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A B S T R A C T   

The small-scale model test is the major affordable approach to experimentally investigate concrete gravity dams 
against underwater explosions. However, results of the small-scale model should be properly converted to the 
prototype, which requires the knowledge of scaling law. This study presented the scaling of failures of concrete 
gravity dams against underwater explosion shock loadings through small-scale centrifuge tests and numerical 
simulations. The dimensional analysis-based scaling law, which was essentially the geometrical scaling law for 
dams and the well-known Hopkinson scaling law for underwater explosion shock loadings, was employed. Ac-
cording to the scaling law, a numerical scheme comprising six numerical simulations with geometrical scaling 
factors β = 1, 1/10, 1/30, 1/50, 1/80, and 1/100 was devised. Results demonstrated that dams with different 
scaling factors exhibited essentially the same failure mode, i.e., the structural bending-induced tensile failure 
mode. On this basis, it was discovered that most dam dynamic responses followed the scaling law. It was also 
found that when the strain-rate effect was pronounced, such as in dam tensile stresses and tensile failures, the 
scaling law was violated. Despite the incomplete scaling law, the small-scale model tests can be used to identify 
the most vulnerable positions of the dam prototype.   

1. Introduction 

1.1. Concrete gravity dam against underwater explosion 

According to the statistical report by Magnus et al. (2018), during the 
period of 1970–2016, more than 23,352 terrorist attacks against civilian 
targets worldwide occurred, with 78,772 deaths. In this circumstance, 
there has been increasing public and academic concern about the threat 
of explosion attacks on military and civilian infrastructures such as 
dams, bridges, tunnels, airports, subway stations, etc., especially after 
the event of 9/11. Dam structures are indispensable infrastructures of 
society used primarily for water supply, flood regulation, power gen-
eration, irrigation, and shipping. However, in extreme circumstances, 
such as terrorist attacks and military strikes, dam structures, due to their 
political and economic significance, are highly likely to encounter blast 
loadings. The review literature (Wang et al., 2020a; Chen et al., 2021) 
reported that more than ten dams were destroyed by explosions in his-
torical wars during the 20th century. The statistics (U.S. Department of 

Homeland Security, 2012) showed that up to 25 dams had encountered 
explosion attacks during 2001–2011. 

Understanding the dynamic responses and failures of dam structures 
against blast loadings is a key to successful protection projects. The 
underwater explosion is one of the most severe scenarios the dam 
structures may experience. Compared to the air blast with the same 
explosive weight, the underwater explosion is well-known can cause 
significantly more severe damage to dam structures (Cole, 1948; Wang 
et al., 2015). Extensive attention, therefore, has been drawn to the dy-
namic responses and failures of concrete gravity dams subjected to un-
derwater explosions. 

For a general scientific problem, one may explore it experimentally, 
numerically, and/or theoretically. However, for the subject of concrete 
gravity dams against underwater explosions, to investigate it theoreti-
cally, if not impossible, is rather complicated, which involves the un-
derwater explosion processes, the fluid-structure interactions, and the 
highly nonlinear dynamic responses of dam structures. The underwater 
explosion itself is also very involved, which is accompanied by complex 
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physical phenomena, including shock wave propagation, the expansion, 
contraction, collapse, and migration of gas bubble, water jet, cavitation, 
and so on. For these reasons, advances in theoretical investigations were 
rarely reported. 

By contrast, with the rapid development of numerical methods and 
constitutive material models, relevant numerical studies were abundant. 
With the Coupled Lagrangian-Eulerian method or the Arbitrary 
Lagrangian-Eulerian method, researchers can establish the fully coupled 
water-air-explosive-dam numerical model and simulate the whole pro-
cess of concrete gravity dams undergoing underwater explosions. On 
this basis, researchers (Wang and Zhang, 2014; Zhang et al., 2014; Chen 
et al., 2017; Li et al., 2018a; Ren and Shao, 2019) uncovered the failure 
modes of concrete gravity dams due to the shock wave, where the in-
fluences of water depth, explosive weight, standoff distance, detonation 
depth, and dam height were studied. Moreover, Saadatfar and Zah-
matkesh (2018) concerned about the dam responses due to not only the 
shock wave but also the bubble pulse. Other than the two major phe-
nomena, the shock wave, and the bubble pulse, some other effects that 
can influence the damage effect of the underwater explosion were also 
discussed. For instance, Li et al. (2018b) unearthed the influence of 
hydrostatic pressure caused by the water in the reservoir. Zhang et al. 
(2021) explored the role of negative pressure to highlight the need to 
consider the local cavitation. Besides, considering the significance of the 
gravity effect to a concrete gravity dam, Wang et al. (2021) discovered 
the influence of the initial stress field of the dam. In addition, Wang et al. 
(2020b) focused on the evaluation method to evaluate the dam damage 
level. It is noted that these numerical studies were mostly conducted on 
the dam prototype. 

