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Abstract –  

Pipe spools are key components in industrial 

projects. Usually, they are built off-site in a 

fabrication shop and then shipped to the project 

location for installation. The fabrication shop deals 

with numerous spools, each designed to specific 

requirements according to shop drawings. The nature 

of pipe spools being engineered to order, together 

with production constraints such as lead time of 

materials, different processing times, and availability 

of resources, render the scheduling process within the 

shop challenging and time-consuming. As such, this 

research aims to automate the scheduling process by 

developing a reinforcement learning model that 

includes an agent that is capable of handling the 

scheduling process. The proposed model is applied to 

an illustrative example to investigate the concept of 

automating the scheduling process. The construction 

professionals highlight the great potential of the 

proposed model in the fabrication scheduling process, 

and its ability to minimize manual intervention. 
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1 Introduction 

Industrial projects include facilities like power plants, 

nuclear plants, and oil/gas production sites. Pipe 

spools—a main element in these facilities—are often 

fabricated off-site in fabrication shops that receive 

numerous orders accompanied by shipping schedules to 

construction sites [1,2]. A pipe spool comprises 

components like pipes, flanges, and elbows, each having 

varying lead times. The pipe spool is considered a unique 

product, being custom-made based on the shop drawings, 

engineered-to-order, and subject to frequent 

modifications due to design alterations or priority 

changes, availability of resources, processing times, and 

due dates [3]. All these features and constraints render 

the scheduling process challenging, laborious, and time-

consuming. As a result, previous research has attempted 

to address the challenges of the scheduling process.  

Metaheuristic algorithms have been explored as 

solutions for pipe spool scheduling [4,5]. Methods 

applied include genetic algorithms, artificial bee colonies, 

and ant colony optimizations [6-12]. Yet, their static 

nature limits their applicability in the dynamic and 

complex shop environment [13]. Simulation-based 

approaches have also been investigated as potential 

solutions including simulation models of pipe spool 

fabrication to study the fabrication process [14-20]. 

These models were used to study cycle time, bottlenecks, 

and resource utilization, which provides a level of 

support to construction professionals but does not offer a 

direct solution to the time-consuming nature or need for 

manual intervention in the scheduling process. Based on 

the aforementioned research efforts, we concluded that 

research related to automating the scheduling process and 

minimizing manual intervention remains relatively 

unexplored. 

This research aims to bridge this gap using a 

reinforcement learning model to automate the scheduling 

process and reduce human manipulation. The 

reinforcement model is comprised of an agent, actions, 

environment, states, and rewards. The agent employs a 

dueling deep Q-network and experience replay where the 

agent stores past experiences while interacting with the 

environment. The agent observes the states within the 

environment, takes an action from the available actions, 

and then learns through a reward system. 

This study advances the body of knowledge by 

exploring the potential of reinforcement learning models 

in the domain of construction management, specifically 

scheduling. 

The remainder of this paper presents background 

information on pipe spool fabrication and reinforcement 

learning. We then provide a brief review of the state-of-

the-art, identify research gaps, and discuss the potential 

of reinforcement learning in the scheduling process. The 

methodology section elaborates on the techniques and 
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algorithms used, and then provides an illustrative 

example demonstrating our research’s practicality. 

2 Research Background 

This section provides a brief review of the fabrication 

of pipe spools, and focuses on three main processes: 

fitting, welding, and inspection. Also, it presents an 

overview of reinforcement learning. 

2.1 Pipe Spool Fabrication Process 

The process of pipe spool fabrication encompasses 

multiple phases. This research focuses on the main 

fabrication processes: fitting, welding, and inspection. 

Pipes are the foundational element of spool assembly, 

being cut into specified sizes and shapes based on the 

shop drawings [20]. Once cut, the pipe moves to a fitting 

station where it is temporarily fixed with multiple 

components such as elbows, flanges, and reducers. 

Following this assembly stage, the semi-completed pipe 

spool moves to the welding station, either manually or 

lifted by machinery, based upon its weight and other 

handling requirements. The welding process ensures a 

permanent fixation of all components together [21,22].  

