the tugs under ETC in Case 2. 
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Figure 9. The execution times under the two controllers (ETC and CTC) in Case 1. 

 
Figure 10. The inter-execution time of event-triggered neural adaptive cooperative controller in 
Case 1. 
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Figure 11. Trajectories of the offshore platform and tugs in the TS tracking straight predetermined 
trajectory in Case 1. 

 
Figure 12. Trajectories of the offshore platform and tugs in the TS tracking curved predetermined 
trajectory in Case 1. 
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Figure 13. The position error curves of the platform under the two controllers (ETC and CTC) in 
Case 1. 

 
Figure 14. The position error curves of the tugs under ETC in Case 1. 
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Figure 15. The position error curves of the tugs under CTC in Case 1. 

 
Figure 16. The deviation of tugs’ position errors under two controllers (CTC and ETC) in Case 1. 
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Figure 17. The horizontal lengths of four towlines under ETC in Case 1. 

 
Figure 18. The horizontal tensions of four towlines under ETC in Case 1. 

5. Conclusions 
This paper proposed an event-triggered neural adaptive cooperative control for the 

TS with model parameter uncertainties and unknown disturbances. To begin with, we 
designed an adaptive RBFNN improved by the MLP algorithm to compensate for these 
uncertainties and disturbances. The MLP algorithm reduces the online learning parame-
ters of the adaptive RBFNN to only three, significantly reducing the design and computa-
tion burden. Based on this adaptive RBFNN, we developed an event-triggered neural 
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adaptive virtual controller to obtain the desired drag force for the platform. Subsequently, 
according to the QP algorithm, the desired drag force is allocated as the desired tensions 
of the towlines. The desired towline lengths and the desired position information of the 
tugs are then obtained sequentially through the towline model and the position relation-
ship between the tugs and the platform. Subsequently, an event-triggered neural adaptive 
distributed cooperative controller is designed for the tugs based on their desired positions. 
Simulations and analyses demonstrated that the event-triggered neural adaptive control-
lers can ensure the tracking error of the TS converges to a smaller neighborhood. The de-
signed adaptive RBFNN with MLP requires only three online learning parameters, reduc-
ing the design and computational burden caused by numerous learning parameters and 
effectively compensating for uncertainties and disturbances in the TS. Additionally, the 
ETC mechanism reduces the communication burden within the TS and the execution fre-
quency of the tugs’ thrusters. In future research, we aim to design controllers with faster 
convergence rates under control input constraints and hope to conduct physical testing 
soon to further validate our proposed approaches. 
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Abbreviation 
Key abbreviations and symbols used in this paper. 

TS Towing System 
RBFNN Radial basis function neural network 
MLP Minimal learning parameter 
CTC Continuous trigger control 
ETC Event-triggered control 
QP Quadratic programming 
SHLNN Single-hidden-layer neural network 

( )h δ  The neuron basis function 

 HT  The horizontal tension 

HD  The horizontal length of the towlines 

iη , 0η  The positions of the tugs and platform 

iv , 0v  The velocity of the tugs and platform 

( )iJ ψ , 0( )J ψ  The transformation matrices of the tugs and platform 
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iM , 0M , iD , iD  The inertial and damping matrices of the tugs and platform 

i
wτ , 

0
wτ , ig , 0g  The disturbance forces and unmodeled dynamics of the tugs and platform 

i
hτ  The effort vector induced by the horizontal tension 

t v
iη
−

 The time-variant relative position 

1iE , 2iE , 10E , 20E  
Position tracking errors and velocity tracking errors of the tugs and plat-
form 

iϑ , 0ϑ  The virtual controller of the tugs and platform 

iϑ , 0ϑ  The output of first-order filter 

id , 0d   The total disturbances and uncertainties of the tugs and platform 

ˆ
id , 0d̂  The estimation of RBFNN 
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