In contrast to the large number of numerical studies mentioned 
above, the literature on experimental investigations in this field was 
rather sparse. Particularly, considering the large geometrical size of dam 
structures and the high risk due to blast loadings, full-scale experiments 
were usually unattainable. Only the literature review (Chen et al., 2021) 
briefly documented the full-scale experiments recently conducted on the 
Fengman old dam before its demolition in Jilin, China. 

Restricted by the unaffordable costs, security concerns, and diffi-
culties in preparations and measurements for full-scale experiments, the 
small-scale model test was the major feasible alternative for experi-
mental investigations. For example, Lu et al. (2014) conducted six 1:200 
small-scale model tests to uncover the dam failures due to a strong un-
derwater shock wave generated using the hammer impact method. Se-
vere dam failures were observed. However, the underwater shock wave 
generated by the hammer impact method was a plane wave that was far 
from a realistic spherical wave induced by the underwater explosion. 
The error was remarkable for near-field underwater explosions. More 
importantly, this kind of small-scale model test performed on the ground 
with normal gravity was disabled to reproduce the internal state of 
initial stresses of a dam prototype caused by the massive gravity of the 
dam and the hydrostatic pressure of the reservoir. Thus, reliable results 
can not be expected. Recently, with the continuous development of 
centrifuge apparatus and scaling theory of underwater explosions (Hu 
et al., 2017), researchers can investigate this subject using a centrifuge, 
which can effectively provide a similar gravity field to the dam proto-
type. Vanadit–Ellis and Davis (2010) performed a series of 1:100 
centrifuge tests to discover the typical dam failure modes under different 
standoff distances. More recently, Huang et al. (2020a, 2022a, 2022b) 
conducted several small-scale centrifuge tests. Combined with numeri-
cal simulations, the dam failure modes and the underlying failure 
mechanisms due to the shock wave (Huang et al., 2020a, 2022b) and the 
effect of bubble pulse (Huang et al., 2022a) were discussed. 

More small-scale model tests are highly desired. However, the val-
idity of such kinds of tests remains to be firmly established. In other 
words, the results of the small-scale model should be able to infer the 
prototype, which requires not only the geometrical similarity between 
the small-scale model and the prototype but also the physical similarity 
of the major physical phenomena involved in the investigated problem. 

The technique that relates the results of the small-scale model and the 
prototype is called scaling, replica scaling, modeling, or similitude. This 
study focuses mainly on the scaling of dynamic responses and failures of 
concrete gravity dams subjected to underwater explosion shock 
loadings. 

1.2. Scaling theory 

For structures against blast loadings, the major relevant parameters 
and the corresponding scaling factors are summarized in Table 1. These 
scaling factors are well-known and can be derived easily with the 
dimensional analysis method based on the Mass-Length-Time (MLT) 
basis. The scaling theory in Table 1 is straightforward, which is essen-
tially the geometrical (replica) scaling law (Baker et al., 1973; Jones, 
2012) for the structure and the Hopkinson scaling law (Baker, 1973; 
Alves, 2020; Ramamurthi, 2021) for the blast effect. The Hopkinson 
scaling law, also named as the cubic root scaling law, is the most famous 
method to conduct blast wave scaling, where a Hopkinson scaled dis-
tance Z is proposed and is defined as, 

Z =
Rc

W1/3 (1)  

where Rc represents the standoff distance, and W denotes the explosive 
weight. The Hopkinson scaling law states that self-similar blast waves 
are produced at an identical Hopkinson scaled distance when two 
explosive charges of similar geometries and explosive types but of 
different weights are detonated in the same fluid. 

The above scaling theory was widely applied. The earlier attention 
was paid mainly to structures subjected to free-field air blasts. For 
instance, using this scaling theory, the scaling of dynamic responses of 
circular metal plates (Neuberger et al., 2007), thin steel plates (Snyman, 
2010), square reinforced concrete slabs (Wang et al., 2012), and circular 
clamped plates (Noam et al., 2014) against free-field air blasts was 
investigated. Note that the internal air blast was more destructive 
compared to the free-filed air blast owning to the multiple shock waves 
due to the reflections of the shock waves in a confined field. Then, with 
the same scaling theory, the scaling of dynamic responses of steel box 
structures (Yao et al., 2017), cylindrical lattice shell structures (Fu et al., 
2018), and cabin structures (Ren et al., 2022) against internal air blasts 
was explored. Results in these mentioned studies demonstrated that 
with the scaling theory in Table 1, the scaling of dynamic responses of 
the different structures against air blasts can generally be implemented. 