Finally, the welded spool undergoes inspection, which 

represents the final stage in the process [3]. 

2.2 Reinforcement Learning 

Reinforcement learning (RL) is a trending area of 

machine learning now used in many fields [23]. In RL, 

there are key components: agent, actions, environment, 

states, and rewards. An agent observes states in the 

environment, takes an action, and learns from interacting 

with its environment by receiving rewards or penalties, 

aiming to get more rewards and fewer penalties [23]. This 

learning process helps the agent make better decisions 

[24]. We can explain this using a Markov decision 

process (MDP), which includes states, actions, state 

transition probability matrix, reward functions, and 

discount factor [25,26]. This will be discussed in more 

detail in the methodology section. 

3 Literature Review 

This section explores two primary research areas: the 

application of RL in construction, and RL applications in 

job shop scheduling. 

3.1 Reinforcement Learning in Construction 

Scholars have explored the use of RL across multiple 

construction domains. Akanmu et al. [27] have presented 

a digital platform to train construction professionals 

encompassing wearable devices, RL, labor engagement, 

and monitoring tools. Mullapudi et al. [28] also 

developed a control strategy for stormwater systems that 

relies on an RL model to control the operations of valves, 

gates, and pumps. 

3.2 Reinforcement Learning in Job Shop 

Scheduling 

RL has been used to enhance dynamic scheduling in 

job-shop environments. Several researchers applied the 

Q-learning algorithm, where agents are taught to take 

action by choosing a dispatching rule to reduce tardiness 

in the process [29-32]. Yet, due to the large number of 

states in real-world production scenarios, Q-learning fails 

in practicality, as maintaining an extensive Q-table for 

such states becomes unfeasible. 

Accordingly, there was a leap in estimating the Q-

values by shifting towards deep reinforcement learning 

(DRL), which has demonstrated significant promise in 

job shop scheduling [33-35]. DRL, incorporating deep 

neural networks (DNNs), revolutionized the estimation 

of Q-functions [36]. 

A literature analysis reveals that there have not been 

any previous studies exploring the use of RL for 

scheduling in pipe spool fabrication. This finding aligns 

with the insights of Xu et al. [23], who assessed the 

current advancements in RL within construction 

engineering and management. The authors emphasize the 

limited number of studies incorporating RL in this 

domain, suggesting a need for increased focus [23]. 

Additionally, they highlight project scheduling and 

resource allocation as promising areas for future research. 

The capabilities of RL make it a promising solution 

for pipe spool fabrication scheduling due to its strengths 

in the following areas: (1) navigating complex problems 

in changing environments with high dimensions; (2) 

adjusting to varied scenarios and states; (3) engaging in 

independent learning; and (4) predicting future action 

outcomes. 

Building on this, our study introduces a pioneering 

RL-driven scheduling model tailored for pipe spool 

fabrication shops. The intention behind this model is to 

navigate the evolving landscape of such environments 

while addressing several inherent challenges in the 

scheduling area like resource allocation and adhering to 

due dates. 

4 Model Development 

Our model focuses on the fabrication process of pipe 

spools, specifically addressing the fitting stage. To 

develop the proposed model, the following information 

is required: start date, fitting processing time, required 

resources, and due date. As depicted in Figure 1, the 

model development involves two main stages: data 
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preparation and RL. Each stage will be described in the 

coming subsections. The proposed model development 

process is designed to allow the integration of data 

related to pipe spools with an RL model. Once the RL 

model is trained on a training dataset, it can then be 

applied to an unseen dataset of pipe spools that need to 

be scheduled. 

  

Figure 1. Methodology 

4.1 Data Preparation 

In this research, synthetic data is generated to mimic 

the spool information required to build the model. The 

generated dataset includes start date, fitting processing 

time, resources, and due date. The dataset includes 

approximately 1,900 records, and each record represents 

a spool. The dataset is then split into a training set with 

80% of the records, and a testing set with the remaining 

20% of the records. 

