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Abstract The contact problem of laying of an underwater pipeline as a nonlinear-elastic rod is formulated
and numerically solved. Influence of various factors, i.e., tension, shear, physical nonlinearity of the material,
initial angle and depth, is considered. A new formula for hydrostatic loading is derived and used in calcula-
tions. Stresses in the pipe, loading on a vessel, form of the sagging part, and contact pressure are determined.

Keywords Nonlinear-elastic rod · Contact problem · Hydrostatic load · Numerical modeling · Finite
difference method

1 Introduction

High safety standards of underwater pipelines cause the relevance of mathematical modeling of their stress-
strain state [11,12,14,16,17,19,22]. The damage of the pipeline can occur already at the process of its laying
from the vessel to the sea bottom. The calculation of arising stress-strain state with account for various factors
and nonlinearities is the goal of this study. Linearized problem is formulated and solved in [22].

In the consequence of smallness of relative thickness of the considered pipeline segment (about 10−3),
we can use the one-dimensional models of rods as material lines of Euler–Kirchhoff–Cosserat [2,4–6,15,
21]. The calculations show that on the free segment we can restrict ourselves by using the classical nonlinear
model without tension and shear. However, to define the contact pressure on the bottom we need to take into
account transverse shear [13]. The bottom as a foundation is considered a horizontal plane, rigid and smooth
(frictionless). The contact segment boundary is determined from the corresponding matching conditions. For
the large depths we must take into account not only geometric nonlinearity, but also physical nonlinearity,
because the concrete of the outer layer is not subjected to Hookes law. The computation of hydrostatic load
on the pipe calls for special attention. The simplified ideas found in literature [12,16,17,20] can change the
solution quantitatively and qualitatively.

The theory and technique of calculation proposed in this work let us optimize the laying process of under-
water pipelines without overstress of them at the first stage.

2 Problem formulation and system of equations

The pipeline which is the two-layered curved tube from steel and concrete is modeled as a half-infinite rod.
This rod is rigidly fixed at the left end (Fig. 1). The rod having the compliance of bending, tension and shear
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is loaded by its own weight and by the external pressure of liquid. The distance between the fixation and the
bottom is prescribed, and the length of freely sagging segment is unknown and must be found. We take the
straight form of rod in the stress-free state as the pipeline reference configuration.

Fig. 1 Scheme of pipeline (a) and its section
(b). 1 is steel, 2 is concrete

The geometric form of rod as a material line is determined by the dependence of position vector r(s) of
the points forming this line on the Lagrangian coordinate s. In the initial state it is r0(s). Since s is the arc
coordinate, the derivative r′(s) is equal to the tangent unit vector t0. At the same time we relate the triple of
orthogonal unit vectors ei(s) with every particle of the rod as the Cosserat line; in the initial state they are
usually ei0 = t0(s). The vector of curvature and twisting ΩΩΩ(s) is determined by the equations ei

′ = ΩΩΩ × ei.
The rotation tensor P̂ ≡ eiei0 (we sum up by repeated indices) relates the directing unit vectors before and
after the deformation: ei = P̂ · ei0.

The system of equations of nonlinear statics of elastic rods has the form [4,6]:

Q′+q = 0, M′+ r′×Q+m = 0,
κκκ ≡ΩΩΩ − P̂ = Â ·M+ Ĉ ·Q, ΓΓΓ ≡ r′− P̂ · r0

′ = B̂ ·Q+M · Ĉ. (1)

Here Q, M are the force and moment vectors in the section with the coordinate s. The first two equations
describe the balance of forces and moments with the distributed loads q, m (force and moment correspond-
ingly), other relations involve the strain vectors κκκ, ΓΓΓ and relate them to the force factors using the compliance
tensors Â, B̂, Ĉ. The whole system of equations (1) can be derived from the principle of virtual work [4–6,21].
The relations of elasticity in the system (1) correspond the physically linear model with quadratic dependence
of strain energy Π(κi,Γi) on its arguments. In the case of physical nonlinearity we have M = ei ∂Π/∂κi,
Q = ei ∂Π/∂Γi where κi ≡ κκκ · ei, Γi ≡ ΓΓΓ · ei. The last follows also from the principle of virtual work.

