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Abstract: The blasting vibration produced in the blasting process of underwater engineering brings 11 

serious damage to the surrounding environment. Predicting blasting peak particle velocity (PPV) is one 12 

of the effective ways to alleviate the problem. To further improve the prediction accuracy of blast PPV, 13 

the grey wolf optimization (GWO) algorithm is used in this paper to optimize the penalty factor and 14 

radial basis kernel function parameters of support vector regression (SVR) model iteratively, and a 15 

blasting PPV prediction model was established. Taking the Dajin Island water intake open channel of 16 

the Phase 1 project of Guangdong Taishan Nuclear Power Station as the engineering background, 17 

according to the relevant parameters of blasting vibration recorded in 30 blasting tests, taking into 18 

account blasting design parameters and geological conditions, a database consisting of 12 inputs (hole 19 

length (HL), spacing (S), row spacing (Rs), burden (B), stemming length (ls), the distance of blasting 20 

center (Bd), height differential elevation (Hde), seawater pressure (Ps), powder factor (PF), maximum 21 

charge of single hole (Qsmax), maximum charge per delay (Qmax) and total charge (Qtot) and 1 output 22 

(PPV)) was established. Then, the grey wolf optimization-support vector regression (GWO-SVR) 23 

model, double-layer neural network, medium decision tree, and empirical SVR model are used to 24 

establish a prediction model for the PPV in underwater blasting respectively, and the prediction results 25 

are compared and analyzed. The results are as follows: the actual value - predicted value diagram and 26 

residual comparison show that the prediction effect of PPV based on the double layer neural network 27 

model is the worst in underwater blasting. The comparison of regression evaluation indexes shows that 28 

GWO-SVR is the best method for predicting PPV in underwater blasting; its R2 is 0.9285, RMSE is 29 

0.21424, MSE is 0.0459 and MAE is 0.1625. The research results can provide a theoretical reference for 30 

the construction of similar underwater blasting projects, and provide a scientific basis for delineating a 31 

reasonable safety warning range for similar underwater blasting projects. 32 

Key words: underwater blasting; GWO-SVR; PPV; artificial intelligence 33 
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Introduction 34 

Underwater blasting is the main construction method for underwater earthwork excavation such 35 

as water resources and hydropower engineering, Port and wharf construction, bridge engineering and 36 

dam construction. Compared with land blasting, underwater engineering blasting is not only difficult to 37 

construct and requires high technology, but also more serious to the surrounding environment. 38 

Accurately analyzing and predicting the law of peak particle velocity (PPV) caused by blasting and 39 

then optimizing blasting design and construction is one of the effective methods to effectively reduce 40 

blasting vibration hazards (Verma et al 2018; Zhang et al 2019; Li et al 2019). Therefore, many 41 

scholars at home and abroad conducted a great deal of research on blast vibration velocity prediction, 42 

and achieved many rich results.  43 

In the age of undeveloped technology last century, the general method for predicting the PPV is: 44 

taking into account the relationship between the blasting design parameters and the PPV, and establish 45 

a corresponding empirical expression, such as the Sadowski’s formula considering the amount of 46 

charge and the distance from the blast source (Wang et al 2020; Lu et al 2011; Zhang et al 2020); there 47 

are also some theoretical expressions established based on the propagation law of stress waves (Duvall 48 

and Fogelson 1962; Zhang et al 2021; Wang et al 2017); but the above empirical and theoretical 49 

formulas can only consider 2 ~ 3 factors at the same time, in fact, the influence factors of the PPV is 50 

very much, such as the hole length (HL), spacing (S), row spacing (Rs), burden (B), stemming length 51 

(ls), the distance of blasting center (Bd), powder factor (PF), maximum charge of single hole (Qsmax), 52 

maximum charge per delay (Qmax) and total charge (Qtot), etc, so the prediction result is not consistent 53 

with actual situation. With the development of computers, numerical simulation computing technology 54 

has been widely applied to blasting engineering (Hao et al 2002; Saiang and Nordlund 2009; Wang et al 55 