However, it is also known that for structures against blast loadings 
with the dimensional analysis-based scaling theory, several phenomena 
may not scale: (1) Gravity. For experiments conducted on the ground 
with normal gravity, gravitational forces can not be scaled according to 
the basic principles of the geometrically similar scaling law. (2) Strain- 
rate effect. The strain rate of the small-scale model is 1/β times enhanced 
compared to that of the prototype. For materials sensitive to the strain 
rate, this will result in σM/σP ∕= 1, thus, violating the scaling law. (3) 

Table 1 
Scaling factors relating model and prototype parameters.  

Parameters Dimension Factors 

Length, L L LM/LP = β 
Density, ρ ML− 3 ρM/ρP = 1 
Mass, W M WM/WP = β3 

Time, t T tM/tP = β 
Displacement, δ L δM/δP = β 
Strain, ε - εM/εP = 1 
Stress, σ ML− 1T− 2 σM/σP = 1 
Pressure, P ML− 1T− 2 PM/PP = 1 
Strain rate, ε̇ T− 1 ε̇M/ε̇P = 1/β 
Acceleration, a LT− 2 aM/aP = 1/β 
Energy, Q ML2T− 2 QM/QP = β3 

Fracture toughness, KIC ML− 1/2T− 2 KIC
M/KIC

P = β1/2  
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Fracture. The fracture can not be scaled with the fracture-mechanics 
criteria since the fracture toughness of the small-scale model is β1/2 

times that of the prototype. 
For gravity, if the geometrical size of the structure prototype is not 

very large (see Table 2) and the accelerations of structural responses are 
very high, then the gravitational forces are not significant and can be 
neglected. For the fracture, Noam et al. (2014) reported that using two 
alternative competing criteria instead of the fracture-mechanics criteria, 
the scaling of fracture and failure was possible. 

The strain-rate effect, then, becomes the thorniest issue that is still 
unclosed. For structures under impact loads, the non-scalability due to 
the strain-rate effect can be addressed by correcting the impacting ve-
locity (Oshiro and Alves, 2004; Mazzariol et al., 2016; Oshiro et al., 
2017). However, for structures against blast loads, the issue is more 
complicated. To narrow the gap, Mazzariol et al. (2016) described an 
impact velocity model that was established based on a new dimensional 
analysis basis with the inclusion of the initial velocity v0, the dynamic 
stress σd, and the impact mass G. However, the damage effect of the blast 
shock wave acting on the structure needed to be transformed into the 
impact velocity, which was hard to handle and involved additional 
problems for the applications of this method. Kong et al. (2017) devel-
oped a corrected scaling law by taking a correction factor of impulse per 
unit area into consideration. The corrected scaling law was then applied 
to the scaling of the impact responses of steel plates against air blasts. 
Similar corrected scaling law was adopted by Fu et al. (2021) to scale the 
dynamic responses of armor steel plates subjected to air blasts. However, 
a particular limitation of this method was that a priori knowledge about 
the strain rate was required to determine the correction factor. The 
strain rate of the center of a plate was usually taken since the deflection 
of the plate center was concerned to examine the corrected scaling law. 
Although the plate center deflection, then, can be well scaled, this 
method was limiting for structures that were more complex, such as dam 
structures, where strain rates varied both spatially and temporally. Be-
sides, Yao et al. (2022) proposed a new procedure to equivalent scale the 
dynamic responses of steel box structures subjected to internal air blasts. 
This method can consider the size effect of structural dimension and the 
strain-rate effect of materials. However, based on a dimensionless 
number applicable for box-shape structures against internal air blasts, 
the applicable scope of this method was limited. For these reasons, the 
mentioned studies focused mainly on the structure responses such as 
plate center deflections when examining the corrected scaling law. As 

for the scaling of failures of structures, particularly for tensile failures, 
which were more sensitive to the strain rate, relevant advances were 
rarely reported. 

In contrast to a large number of studies on the scaling law of struc-
tures against air blasts, the literature on the scaling law of structures 
against underwater explosions is rather scarce. Particularly, for the 
scaling of dynamic responses and failures of concrete gravity dams un-
dergoing underwater explosions, to the best of the authors’ knowledge, 
still, no relevant research has been reported. This is mainly attributed to 
the high complexity of this subject. It can be expounded from the load 
and the structural response two aspects as follows.  