4.2 Reinforcement Learning 

This section describes the development of the RL 

model and formulates the scheduling process as a 

Markov decision process (MDP). Dueling DQN and 

prioritized replay are used in developing the agent. 

4.2.1 MDP Formulation 

As a general representation, the MDP can be 

described by five main components (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) where 

𝑆  is the set of states, 𝐴  is the set of actions, 𝑃  is the 

probability transition matrix from one state to another, 𝑅 

is the reward function, and 𝛾  is the discount factor. 

Typically, in each time step 𝑡 , the agent observes the 

states, takes an action 𝑎𝑡, then gets a reward or penalty 𝑟𝑡 
through the reward function 𝑅. It then moves to the next 

state 𝑠𝑡+1 depending on 𝑃. While calculating the rewards, 

the effect of future rewards is taken into consideration 

using the discounting factor 𝛾. 

• State 

The state is a crucial concept that represents the 

current status of the environment at a given time step, and 

based on the state, the agent determines its next action 

[37]. In our model, the state includes average processing 

duration for every spool, average slack, and average 

resources required for each spool. 

• Action 

Actions are crucial decisions made by an agent based 

on its observation of the current state. As the agent 

navigates the environment, it utilizes specific rules for its 

choices. In this context, the agent has two dispatching 

rules from which to select: first-come-first-serve (FCFS) 

or shortest processing time (SPT). The FCFS rule simply 

adheres to the order of spool arrival, processing spools in 

the sequence they were received, while the SPT rule 

prioritizes spools expected to be completed in the shortest 

duration. Given these choices, the agent dynamically 

identifies the optimal action for the current state during 

each decision-making time step. 

• Reward 

The reward function plays a crucial role in guiding 

the agent's decisions. It provides feedback from the 

environment in response to the agent's actions, 

effectively serving as an indicator of the agent's 

performance. The reward function deals with minimizing 

the number of spools that are not completed before their 

due date as demonstrated in Equation (1): 

𝑅 = {
0, 𝐷𝑖 ≤ 𝑡

−1, 𝐷𝑖 > 𝑡
 

(1) 

where 𝐷𝑖   represents the due date of the spool, and 𝑡 
represents the time step. 

4.2.2 Deep Reinforcement Learning 

In this model, we employ the Dueling Deep Q-

Network (Dueling DQN) which builds upon the 

foundational principles of the Deep Q-Network (DQN). 

The Dueling DQN enhances the conventional DQN by 
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decoupling the state values and the action advantages, 

refining the policy learning process. 

The RL model is developed through the features of 

PyTorch, a powerful open-source machine learning 

framework related to RL algorithms [41]. Additionally, 

OpenAI's gym serves as the training ground for the RL 

model [42]. Coupling PyTorch’s modeling prowess with 

OpenAI gym’s environmental interface and training 

capabilities results in a refined and highly effective RL 

solution. 

• Model Training 

The Q-value serves as a foundational metric in the 

MDP, quantifying the anticipated discounted future 

reward when a specific action is taken. The ultimate aim 

of the agent is to develop an optimal policy that increases 

the expected rewards, a principle outlined by Mnih et al. 

[34]. 

However, employing a non-linear function 

estimator—such as a neural network—to approximate 

the Q-function presents challenges. Specifically, it can 

lead to instability or divergence. Two predominant 

strategies, as described by Wang et al. [38], offer 

solutions to those challenges. First, the experience replay 

method involves storing the agent's experiences. This 

data is then randomized, reducing correlations, and 

sampled in mini-batches to train the Q-network. The 

second strategy introduces an iterative update mechanism. 

By integrating a target Q-network into the DQN with 

parameter 𝜃𝑖
−

, correlations with targets are diminished. 

This target Q-network synchronises with the primary Q-

network's parameters at periodic intervals, as illustrated 

by Mnih et al. [34]. 