2020), but the numerical values need to simplify boundary conditions and material properties, so the 56 

obtained results are different from the actual situation. Given that machine learning can take into 57 

account multiple blasting factors, artificial intelligence is also widely used in the blasting field. For 58 

example, the PPV prediction model established by neural network (Nguyen et al 2019; Shang et al 59 

2019; Taheri et al 2017; Yang et al 2019), decision tree (Khandelwal et al 2017; Rana et al 2020; 60 

Bhagat et al 2022), support vector regression (SVR) (Hasanipanah et al 2015; Khandelwal 2011; Shi et 61 

al 2012; Yang et al 2019), etc.  62 

However, the construction of models based on artificial neural network or decision tree for 63 

predicting the PPV lead to problems such as over-fitting of the datas (Paneiro et al 2018; Lawal and 64 

Idris 2020; Hasanipanah et al 2017; Nguyen et al 2019). Although SVR has good generalization 65 

performance and is not easy to overfit, the choice of penalty factor c and kernel function parameter g 66 

has a critical impact on the prediction accuracy of the model when it is used to predict PPV. Moreover, 67 

there is no systematic guiding principle or method for the selection of c and g at present, and most of 68 

them are based on experiences and trial-and-error methods (Abdi and Giveki 2013; Hasanipanah et al 69 

2017; Armaghani et al 2020; Murillo-Escobar et al 2019;). In addition, during underwater blasting, 70 

blasting vibration velocity is not only related to blasting design parameters, but also to the geological 71 

conditions of the blasting sites, such as water pressure, height differential elevation due to topographies 72 

(Khandelwal and Singh 2009; Khandelwal 2011; Hajihassani et al 2015 a, b). 73 
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Therefore, based on the engineering background of the Dajin Island water intake open channel of 74 

the Phase 1 project of Guangdong Taishan Nuclear Power Station, this paper establishes a PPV 75 

prediction model based on grey wolf optimization-support vector regression (GWO-SVR) (Balogun et 76 

al 2022), considering various blasting design parameters, water pressure, and height differential 77 

evlevation caused by topography and geomorphology. The algorithm chooses the SVR as the base 78 

model and builds an optimisation model based on finding the best initial parameters that conform to the 79 

actual engineering. Then the PPV of the blasting is predicted based on the optimization model, and the 80 

prediction results are compared with the double-layer neural network, medium decision tree, and 81 

empirical SVR model to test the rationality and feasibility of the model. The research results can 82 

provide a theoretical reference for similar underwater blasting construction.  83 

Engineering background 84 

The Guangdong Taishan Nuclear Power Station is located in Yaogu Village, Chixi Town, Taishan 85 

City, Jiangmen, with the Huangmao Sea to the east of the plant site and Dajin Island about 5km to the 86 

southeast (as shown in Figure 1). The construction scale of the project is 6×1750MW (EPR), which is 87 

divided into three phases. In the first phase of the Dajin Island water intake open channel, dredging in 88 

the 0+90~0+200 m mileage section of the canal requires underwater reef blasting construction (Zeng et 89 

al 2016), and the construction volume is about 203407.1m3. The bedrocks in this area are mainly 90 

sandstone and mudstone, and the main mineral components are quartz and feldspar. The bedding, joint 91 

and fissure of the rock layers are well developed, and the coverings include gravel, pebble and silt, etc. 92 

In order to ensure that the vibration velocity of the newly poured concrete dam gate of the 1#~2# shafts 93 

of the water intake tunnel does not exceed the safety threshold during the blasting excavation process, 94 

it is necessary to accurately predict the blasting excavation of the underwater rock.  95 

 96 

Figure. 1.  Distribution of Taishan Nuclear Power Plant in Guangdong province 97 

Thirty blasting tests were carried out prior to the large scale underwater blasting excavation, with 98 