(1) Load. Compared to the air blast, the underwater explosion is 
much more complicated, comprising the shock wave and the 
bubble pulse, two major physical phenomena. The shock wave is 
the direct consequence of the compressibility of the water and is 
not dependent on gravity. Thus, the small-scale model tests in 
pools or water tanks with normal gravity have been proved 
effective in modeling the shock wave on the conditions of the 
Mach similitude. However, the bubble oscillation is a direct result 
of the competition between the pressures inside and outside the 
bubble. The pressure outside the bubble refers to the hydrody-
namic water pressure that can change significantly with the water 
depth due to the gravity effect. In addition, the bubble motion 
upwards is affected by the buoyancy that also results from 
gravity. In this way, to simulate the bubble pulse, the gravity- 
related Froude similitude must be satisfied. The small-scale 
model tests in pools or water tanks with normal gravity fail to 
achieve this. Thereby, the small-scale model tests in a centrifuge 
with hyper-gravity are required, where the Mach and Froude si-
militudes can be satisfied simultaneously (Hu et al., 2017).  

(2) Structural response. The structural responses of concrete gravity 
dams are complicated. It can be expounded at the following three 
aspects. 

Firstly, compared to the metal materials commonly adopted in pre-
vious studies (Neuberger et al., 2007; Noam et al., 2014; Yao et al., 2017; 
Fu et al., 2021), the concrete material is more complex. Controlled by 
the physical mechanisms due to the concurrence of microcracks and 
pores, the concrete material can exhibit very complicated mechanical 
behaviors, including compaction due to pore collapse, shear dilatation, 
pressure dependence, strain-rate dependence, Lode-angle dependence, 
strain hardening, strain softening, etc. Moreover, as a typical brittle 
material, the concrete material can fail easily in tension accompanied by 
the growth and coalescence of microcracks. In light of this, the relatively 
simpler metal materials were commonly adopted in previous studies 
(see Table 2), and only the study by Wang et al. (2012) has experi-
mentally explored the scaling of dynamic responses and failures of 
reinforced concrete slabs. 

Secondly, the gravitational forces can not be ignored for concrete 
gravity dams. As mentioned previously, the gravitational forces can not 
scale for scaled-down experiments conducted on the ground with 
normal gravity. However, the error brought was acceptable, since, in 
previous studies (Neuberger et al., 2007; Wang et al., 2012; Noam et al., 
2014; Yao et al., 2017), the geometrical size of the structure prototype 
was very small (see Table 2) such that the gravitational forces were not 
significant and can be ignored compared to the high accelerations due to 
structural responses. However, for the concrete gravity dam concerned 
here, its geometrical size was noticeably larger, with the dam height 
possibly up to several hundred meters. Thus, the gravitational forces 
were significant. Actually, as the name indicated, the gravity effect was 
critical to a concrete gravity dam, which played a major role in the 
dam’s stability. In addition, in previous studies with structures of small 
geometrical sizes, the geometrical scaling factor β can be large (gener-
ally larger than 1/10 as indicated in Table 2), such that the differences in 
gravitational forces of the model and the prototype were not 

Table 2 
Review of geometrical size of structure prototype and scaling factor in literature.  

Literature Structure type Prototype size Minimum 
Scaling factor β 

Neuberger 
et al. (2007) 

Circular metal 
plates 

1 × 0.05 m (radius ×
thickness) 

1/10 

Snyman (2010) Thin steel plates 0.0186 × 0.0185 m 
(radius × thickness) 

1/2 

Wang et al. 
(2012) 

Reinforced 
concrete slab 

1.25 × 1.25 × 0.05 m 
(length × width ×
height) 

1/1.67 

Noam et al. 
(2014) 

Circular 
clamped plates 

0.05 × 0.005 m (radius 
× thickness) 

1/1.6 

Kong et al. 
(2017) 

Steel box 
structures 

0.6 × 0.6 × 0.6 m 
(length × width ×
height) 

1/2 

Yao et al. 
(2017) 

Cabin structures 0.8 × 0.4 × 0.4 m 
(length × width ×
height) 

1/2 

Fu et al. (2021) Steel plates 10 × 10 × 0.1 m (length 
× width × thickness) 

1/20 

Ren et al., 2022 Armor steel 
plates 

1.5 × 1.5 × 0.0045 m 
(length × width ×
thickness) 

1/2 

Yao et al. 
(2022) 

Steel box 
structures 

1.53 × 1.53 × 0.63 m 
(length × width ×
height) 

1/1.5  
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pronounced. However, considering the large geometrical size of con-
crete gravity dams, the geometrical scaling factor β must be sufficiently 
small (generally smaller than 1/50) so that the experimental cost of each 
test was affordable, and thus systematic investigations with a series of 
parallel tests were possible. However, this will introduce great de-
viations into the gravity field of the dam model compared to the dam 
prototype. For these reasons, the small-scale model tests conducted on 
the ground with normal gravity were not suitable. Again, the small-scale 
centrifuge test in a centrifuge with hyper-gravity was the optimal choice 
since the centrifuge can effectively provide a similar gravity field like 
that for the dam prototype. 