The tensor Â characterizes the bending and twisting compliance, the tensor B̂ is the tension and shear
compliance, the tensor Ĉ describes the cross links. The computation of compliance tensors requires the con-
sideration of the three-dimensional rod model. Herewith solutions of the Saint-Venant problem, the asymptotic
method, and the variational approach with approximations in the cross-section are used [4–6,21]. The sim-
plest version of writing the tensors is the following: Â = ∑Aieiei, B̂ = ∑Bieiei, Ĉ = 0. Here six compliances
differ from zero: the twisting compliance A1, the bending ones A2, A3, the tension compliance B1 and shear
ones B2, B3.

Then we consider the deformation of the pipeline in the vertical plane xy with m = 0 and with the simplest
version of compliance tensors. In the plane xy (see Fig. 1, a) the vectors Q, q, r, ΓΓΓ , e1, e2 lie. Vectors M, κκκ

are perpendicular to the plane (i.e. parallel to the Cartesian axis z with the unit vector k = e3). Instead of
the rotation tensor it is sufficient to take the angle θ(s) between the axis x and the unit vector e1. With this
assumptions the equations (1) are simplified:

Q′+q = 0, M′+k · r′×Q = 0, θ
′ = AM,

(
A≡ A3, M = A−1

θ
′ ≡ A−1

κ
)
,

r′ = e1 + B̂ ·Q, e1 = icosθ + jsinθ , B̂ = B1e1e1 +B2e2e2, e2 =−isinθ + jcosθ . (2)

In the projections on the Cartesian axes x, y, we have the system

Qx
′+qx = 0, Qy

′+qy = 0, M′+ x′Qy− y′Qx = 0, θ
′ = AM,

x′ = cosθ +BxxQx +BxyQy, y′ = sinθ +ByxQx +ByyQy,

Bxx = B1cos2
θ +B2sin2

θ , Byy = B1sin2
θ +B2cos2

θ ,

Bxy = (B1−B2)sinθ cosθ . (3)



3

3 Contact problem with simplified load

At first we assume, that hydrostatic load is constant. Then

qx = 0, qy = w̃+

{
0, s < l,
−p(s) s > l (4)

where w̃ = const is the distributed per unit length weight of the pipeline in water [20]. The contact load p(s)
and the coordinate s = l of the free (sagging) segment tip are unknown. It is obvious that in the system of
equation (2) Qx = 0.

On the contact segment we have:

y = h⇒ sinθ +ByyQy = 0⇒ Qy =−sinθ/Byy;

p = w̃+Qy
′; M′+ x′Qy = 0⇒ θ

′′+A(cosθ +BxyQy)Qy = 0⇒ θ
′′ =

(
AB2/B2

yy
)

sinθ cosθ . (5)

Here the equation for θ(s) permits reduction of order:

θ
′2 +AB2/ [(B1−B2)Byy] = const = A/(B1−B2)⇒ θ

′ =−
√

A/Byy sinθ ; (6)

Herewith we use the condition θ(∞) = 0.
The equation (6) can be integrated in quadratures, however the simpler way is to integrate it numerically.

At the start of the contact segment

θ = θl , M = Ml ≡−sinθl/
√

AByy (θl), Qy = Qyl ≡−sinθl/Byy (θl) . (7)

The angle θi is one of the unknowns of this contact problem.
On the free segment the condition Qy = Qy0− w̃s(Qy0 = const) is fulfilled. Then from (3) we obtain the

system of ordinary differential equations (ODE) for M, θ , x, y; the general solution of this system contains
four arbitrary constants. The boundary conditions have the form: at the fixed end (with s= 0) x= y= 0, θ = θ∗
(θ∗ is the prescribed angle of fixation); at the free segment end (with s= l) conditions (7) and y= h. Altogether,
to find the seven unknowns (among them Qy0, l, θl) we set the seven boundary conditions.

We introduce the new coordinate ξ ≡ l−1s ∈ (0,1) and write the resolving equations and boundary condi-
tions with the use of this coordinate. The problem can be solved numerically by the finite difference method.
For this purpose the rod is divided into N intervals with the uniform step δ = 1/N. The differential equations
and the boundary conditions are written in the difference form; grid functions Mi, θi, xi, yi (i = 0, ...,N) are
placed in correspondence with the functions M, θ , x, y of continuous argument ξ . Using the approximate
values at the nodes, the functions themselves are then recovered by interpolation [3,8,10,18].