115 mm diameter holes and basically the same charging pattern, all detonated in sections, with the 99 

same type of emulsion explosive. The charging structure of underwater blasting and the layout of 100 
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on-site vibration monitoring points are shown in Figure 2, and the monitoring results are shown in 101 

Table 1 (Liu et al 2013). The following 12 variables were selected on this occasion as the main factors 102 

that may affect the blast vibration velocity: hole length (HL), spacing (S), row spacing (Rs), burden (B), 103 

stemming length (ls), the distance of blasting center (Bd), height differential elevation (Hde), seawater 104 

pressure (Ps), powder factor (PF), maximum charge of single hole (Qsmax), maximum charge per delay 105 

(Qmax) and total charge (Qtot). 106 

 107 

Figure 2.  Layout of the blasting charge and site monitoring of underwater blasting 108 

 109 

Table 1.  Site monitoring results on underwater blasting (Liu et al 2013) 110 

 111 

N HL /m S/m Rs/m B/m ls/m Bd/m Hde/m Ps/(10 kPa) PF/kg Qsmax/kg Qmax/kg Qtot/kg PPV/(cm/s) 

1 7.8  3.0  3.0  4.0  1.9  97.4  35.7  7.7  1.2 54 80 960 2.010  

2 7.9  3.0  3.0  4.0  1.9  136.7  35.4  7.4  1.3 50 78 1200 1.150  

3 8.3  3.0  3.0  4.0  2.0  167.6  34.9  7.0  1.1 40 62 960 0.714  

4 5.0  3.5  3.0  4.5  1.8  191.7  38.8  10.7  1.2 16.8 52 312 0.631  

5 9.5  3.0  3.0  4.0  2.0  108.1  34.3  6.4  1.2 40 80 960 2.350  

6 7.8  3.5  3.0  4.5  1.8  194.6  37.4  9.3  1.3 27 54 648 0.610  

7 9.5  3.5  3.5  4.5  2.2  161.5  34.1  6.4  1.1 40 160 960 1.170  

8 8.3  3.5  3.5  4.0  2.0  140.7  34.1  6.2  1.1 37 150 888 1.330  

9 8.2  3.5  3.5  4.0  2.0  130.9  34.2  6.3  1.1 30 130 792 0.491  

10 9.1  3.0  3.0  4.0  2.0  132.0  34.2  6.3  1.3 62 50 1200 0.553  

11 10.3  3.0  3.0  4.0  2.4  153.9  32.6  5.1  1.2 49 80 960 0.783  

12 8.6  3.0  3.0  4.0  2.0  155.5  34.5  6.6  1.2 40 80 960 0.694  

 112 

 113 

Sensor 

Rs 

S 

Ps 

HL 

ls 

PF 

Hde 

S：Spacing 

Rs：Row spacing 
HL：Hole length PF：Powder charge 

Hde：Height differential elevation 

ls：Stemming length 

Ps：Seawater depth 

Bd：the distance of blasting center 

Bd 
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Continuation of table 1 114 

N HL /m S/m Rs/m B/m ls/m Bd/m Hde/m Ps/(10 kPa) PF/kg Qsmax/kg Qmax/kg Qtot/kg PPV/(cm/s) 