Thirdly, correcting the scaling law with consideration of the strain- 
rate effect for concrete gravity dams is challenging. As stated above, 
the corrected methods in previous studies (Mazzariol et al., 2016; Kong 
et al., 2017; Fu et al., 2021; Yao et al., 2022) were still far from our 
ambitions to scale the dynamic responses and failures of concrete 
gravity dams. To address this issue, the typical failure modes and the 
underlying failure mechanisms of concrete gravity dams due to under-
water explosions needed to be well understood. However, currently, it is 
still a pending subject. 

Restricted by these critical requirements, advances in the scaling law 
of concrete gravity dams subjected to underwater explosions were not 
reported yet. The purpose of this study is to narrow this gap through 
small-scale centrifuge tests and numerical simulations. 

It should be noted that this study mainly concerns the near-field 
underwater explosion with the standoff distance generally smaller 
than the maximum bubble size. In this circumstance, both the peak 
pressure and the impulse of the shock wave are significantly higher than 
those of the bubble pulse (Huang et al., 2022a), and thus the dam will be 
destroyed by the shock wave before the bubble pulse arrives (Huang 
et al., 2020a, 2022a). Thereby, in this study, the focus will be paid to the 
scaling of dynamic responses and failures of concrete gravity dams due 
to the shock wave, while the effect of bubble pulse is neglected. 

To scale the gravitational forces of concrete gravity dams, small-scale 
centrifuge tests are used to establish and validate the numerical model. 
Besides, to well predict the severe dam failures and scale them, a 
developed concrete constitutive model in hydrocode that is not relevant 
to the fracture mechanics or fracture toughness is employed. However, 
to propose a complete scaling law with consideration of the strain-rate 
effect for this complicated problem is challenging. In this study, the 
dimensional analysis-based scaling theory in Tables 1 and i.e., the 
geometrical scaling law for the dam structure and the Hopkinson scaling 
law for the shock wave, is employed. However, the strain-rate effect will 
be highlighted and based on this, the corrected scaling law with 
consideration of the strain-rate effect will be considered in the future. 

The remainder of this paper is structured as follows. In Section 2, the 
research methods, including two small-scale centrifuge tests and nu-
merical simulations, are introduced. In Section 3, the scaling of dam 
dynamic responses and failures are presented. The strain-rate effect is 
highlighted. In Section 4, several conclusive remarks are given. A mesh 
convergence study is presented in Appendix A. More results are given in 
Appendix B to consolidate the conclusions. 

2. Methods 

2.1. Centrifuge tests 

Physical modelling of concrete gravity dams subjected to underwater 
explosions through small-scale centrifuge tests was highly desired. 
Recently, Huang et al. (2020a) carried out several small-scale centrifuge 
tests to uncover the dam destructions caused by underwater explosions. 
Two of them, as summarized in Table 3, were used in this study to 
establish and validate the numerical model. Detailed information about 
the centrifuge tests has been presented in previous research (Huang 
et al., 2020a, 2022a, 2022b), and thus, only a brief introduction was 
presented here. 

Fig. 1 illustrates the small-scale centrifuge model. The dam structure 
was composed of three independent and identical dam blocks. The 
Young’s modulus of the concrete dam was 20.1 GPa. The compressive 
and tensile strength, respectively, were 14.9 MPa and 1.46 MPa. The 
cylindrical electric detonator was used to represent the explosive. The 
precise TNT equivalent of one electric detonator was determined as 1.1 g 
(Huang et al., 2020a). Before detonation of the electric detonator, the 
entire model placed in a centrifuge was centrifugally accelerated to a 
target centrifugal acceleration denoted by ng. The target centrifugal 
acceleration was then maintained to the end of the test. 