The system of ODEs is given in the operator form: dY/dξ =G(ξ , l,Y ) where the function Y =(M, θ , x, y)T .
To approximate the system we use implicit symmetric one-step difference scheme that has second order of
accuracy [3,10,18]: (Yi+1−Yi)/δ = (Gi +Gi+1)/2, (i = 0, ...,N−1). As a result of transformations we ob-
tain the system of 4N difference nonlinear algebraic equations. Total number of unknowns consists of the
values of the four desired functions at the nodes 4(N + 1) and of the three additional constants Qy0, l, θl .
The system of equations is complemented with the difference analogues of seven boundary conditions:
x0 = y0 = 0, θ0 = θ∗, yN = h,, θN = θl , MN = Ml , Qy0 = Qyl + w̃l. Then we apply the iteration method
of Newton [3,8,18]. As an initial approximation we use the solution of a linear problem for the rod model in
the classic formulation.

The outlined above algorithm was implemented in the software package MATHEMATICA. Also the prob-
lem was solved by the shooting method in the package MATHCAD (using the built-in functions sbval and
rkfixed). The results agree.

The calculations is done for the pipeline which section is formed by two rings, internal steel and external
concrete, with the radii R1 = 0.565 m, R2 = 0.6 m, R3 = 0.7 m (see Fig. 1, b). These (and the following)
parameters correspond the real pipeline of the company Nord Stream [1]. Steel has the elastic modulus E1 =
210 GPa, the Poissons ratio is ν1 = 0.28, the volumetric mass density is ρ1 = 7800 kg/m3. In this calculation
concrete is considered as a physically linear material with the following properties: E2 = 27.5 GPa, ν2 = 0.2,
ρ = 2450 kg/m3 [9]. The density of sea water is ρH = 1028 kg/m3.
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Defining the stiffnesses of pipeline as a compound rod, we consider that the steel and concrete layers
operate parallel, therefore their stiffnesses are added:

A−1 = ∑
n=1,2

EnIn, B1
−1 = ∑

n=1,2
EnSn, B2

−1 = K ∑
n=1,2

µnSn, (8)

where the area of ring cross sections, their moments of inertia and shear moduli are calculated by formulas:

Sn ≡ π
(
R2

n+1−R2
n
)
, In ≡ π

(
R4

n+1−R4
n
)
/4, µn ≡ En/ [2(1+νn)] . (9)

Here n = 1, 2 (index 1 refers to steel, 2 refers to concrete); K = 0.5 is the shear coefficient for the thin ring
caused by the geometrical form of the cross section; the value of shear coefficient is defined in the study of
boundary value problems, see [5].

Fig. 2 Distribution of contact pressure (ζ = s− l)

The calculation lets us evaluate the influence of tension and shear. The comparison of obtained results with
the results of the Kirchhoffs model shows that the role of tension is negligible, and hence we can neglect the
compliance B1. The influence of shear is not large on the pipeline free segment: the contact point coordinate
in the Kirchhoffs model is x(l) = 265.4 m, and in the model with shear it is 264.5 m; the values of force in
the cross section corresponding to these models differ by fractions of a percent. But shear evidently affects
the contact pressure (Fig. 2), because it is reduced to the concentrated force with B2 → ∞. The influence of
shear on the bending moment is shown in Fig. 3 in the case when the depth and the angle of fixation are
h = 100m, θ∗ = 30o. As we can see in the figures, the difference between the moment is small, however the
model with shear gives us a nonzero value of moment at the beginning of the contact segment (Fig. 3, b).

Fig. 3 Comparison of bending moment values calculated with two models. (a) Kichhoff’s model (line 1), model with shear (line
2); difference of this moments (b)

Further we solve the problem with B̂ (i.e. the rod model problem in the classical formulation). With the
help of this simpler model, we study the influence of the angle θ∗ on the stress-strain state. Here we use the
exact expression for the hydrostatic load.
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4 Hydrostatic load

We consider the sagging segment of pipeline as a tube with the axis L and cross section F (Fig. 4). The
position vector of points on the axis r = r(s) is the function of arc coordinate. The unit vector j is directed
along the axis y vertically down (as above). The pressure at the arbitrary point of tube surface (having the
position vector R) is equal p = p0 + γj ·R. Here p0 is the pressure at y = 0 (Fig. 1), γ = ρHg is the specific
weight of water.

Fig. 4 Tube in water

On the part of tube s1 < s < s2 the hydrostatic forces act with the resultant vector

−
∫
O

pNdO =

s2∫
s1

qHds. (10)

Here O is the lateral surface, N is the external normal unit vector to this surface. We are faced with derivation
of the expression of hydrostatic load qH distributed per unit length.