13 9.1  3.0  3.0  4.0  2.0  116.4  34.0  6.1  1.2 38 65 960 0.670  

14 10.4  3.0  3.0  4.0  2.5  110.8  32.8  5.4  1.2 37 50 960 0.444  

15 10.1  3.0  3.0  4.0  2.4  199.6  32.8  5.3  1.1 40 55 960 0.843  

16 10.7  3.0  3.0  4.0  2.5  103.2  32.7  5.3  1.2 51 78 960 1.080  

17 10.6  3.0  3.0  4.0  2.5  97.8  32.6  5.2  1.2 40 80 960 1.930  

18 9.5  3.0  3.0  4.0  2.2  173.4  33.7  6.0  1.2 39 78 960 1.150  

19 9.3  3.0  3.0  4.0  2.2  158.2  33.7  6.0  1.2 35 70 960 0.699  

20 6.5  3.0  3.0  4.0  1.6  135.2  36.9  8.6  1.3 67 75 1200 1.030  

21 7.9  3.0  3.0  4.0  1.9  132.2  35.4  7.4  1.1 40 80 960 1.130  

22 8.9  3.0  3.0  4.0  2.0  98.7  34.8  6.9  1.2 40 80 960 2.200  

23 11.1  3.0  3.0  4.0  2.5  158.6  32.0  4.6  1.2 39 68 960 1.020  

24 7.0  3.5  3.0  4.5  1.8  195.3  38.9  10.8  1.2 25 50 600 0.357  

25 9.8  3.0  3.0  4.0  2.2  106.5  33.3  5.6  1.2 40 70 960 1.156  

26 8.1  3.0  3.0  4.0  1.9  130.6  35.1  7.1  1.1 53 48 960 0.588  

27 10.5  3.0  3.0  4.0  2.4  162.2  32.6  5.1  1.2 54 80 960 1.560  

28 11.1  3.0  3.0  4.0  2.5  182.5  31.9  4.5  1.1 48 53 960 0.724  

29 6.2  3.0  3.0  4.0  1.6  135.8  37.2  8.9  1.3 48 75 1200 0.821  

30 6.0  3.5  3.5  4.0  1.6  191.7  39.4  11.2  1.2 48 120 720 0.476  

 115 

Gwo-svr model and application 116 

Support vector regression (SVR) 117 

Support Vector Regression (SVR) is an application of Support Vector Machine (SVM) to 118 

regression problems (Smola and Schölkopf 2004; Mahmoodzadeh et al 2021). 119 

The principle is: a "spacer band" is created on both sides of the linear function, and no loss is 120 

calculated for all samples that fall within the interval band; Only samples outside the interval band are 121 

counted in the loss function. The model is then optimized by minimizing the width of the spacer and 122 

the total loss. 123 

For a given training sample D={(x1,y1), (x2,y2),…, (xn,yn)}, yi∈R, we want to learn an f(x) that is 124 

as close as possible to y; w, b are the parameters to be determined. In this model, the loss is zero only if 125 

f(x) is the same as y; the SVR assumes that the maximum allowable deviation between f(x) and y is ε, 126 

loss is calculated if and only if the absolute value of the difference between f(x) and y is greater than ε, 127 

at this time, it is equivalent to constructing an interval with a width of 2ε with f(x) as the center. If the 128 

training sample falls into this interval, it is considered to be correctly predicted. (The amount of slack 129 
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on both sides of the spacer can vary) 130 

Cortes and Vapnik (Cortes and Vapnik 1995) used an error function known as the -insensitive 131 

error function, giving the SVM the following regression form: 132 

             

( , ( , )) ( , )

0      if ( , )
       

( , )   otherwise

L y f x y f x

y f x

y f x


 

 

 

= −

 − = 
− −

                          (1) 133 

In equation (1), the error of less than is ignored. In other words, errors in the range of less than are 134 

not penalized by this function. This range is called a tubular insensitive region and has the form of a 135 

plate in multidimensional problems, or the range lies between two parallel hyperplanes. In order to 136 

develop an algorithm, the estimation of a linear function should first be evaluated. All linear functions 137 

have the following general form. 138 

                
( ) , , , ,f x w x b w x X b R= +  

                          (2) 139 

where <, .> denotes the inner product of two vectors in Hilbert space (w is the weight vector and x 140 

is the input space). The goal of the learning trend is to determine a function  X*Y with minimum 141 

error and uniform distribution of (x1, y1),…,(xm, ym) based on independent data, called the -SVR 142 

algorithm. To this end, an attempt is made to minimize the generalized error function Rreg based on the 143 

-insensitive error function. Rreg can be rewritten based on the extended form of Remp, so 144 

          
  ( ) 2

emp

1

1 1
[ . [ ]]