Enhancing the DQN's architecture, we adopted the 

Dueling DQN. This refined structure improves efficiency 

by addressing Q-value overestimations. Notably, the 

Dueling DQN separates its estimations, separately 

determining the state value function and the action's 

advantage. These assessments then combine to forecast 

the action's quality, a technique explained by Liang et al. 

[39] and Wen et al. [40].  

In each time step, the agent observes the state of the 

environment and chooses an action from one of the two 

dispatching rules: FCFS or SPT. Once an action is taken 

by the agent, the environment starts to send feedback in 

the form of reward or penalty, so that the agent can learn 

from this interaction and make sure to take better actions 

that maximize rewards in future time steps. 

The model is trained on the training dataset, which is 

approximately 1,500 records and 10 resources for fitting 

the spools. Additionally, the following hyperparameters 

(Table 1) are used while training the model: 

 

Table 1. Model hyperparameters 

Parameter Value 

No. of training episodes 100 

Learning rate 0.0025 

Minibatch size 32 

ε 0.9 

γ 0.9 

5 Model Results and Interpretation 

After training, the agent was introduced to the testing 

dataset containing pipe spool records unseen by the agent. 

Consequently, the agent was evaluated on this dataset, 

making decisions to maximize rewards and concurrently 

reducing the number of spools that were not completed 

before their due date. Figure  shows the average reward 

during the evaluation phase, based on the respective 

dispatching rule selected by the RL agent.  

Figure 2. Average reward per episode (Exp #1) 

 

Another experiment was conducted and the model 

was trained using 300 episodes—an episode is a 

complete cycle of scheduling all the pipe spools in the 

training dataset—and a learning rate of 0.001 in lieu of 

100 and 0.0025, respectively. Figure 3 shows that the 

model’s performance was relatively improved as the 

lowest average reward reached -50 when compared to the 

first experiment where the lowest average reward 

reached approximately -70. 
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Figure 3. Average reward per episode (Exp #2) 
 

A third experiment was conducted and the model was 

trained using 500 episodes and a learning rate of 0.001. 

Figure 4 shows that the model’s performance was 

impacted as the lowest average reward reached 

approximately -140 when compared to the first and 

second experiments where the lowest average reward 

reached -70 and -50, respectively. As such, these 

hyperparameters had a negative impact on the model 

performance. Future work will investigate the 

hyperparameters that improve the model performance.  

Figure 4. Average reward per episode (Exp #3) 

6 Contributions and Future Work 

This research introduces an innovative method for 

automating the scheduling of pipe spool fabrication in 

industrial construction projects. It uses RL, specifically 

employing Dueling DQN with an experience replay 

buffer that stores the agent’s previous experiences. This 

method proves that an agent can be developed to 

schedule tasks in the simulated fabrication shop, reducing 

human intervention. This work serves as an initial 

exploration into applying RL for pipe spool scheduling 

in a fabrication shop. 

The research was then applied to an illustrative 

example that employed an artificial dataset that 

mimicked the data collected from the fabrication shop. 

The analysis highlights the significant potential of 

incorporating RL into scheduling, offering industry 

professionals a decision support tool for pipe spool 

scheduling. 

These preliminary results show that the proposed RL 

model has the potential to outperform traditional methods, 

which often require human input to deal with continuous 

changes. This research also refines the automation of 

scheduling, emphasizing the main constraint of adhering 

to due dates, which is imperative to preventing onsite 

installation delays. 

The study includes certain limitations that must be 

addressed in future research. First, the study focused on 

the fabrication process only, specifically the fitting 

operation. Second, only two of the basic dispatching rules 

were included as actions to be taken by the agent. Third, 

a simple straightforward reward function was used to 

calculate the rewards/penalties based on the agent’s 

actions. Finally, the model should be trained and 

evaluated on a real-world dataset from a fabrication shop. 

Future efforts should expand this research by 

encompassing diverse shop operations, by comparing the 

performance of the agent against the dispatching rules, 

and by assessing the agent’s ability to shift between those 

dispatching rules. 
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