We define the vector of area NdO by well-known means of differential geometry. In every section s =
const we introduce the Cartesian axes xα with the unit vectors iα . On the contour ∂F of the section we have the
functions of arc coordinate xα = xα(ω). The tube surface is given by the dependence of position vector on two
coordinates R(ω,s) = r(s)+x, x≡ xα (ω) iα (s). Along the tangents to coordinate lines we direct the vectors
of derivatives Rω ≡ ∂R/∂ω = xα

′ (ω) · iα ≡ τττ , Rs ≡ ∂R/∂ s = t+ΩΩΩ
0× x (r′ (s) = t, iα ′ (s) = ΩΩΩ

0× iα )
(prime denotes the derivatives of function of one argument). We introduce the tangent unit vectors to the
contour τττ and to the axis t and also the vector of curvature and twisting of the tube ΩΩΩ

0. Then the normal
unit vector to the contour in the section plane is defined as n = τττ× t and the area vector on the tube surface
is NdO = Rω ×Rsdωds =

[
n+ τττ×

(
ΩΩΩ

0×x
)]

dωds. We substitute these expressions into (6) and obtain

qH =−
∮

∂F
p
[
n+(t×n)×

(
ΩΩΩ

0×x
)]

dω .

Next we take into account the dependence p(y) and use the generalized divergence theorem (in the section
plane):

∮
∂F

nαWdω =
∫
F

∂αWdF (∂α ≡= ∂/∂xα). Assuming
∫

xdF = 0 (i.e. the tube axis passes through the

centers of gravity), we obtain the desired expression of hydrostatic load:

qH = F
[
−γj⊥+(p0 + γy) t′

]
(11)

where j⊥ = j− j · tt is the part of the unit vector j in the section plane. We note that vector t′(s) is directed
along the principal normal to the tube axis, and its module is equal to the curvature of the axis.

We can obtain formula (7) using a simpler way [14,19,22]. The elementary derivation is based on the
Archimedes principle for the element of the tube between the cross sections s and s+ds:

−γFjds = qHds−F p t|s+ds
s , p = p0 + γj · r⇒ qH = F

[
−γj+(pt)′

]
= F

[
−γ (j− j · tt)+ pt′

]
. (12)

Though unlike the presented above more general derivation, this way cannot be used beyond the scope of
hydrostatics (when the pressure is defined by the integrals of Bernoulli or Lagrange–Cauchy).
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5 Pipeline as Kirchhof’s rod

Let us turn to the problem of the pipeline deformation in laying process in the case of action of hydrostatic
load (7) and B̂ = 0. We follow from the vector equations to the projections in the basis eα . We take use of the
equations ≡Qα eα , e1

′ = θ ′e2, e2
′ = −θ ′e1, q = wj+qH (here w is the pipeline weight distributed per unit

length) from (1), get

Q1
′−θ

′Q2 =−q1 =−wsinθ ,

Q2
′+θ

′Q1 =−q2 =−(w−Fγ)cosθ −F (p0 + γy)θ
′,

M′ =−Q2, θ
′ = AM, x′ = cosθ , y′ = sinθ (13)

and write the boundary conditions: s = 0 : x = y = 0, θ = θ∗; s = l : y = h, θ = 0, Ql = 0, M = 0. On the
contact segment of pipeline and bottom we have the undeformed state. The value Q2(l− 0) is equal to the
concentrated contact force with negative sign.

The computations are done with the same parameters as above (see Sect. 3). In Fig. 5 we present the
graphs of axial and transverse forces and also of bending moment for the various depth values h. These
results are obtained with the two expressions of hydrostatic load, exact (7) and simplified; the angle of fixation
is θ∗ = 30o. We see that, in comparison with the approximated load, the use of exact hydrostatic load changes
significantly the picture of internal loads in the pipeline. The calculations reveal the large tension force at the
attaching point. The simplified model of liquid weight gives value of next lower order (8 times smaller for the
depth 250 m). The pipeline vessel has to provide this force for the holding of sagging pipeline. Insufficient
tension leads to exceeding bending and destruction even for shallow areas.