2

m
C

i i emp

i

R f y f x f w C R f
m

 

=

= − = +
             (3) 145 

where Remp calculates the training error in the insensitive error function and C is a constant that 146 

somehow determines the value of 
2

w  given the complexity of the function. The minimizing 147 

equation (3) shows that the main idea of statistical learning theory is to achieve a true minimum error, 148 

thus requiring control over the model complexity as well as the error corresponding to the training data 149 

(Cortes and Vapnik 1995). After solving the above optimization problem, the values of f and w, 150 

respectively, are obtained as follows: 151 

                   

*

1

*

1

( )

( ) ( ) ,

m

i i i

i

m

i i i

i

w a a x

f x a a x x b

=

=

= −

= − +




                          (4) 152 

A kernel function is a vector product of functions, in which data is passed through the function to 153 

a higher dimensional space. Various kernel functions can be used, such as linear kernel, radial kernel, 154 

polynomial kernel, and sigmoid kernel. Therefore, in nonlinear problems, it is sufficient to use a kernel 155 

of the input values rather than the function itself. Considering the theory explained, the parameter 156 

values and parameter values present in the kernel function have a significant impact on the error 157 

reduction of the problem when determining the smoothing parameter C. 158 
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Grey wolf optimization algorithm 159 

Creatures under the harsh environment of nature, even if they do not possess the high intelligence 160 

of human beings, they have shown amazing group intelligence through continuous adaptation and 161 

collective cooperation under the same goal, that is, motivated by food. By observing the strict 162 

organizational system of wolves and their exquisite cooperative hunting methods (Emary et al 2016), 163 

scholars such as Mirjalili (Mirjalili et al 2014) in Australia proposed a new swarm intelligence 164 

algorithm-grey wolf optimization algorithm. 165 

The gray wolf population has a strict hierarchical system, which is similar to a kind of pyramid. 166 

The head wolf at the top of the pyramid is called α, and its responsibility is to make decisions about 167 

hunting behavior, habitat, food distribution, etc. 168 

The principle is as follows: There are three wolves α, β, and δ in the gray wolf population as the 169 

head wolf, of which α is the wolf king, located at the top of the pyramid, and is mainly responsible for 170 

leading the entire gray wolf group; β is located on the second level of the pyramid, when the entire 171 

wolf pack is missing α, β takes over from α wolf, giving orders; δ is located on the third level of the 172 

pyramid and follow the orders of the α and β wolves. The bottom layer is ω wolf, obey the command of 173 

the upper three layers. 174 

The process of wolves looking for prey is the process of finding the optimal solution. The process 175 

includes the steps of population initialization, social hierarchy stratification, encirclement, hunting, 176 

attacking prey and finding prey. The mathematical model of the algorithm is as follows: 177 

(1) Population initialization: All individual wolves are randomly distributed into the search 178 

domain, namely: 179 

            (1,2, ) ~ ( , )
i

X R lb ub…，M                                 (5) 180 

In the formula: Xi is the individual gray wolf; n is the number of gray wolf individuals, that is, the 181 

population; M is the population dimension; lb and ub are the upper and lower boundaries of the search 182 

area; R is a random distribution function. 183 

(2) Social class stratification: Fitness values are calculated for all individual wolves, and label 184 

the three gray wolves with the best fitness as α, β, 𝛿, and the remaining gray wolves as ω. α(a) as the 185 

optimal solution, β(b) and 𝛿(d) as the suboptimal solutions, and the remaining candidate solutions are 186 

ω(x). The hunting in the gray wolf algorithm is led by α, β, 𝛿, and ω searches for the prey under the 187 

guidance of these three wolves (optimal solution). 188 

(3) Surrounding the prey: The mathematical model of a grey wolf gradually approaching its prey 189 

and surrounding it. Its mathematical model is as follows (Mirjalili et al 2014): 190 

              
( ) ( )

p
D C X t X t=  −                                      (6) 191 

             
( 1)

P
X t X A D+ = −                                         (7) 192 

               