In centrifuge test UE-01, the model was scaled by a geometrical 
scaling factor β = 1/80 with a centrifugal acceleration of 80 g. Two 
electric detonators with a total TNT equivalent of about 2.2 g were used. 
Besides, the electric detonators were placed very close to the dam up-
stream face with a standoff distance Rc of only 0.02 m. Thus, the dam 
was severely destroyed. In centrifuge test UE-02, the model was scaled 
by a geometrical scaling factor β = 1/50 with a centrifugal acceleration 
of 50 g. Only one electric detonator was employed, and the standoff 
distance was increased to 0.1 m. For both tests, the water depth Hw was 
0.6 m, and the detonation depth L was 0.1 m. It should be noted that the 
main focus of this study was relevant to centrifuge test UE-01 since the 
dam failures were much more severe with the more destructive under-
water explosion condition of centrifuge test UE-01 (Huang et al., 2020a). 

2.2. Numerical simulation 

2.2.1. Finite element model 
Based on the small-scale centrifuge tests, the finite element model 

was established (Fig. 2). The Coupled Lagrangian-Eulerian method was 
employed to handle this fully coupled water-air-explosive-dam system. 
This method was available in software LS-DYNA and has been proved 
effective in modeling the whole process of concrete gravity dams un-
dergoing underwater explosions (Wang et al., 2020a; Huang et al., 
2022a, 2022b). With this method, the dam and the aluminum container 
were constructed by the Lagrangian mesh, while the water, the air, and 
the explosive were established using the Eulerian mesh. Only half of the 
centrifuge test model was modeled considering its symmetries. Sym-
metric boundary conditions were then applied to the symmetric planes. 
The three dam blocks were separately modeled. To reproduce the re-
strictions from the aluminum container in the centrifuge tests, the 
aluminum container was also modeled in the numerical simulation. 
Water waves, then, can be reflected by the container. To simulate the 
centrifugal acceleration, the hyper-gravity was vertically added to the 
numerical model. The hyper-gravity was added before the explosion 
through the dynamic relaxation method available in LS-DYNA. The co-
ordinate direction and the origin of coordinates were indicated (Fig. 2). 
Several points with coordinates that were monitored were marked. 
Fig. 2 also illustrates the mesh discretization of the finite element model 
with a geometrical scaling factor β = 1/80. The solid hexahedral element 
was employed. 

To define the interactions of interfaces between the three concrete 
dam blocks, and those between dam blocks and the aluminum container, 
the frictional contact algorithm available in LS-DYNA was employed. 
The keyword “CONTACT_ERODING_SURFACE_TO_SURFACE” was used. 
The frictional coefficient was defined by, 

Table 3 
Scheme of centrifuge tests.  

Test no. n (g) W (g) Hw (m) L (m) Rc (m) 

UE-01 80 2.2 0.6 0.1 0.02 
UE-02 50 1.1 0.6 0.1 0.1 

Note: n denotes centrifugal acceleration, g is acceleration of gravity, W is 
explosive weight, Hw is water depth, L is detonation depth, Rc is standoff 
distance. 
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Fμ =FD + (FS − FD)e− γV (2a)  

where Fμ is the coefficient of friction, FD is the dynamic coefficient of 
friction, FS is the static coefficient of friction, and γ is the exponential 
decay coefficient. V is the relative velocity of the interface in contact, 
which is constantly updated during the numerical calculation. To eval-
uate the influence of friction on dam responses, pre-simulations with 
different frictional parameters (FD, FS, and γ) were carried out. Results 
demonstrated that the frictional parameters (FD, FS, and γ) owned very 
tiny influences. In this study, the frictional parameters FD = 0.05, FS =

0.5, and γ = 0.07, producing a frictional coefficient of about 0.5, for 
interactions between dam and dam as well as dam and container were 
employed. 

It was noted that the numerical calculations were carried out in LS- 
DYAN. The time integration scheme and the time step determined by the 
main code of LS-DYNA were adopted. In LS-DYAN, the time step was 
dependent on the mesh size and can be controlled by the “CON-
TROL_TIMESTEP” keyword by introducing a scale factor. For blast 
loads, the default scale factor was 0.67 and was adopted in this study. 
For the numerical model with the geometrical scaling factor β = 1/80 

with a mesh size of 6 mm, the time step determined by LS-DYAN was 
1.84 × 10− 6 s. The current and numerous numerical studies have proved 
that the time step determined by LS-DYNA was small enough to main-
tain stable calculations and produce convergent results. 

To examine the scaling theory stated in Table 1, a numerical scheme, 
as presented in Table 4, was devised based on centrifuge test UE-01. Six 
finite element models were included with the geometrical scaling factors 
β = 1, 1/10, 1/30, 1/50, 1/80, and 1/100. Specifically, the numerical 
simulation SUE-05 was scheduled firstly in accordance with the centri-
fuge test UE-01, and then the other five numerical simulations were 
designed according to the scaling laws in Table 1. Based on the Hop-
kinson scaling law, the scaled distances for the six numerical simulations 
were maintained with a value of 0.154 m/kg1/3. This parameter was 
quite small, with more than 1.1-ton TNT explosives detonated at a 
standoff distance of only 1.6 m for the dam prototype. Thus, severe dam 
destructions can be expected. 