6 Consideration of physical nonlinearity of concrete

Deformations of the pipeline are significant; therefore we need to take into account the physical nonlinearity
characteristic to concrete [9]. We show in Fig. 6 the stress-strain curve of concrete with the uniaxial tension-
compression. The dependence of the stress σ on the strain ε is approximated by the cubic function: σ̃ (ε) =
Eε +K1ε2 +K2ε3, where K1 =−E

(
ε
−1
1 + ε

−1
2

)
/2, K2 = Eε

−1
1 ε

−1
2 /3. However outside the interval (ε1, ε2)

the dependence must be corrected on the grounds of keeping the stability of material [7]. We take

σ (ε) =

 σ1, ε < ε1,
σ̃ (ε) , ε1 ≤ ε ≤ ε2,

σ2, ε > ε2.
(14)

Without going into details of the three-dimensional rod modeling [4–6,21], we restrict ourselves by the
elementary considerations of beam bending [5]. In this case the strain is linearly distributed across the thick-
ness: ε = −κη , η ∈ (−H,H) (η is the Cartesian coordinate in the cross section, 2H is the section height).
If the section is symmetric with respect to the vertical axis η and if b(η) is its width, then bending moment
equals

M2 (κ) =−
H∫
−H

σ (−κη)ηb(η)dη . (15)

For the concrete ring (see Fig. 1, b) the function b(η) has the form

b(η) = 2


√

R2
3−η2,√

R2
3−η2−

√
R2

2−η2,

R2 ≤ |η | ≤ R3,
0≤ |η |< R2.

(16)

By summing M2 and the moment in the steel tube we find the bending moment in pipeline: M (κ) = E1I1κ +
M2 (κ)⇒ κ = κ (M). The last inverse function is substituted into the system (9) (instead of θ ′ = AM).

Figure 7 contains the results of calculation for M2 (κ) and κ (M). The dashed line depicts the linear
concrete model. The graphs are obtained with the set of parameters: σ1 = −15 MPa, σ2 = 1,35 MPa, ε1 =
−4,27 ·10−4, ε2 = 9,16 ·10−5 [9].
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Fig. 5 Axial Q1 and transverse Q2 forces, bending moment M in pipeline for various values of depth θ∗: 30 m, (lines 1), 50 m
(2), 100 m (3), 250 m (4) with exact (a, c, e) and simplified (b, d, f) consideration of hydrostatic load

7 Influence of initial angle, of nonlinearity of concrete, and of depth

Numerical results with taking into account the physical nonlinearity of concrete is shown in Fig. 8. We draw
the form of sagging segment of pipeline and the internal forces for the various fixation angle values θ∗ with
the depth of laying h = 100 m. The influence of physical nonlinearity is shown by an example of bending
moment (Fig. 8 d).

After determination of the forces and moments in the compound pipeline-rod we need to evaluate the
arising stresses. Staying within the elementary considerations and assuming the fulfillment of Hookes law for
concrete, we obtain the following expressions for the maximal (in section) stresses in steel (index s) and in
concrete (index c):

σs = Q1/ [S1 (1+α)]+ |M|R2/ [I1 (1+β )] , (17)

α
∆
= (E2S2)/(E1S1) , β

∆
= (E2I2)/(E1I1) , (18)
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Fig. 6 Stress-strain curve

Fig. 7 (a) Bending moment in concrete tube and (b) dependence of curvature on moment

Table 1 Dependence of optimum fixation angle on depth

Laying depth h, m 0–10 10–30 30–70 70–140 140–300

Laying angle θ∗, grad 0 10 20 30 35

σc = Q1/
[
S2
(
1+α

−1)]+ |M|R3/
[
I2
(
1+β

−1)] . (19)

The dependence of maximal stress in steel on laying depth h with the various fixation angles θ∗ is shown
in Fig. 9. We see what angle should be chosen for laying the pipeline so that the yield stress of steel [σl ] =
400 MPa is not exceeded.

On the basis of the obtained results we can establish the optimum relation between the depth and the angle
of pipeline laying. So, with reaching the certain depth values one should increase the angle θ∗, otherwise the
stresses in steel increase inadmissibly. The optimum fixation angles for the depth up to 300 m are shown in
the table.

The dependence of maximum stresses in concrete is analogous to the one depicted in Fig. 9, but the stress
values are approximately seven times lower, than in steel. Calculations reveal that in the whole considered
diapason of depths and angles the stresses reach the yield stresses of concrete tension [σ2] = 1,35 MPa, and
it occurs simultaneously in almost all sections of the sagging segment of pipeline.

8 Conclusion

We developed the mathematical model of the underwater pipeline as a nonlinear-elastic rod. We determined
the hydrostatic load on the pipeline. We formulated and solved (with account for various factors) the contact
problems of deformation arising in laying process. We made recommendations to optimize the process to
reduce the loads on the vessel and the stresses in the tube.
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