2
2

max 

t
a

t
= −                                            (8) 193 

                12A a r a=  −                                            (9) 194 
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                       22C r=                                          (10) 195 

where: t indicates the number of steps in the current iteration; max t represents the maximum 196 

number of iteration steps; “.” represents the Hadamard product operation; A and C are synergy 197 

coefficients; D is the distance between wolf and prey; Xp is the prey position; X(t) indicates the current 198 

position of the grey wolf; In the whole iterative process, the convergence factor a decreases linearly 199 

from 2 to 0; r1 and r2 are random numbers in [0,1]. 200 

(4) Hunting: Keep the best three gray wolves (α, β, δ) in the population at each iteration, then in 201 

the next iteration, update the positions of all wolves according to their position information. The 202 

mathematical model for this behavior is as follows: 203 

                  
( ) ( )

k k k
D C X t X t=  −

                               (11) 204 

             
( 1) ( )

i k i
X t X t E D+ = −                                     (12) 205 

            
1 2 3( 1)

3

X X X
X t

+ +
+ =

                                     (13) 206 

In the formula: k = α, β, δ, i = 1, 2, 3; Xα, Xβ, Xγ represent the optimal three wolf positions in the 207 

current population, respectively; X indicates the position vector of other candidate wolves; Dα, Dβ, Dγ 208 

denote the distance between the current candidate grey wolf and the optimal three wolves respectively. 209 

(5) Attacking the prey: Building a prey model for attack. E is a random vector in the interval 210 

[-a,a], when a=1, E belongs to [-1,1]. 211 

(6) Finding the prey: When |B|>1, all gray wolves are scattered in various areas to search for 212 

prey, thus achieving a global search; When |B|≤1, the gray wolf will focus on searching a certain area, 213 

so as to realize local search. 214 

Prediction model of ppv underwater blasting based on gwo-svr 215 

The collected blast vibration data is first divided into a test data set and a training data set, 20% of 216 

these data are taken as test data, and the remaining 80% are training data sets. The initialisation 217 

parameters of the GWO algorithm are then set, namely the maximum number of iterations, and the 218 

number of individuals in the wolf pack, both set to 20 this time. In addition, according to the penalty 219 

parameter c and kernel function parameter g that need to be selected by the SVR machine, the range of 220 

these two optimization parameters is set. This time, the value range of these two parameters is set to 221 

0.01~100. 222 

The fitness function is an index that describes the performance of parameters, and is an evaluation 223 

criterion to determine whether the current target parameter value is optimal. The mean square error 224 

(MSE) is the expected value of the square of the difference between the predicted data and the test data. 225 

When the MSE is the minimum value, it is considered that the target parameter value reaches the 226 

optimal standard. This time the mean squared deviation was chosen as the fitness function. 227 

Finally, the GWO-SVR model is trained with the training data set. When the MSE takes the 228 

minimum value, the model is optimal, and the parameters obtained at this time are the optimal 229 
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parameters. The GWO-SVR model is then tested with test data to assess the performance of the model. 230 

The specific process is shown in Figure 3. 231 

 232 

 233 

Figure 3.  Prediction model of underwater blasting vibration velocity based on GWO-SVR 234 

Analysis of prediction results 235 

The prediction model of underwater blasting vibration velocity needs to be evaluated according to 236 

the discreteness and correctness of the predicted data. In this paper, the prediction results obtained by 237 

the double-layer neural network, the medium decision tree, and the empirical SVR model are compared 238 

with the prediction results of GWO-SVR, and the actual value-prediction value graph and residual 239 

comparison, as well as regression evaluation indicator are used to evaluate the performance of the 240 

model. The four models have the hole length (HL), spacing (S), row spacing (Rs), burden (B), stemming 241 

length (ls), the distance of blasting center (Bd), height differential elevation (Hde), seawater pressure (Ps), 242 

powder factor (PF), maximum charge of single hole (Qsmax), maximum charge per delay (Qmax) and 243 