It should be noted that the scaling of dynamic responses and failures 
of concrete gravity dams against underwater explosions was conducted 
mostly based on the numerical scheme in Table 4. However, another 
numerical scheme also comprising six numerical simulations was 

Fig. 1. Small-scale centrifuge test model of a concrete gravity dam subjected to an underwater explosion (Huang et al., 2022a).  

Fig. 2. Small-scale numerical model of a concrete gravity dam subjected to an underwater explosion (Huang et al., 2022b).  
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damage parameters. Then, the tensile damage, Dt, is formulated as, 

Dt = 1 −

 

1+
�

c1
λt

εfrac

�3
!

exp
�
− c2

λt

εfrac

�
+

λt

εfrac

�
1+ c3

1

�
exp(− c2), (12)  

where εfrac is the fracture strain. c1 = 3 and c2 = 6.93 are material 
constants. The compressive damage, Dc, is defined as, 

Dc =
λc

λc + 1
. (13) 

Then, the total damage, Dtot, mentioned above is determined as, 

Dtot = 1 − (1 − Dc)(1 − Dt). (14) 

For a constitutive model in hydrocode, a separated equation of state 
(EoS) is required to describe the material volumetric behavior. In the 
Huang et al. model, the EoS for wet concrete is proposed as, 

Ptot =Pdry + bPw, (15)  

where Ptot is the total pressure that contains two parts. One is contrib-
uted by the dry solid sketch, described by Pdry, and the other is by the 
free water, defined by Pw. b is a coefficient used to scale the contribution 
from the free water. b = 0.5 is suggested Huang et al. (2020c). Pdry is 
defined as (EoS #8 in commercial software LS-DYNA), 

Pdry =C(μ) + h0θ(μ)E0, (16)  

where μ is the volumetric strain. E0 is the internal energy per unit initial 
volume. h0 is the ratio of specific heat. C(μ) and θ(μ) are the tabulated 
pressure and temperature as functions of the volumetric strain, respec-
tively. The widely used EoS for water is used to define Pw, i.e., 

Pw =
ρ0C2μ

�
1 +

�
1 −

γ0
2

�
μ − α

2μ
2�

h
1 − (S1 − 1)μ − S2

μ2

μ+1 − S3
μ3

(μ+1)2

i+ (γ0 +αμ)E, (17)  

where μ = μ − μ0, and μ0 is the volumetric strain corresponding to the 
consolidation pressure P0. The reduced volumetric strain μ is introduced 
which means that the free water starts to act only when all the pores 
occupied by the air are consolidated. E is the internal energy per unit 
volume. C is the intercept of the particle velocity vs(vp) curve. S1, S2, and 
S3 are the coefficients of the slope of the vs(vp) curve. ρ0 is the initial 
density of water. γ0 is the Grüneisen gamma. α is the first order volume 
correction to γ0. The values of these parameters for water are: ρ0 = 1000 
kg/m3, C = 1480 m/s, S1 = 2.56, S2 = 1.986, S3 = 1.2268, γ0 = 0.35, E =
1.89 × 106 J/m3, V0 = 1.0, α = 0. 

With the finite element method, the element erosion criterion is 
critical which is used not only to trigger the initiation and growth of 
cracks but also to delete the distorted elements appeared in larger 
deformation problems. Kong et al. (2018) proposed two element erosion 
criteria, i.e., the equivalent strain-based element erosion criterion for 
compression and the damage-based element erosion criterion for ten-
sion. For compressive failures, elements are deleted when the equivalent 
compressive strain εcp =

P
Δεp is larger than a user-defined critical 

value εcf. Similarly, for tensile failures, elements are deleted when the 
tensile damage-based modified equivalent tensile strain λt is larger than 
a user-defined critical value λtf. These element erosion criteria have been 
examined that can be suitable for concrete structures against impact and 
blast loadings (Kong et al., 2018; Huang et al., 2020a) and thereby were 
adopted in the current study. The user-defined critical value εcf = 0.5 for 
compression and λtf = 0.015 for tension suggested by Kong et al. (2018) 
were used. 

Except for the material constants that have been given above, all the 
material parameters required in the Huang et al. model for concrete are 
summarized in Table 5. The strengths and Young’s modulus are acquired 
from the centrifuge tests. Other parameters are obtained by using the 
automatic parameters generation procedure available in the Huang et al. 
model. 