total charge (Qtot) are used as model inputs, and the PPV is used as output. The models are first trained 244 

with nearly 80% (24) of the datasets, then the models are tested with the remaining 20% (6) of the 245 

datasets, and finally the prediction results of the 4 models are evaluated. 246 

The parameters of each model are set as follows: the size of the first layer of the double-layer 247 

neural network model is 10, the size of the second layer is 10, the neuron activation function is ReLU, 248 
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and the iteration limit is 1000; The minimum leaf size of the medium decision tree is 12; the kernel 249 

function of the empirical SVR model is the RBF kernel function, c is 100, and g is 1; The kernel 250 

function of the GWO-SVR model is the RBF kernel function. The optimal c obtained by optimizing the 251 

parameters of SVR based on GWO is 0.010219, and the optimal g is 98.5121. 252 

Comparison of actual-predicted value plots and residuals 253 

The actual-predicted value plot reflects the abnormity due to random effects and provides a visual 254 

assessment of model fit. The comparison chart of blasting vibration velocity prediction results and 255 

actual distance is shown in Figure 4. From the view of No. 6 in Figure 4, the blue column deviates 256 

greatly from the red column, indicating that the PPV predicted by the double-layer neural network has 257 

a large deviation from the actual situation; As can be seen from No. 4 in Figure 4 , the green column 258 

deviates significantly compared to the red column, indicating that the PPV predicted by the medium 259 

decision tree model has a large deviation from the actual situation; On the whole, the purple and yellow 260 

columns fluctuate correspondingly with the changes of the red column, and the deviation is small, 261 

indicating that the PPV predicted by the GWO-SVR model and the empirical SVR model has a small 262 

deviation from the actual situation. 263 

 264 
Figure 4.  Comparison of predicted PPV results from different models with the actual situation 265 

Residual in mathematical statistics refers to the difference between the actual observed value and 266 

the predicted value, which can intuitively reflect the deviation between the predicted data and the real 267 

data. In order to analyze the deviation of the actual PPV from the predicted PPV in detail, the residuals 268 

of different models are calculated and the corresponding graphs are drawn, as shown in Figure 5. As 269 

can be seen from No. 6 in Figure 5, the absolute value of the residual error predicted by the 270 

double-layer neural network is very large, and the maximum value of the residual error reaches -1.1 271 
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cm/s; and the absolute value of the residuals predicted by the medium decision tree is also large, with 272 

the maximum value of the residuals reaching 1.1 cm/s, as can be seen from the ordinal No 4 in Figure 5. 273 

Thus, it is shown that double-layer neural networks and medium decision trees are less effective in 274 

prediction. 275 

It can be determined from Figure 4 and Figure 5 that the double-layer neural network model and 276 

the medium decision tree model have the worst data prediction effect, and the performance of the other 277 

two models can’t be judged. 278 

 279 

 280 

 Figure 5.  Plot of residuals of PPV results predicted by different models 281 

Comparison of regression evaluation indicators 282 

The commonly used prediction model regression evaluation indicators include R-square, root 283 

mean square error, mean square error and mean absolute error. Therefore, this section uses these four 284 

indicators to evaluate the effect of the prediction model. R-squared (R2) is a statistical indicator used to 285 

reflect the closeness of the correlation between variables, as shown in equation (11). The root mean 286 

square error (RMSE) is the square root of the ratio of the sum of the squares of the deviations of the 287 

observations from the true value to the number of observations in statistics, as shown in equation (12); 288 

The mean squared error (MSE) is the sum of the squares of the absolute errors and then averaged, as 289 

shown in equation (13); The mean absolute error (MAE) is the average of the absolute errors, as shown 290 

in Equation (14). When R2=1, RMSE=0, MSE=0 and MAE=0, it means that the predicted value of the 291 

model matches perfectly with the true value. 292 
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The prediction results of the four models are evaluated using regression evaluation indicators, and 297 

the regression evaluation indicators are shown in Table 2. 298 

 299 

Table 2.  The regression evaluation index of different flying rocks prediction models 300 

 301 

Types of predictive models R2  RMSE MSE MAE 

Double layer neural network 0.14 0.52616 0.27685 0.43393 

Medium decision tree 0.20 0.50764 0.2577 0.34181 

GWO-SVR 0.9285 0.21424 0.0459 0.1625 

Empirical SVR model 0.8762 0.32171 0.1035 0.282 

 302 

As can be seen from the Table 2, the prediction model of underwater blasting vibration velocity 303 

based on double-layer neural network has the smallest R2 (0.14), the largest RMSE (0.52616), MSE 304 

(0.27685) and MAE (0.43393) values; The medium decision tree prediction model has R2 of 0.20, 305 

RMSE of 0.50764, MSE of 0.2577, and MAE of 0.34181; The empirical SVR prediction model has R2 306 

of 0.8762, RMSE of 0.32171, MSE of 0.1035, and MAE of 0.282. This model and the medium decision 307 

tree prediction model have general regression evaluation indicators; The GWO-SVR prediction model 308 

has the largest R2 (0.9285), the smallest RMSE (0.32171), MSE (0.1035) and MAE (0.282) values. 309 

Comparing the GWO-SVR prediction model with the empirical SVR prediction model, it’s found that 310 

R2 is increased by 0.0523, RMSE is decreased by 0.10747, MSE is decreased by 0.0576, and MAE is 311 

decreased by 0.1195. Therefore, it can be seen from the regression evaluation indexes of each 312 

prediction model that the prediction model of underwater blasting vibration velocity established based 313 

on GWO-SVR is the best. 314 

Conclusion 315 

The assessment of the safety of buildings is a major problem faced by the safety production of 316 

underwater blasting. Predicting the PPV of blasting is one of the effective ways to alleviate this 317 

problem. In order to further improve the prediction accuracy of blasting PPV, the GWO algorithm is 318 

used to iteratively optimize the penalty factor and radial basis kernel function parameters of the SVR 319 

model, and a prediction model of blasting PPV is established. Based on the engineering background of 320 

the Dajin Island water intake open channel of Guangdong Taishan Nuclear Power Plant Phase 1 Project, 321 

the comparison and analysis of the predicted value of the model with the prediction results of the 322 

double-layer neural network, medium decision tree and empirical SVR model, it is proved that the 323 
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GWO-SVR model has the best prediction effect, the conclusions are as follows: 324 

(1) Taking the Dajin Island water intake open channel of the first phase of Guangdong Taishan 325 

Nuclear Power Station as the engineering background, the establishment of hole length (HL), spacing 326 

(S), row spacing (Rs), burden (B), stemming length (ls), the distance of blasting center (Bd), height 327 

differential elevation (Hde), seawater pressure (Ps), powder factor (PF), maximum charge of single hole 328 

(Qsmax), maximum charge per delay (Qmax) and total charge (Qtot) are used as model inputs, and the PPV 329 

is used as the output database. 330 

(2) The parameters c and g of the SVR model are optimised by the GWO algorithm, and the 331 

GWO algorithm is combined with the SVR algorithm to build a blast PPV prediction model, and the 332 

prediction results of this model are compared with those of the medium decision tree model, the 333 

double-layer neural network model and the empirical SVR model. 334 

(3) The actual value-predicted value plot and residual analysis show that the prediction model of 335 

PPV based on double-layer neural network has the worst prediction effect, and the performance of the 336 

other three models can’t be judged yet. 337 

(4) Through the comparison and analysis of regression evaluation indicators, the prediction 338 

effect of the PPV prediction model established based on GWO-SVR is the best, and its R2 value is 339 

0.9285, RMSE value is 0.21424, MSE value is 0.0459, and MAE value is 0.1625. 340 

(5) Based on the analysis of (3) and (4), it is concluded that the prediction model of blasting 341 

PPV based on GWO-SVR is the best. 342 
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