To model the pressure of water, Eq. (17) will also be used and the 
reduced μ in Eq. (17) should be replaced by μ. To model the pressure 
released by chemical energy during the explosion, the widely used 
Jones–Wilkins–Lee formula is adopted, which reads as, 

P=A
�

1 −
ω

R1V

�
e− R1V +B

�
1 −

ω
R2V

�
e− R2V +

ωEe

V
, (18)  

where V denotes the relative volume of the detonation product. Ee is the 
internal energy per unit volume of explosive. A, B, R1, R2, ω are material 
parameters. For TNT explosive, the following widely used parameters 
are adopted. The density of the TNT explosive ρe = 1600 kg/m3, A =
3.712 × 1011 Pa, B = 3.231 × 109 Pa, R1 = 4.15, R2 = 0.95, ω = 0.3, and 
Ee = 7.0 × 109 J/m3. 

2.2.3. Validation of numerical model 
To obtain reliable conclusions, the numerical model must be 

adequately validated by comparisons with experimental results. In this 
study, the employed numerical model was established based on the 
small-scale centrifuge tests and was validated by comparisons with the 
centrifuge test results. The relevant information was reported in previ-
ous research (Huang et al., 2020a, 2022a, 2022b). Results demonstrated 
that the established numerical model was appropriate, and the numer-
ical predictions under different underwater explosion scenarios can well 
accord with the corresponding centrifuge test results. Details can be 
found in the mentioned literature and were not repeated here. 

3. Results 

Based on the numerical scheme in Table 4, numerical calculations 
were carried out. Results were presented in this section. Dam dynamic 
responses including energy, velocity, displacement, strain, strain rate, 
and stress were collected, and the scaling of them was conducted ac-
cording to the scaling theory in Table 1. Similarities of dam failures 
between the prototype and small-scale models were discussed. The 
strain-rate effect on the scaling of dam dynamic responses and failures 
were highlighted. 

3.1. Scaling of dam dynamic responses 

3.1.1. Shock wave pressure 
The similarity of underwater explosion shock loading is the basis of 

the proper scaling of dam dynamic responses. According to the Hop-
kinson scaling law, self-similar blast waves will be generated with ex-
plosives detonated at an identical scaled distance Z = Rc/W1/3. In light of 
this, the six numerical simulations, as presented in Table 4, are designed 
with an identical scaled distance Z = 0.154 m/kg1/3. Fig. 3 depicts the 
shock wave pressure histories of points P2 and P3 (see Fig. 2). For visual 
clarity, results of representative models with scaling factors β = 1, 1/30, 
and 1/100 are plotted and compared with the scaled time t/β. It can be 
found that the shock wave pressure histories for models with different 

Table 5 
Parameters for the concrete.  

Parameter Value Parameter Value 

Compressive strength 
(MPa) 

15.2 Strength parameters a2 

(MPa− 1) 
0.25 × 10− 3 

Tensile strength 
(MPa) 

1.49 Damage parameters d1 0.04 

Elastic modulus 
(GPa) 

20.1 Damage parameters d2 1.5 

Poisson’s ratio 0.2 Fracture strain εfrac 0.015 
Free water content w 1.0 Coefficient b 0.5 
Pressure threshold P0 

(MPa) 
130 Parameters of EoS for 

dry concrete 
(Refer to Kong 
et al. (2018)) 

Strength parameters 
a1 

0.5876    
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scaling factors merge virtually into one single curve. This indicates that 
by maintaining the scaled distance, the numerically predicted shock 
wave pressures are similar and thus can follow the Hopkinson scaling 
law. Since the validity of the Hopkinson scaling law in scaling of blast 
effects has been widely verified for both air blasts (Neuberger et al., 
2007) and underwater explosion shock loadings (Hu et al., 2017), more 
validation results are not repeated here. 

3.1.2. Energy 
The investigated problem involves a coupled system that comprises 

water, explosives, air, dam structures, and an aluminum container. Once 
the explosive is detonated, the explosive energy will be absorbed by 
other components in this system. The energy of the middle dam block 
that is very close to the explosion is concerned. There are two different 
energy forms in the dam, i.e., the absorbed internal energy and the ki-
netic energy due to movement. According to the scaling theory 
(Table 1), the energy Q is scaled by β3, based on which the explosive 
weight (relevant to the explosive energy) is scaled as shown in Table 4. 
Thus, basically, if the coupled systems scaled by different scaling factors 
are similar, the dam energy should also obey the scaling law. 

Fig. 4 compares the normalized time-energy curves of dam models 
with different scaling factors. The energy is normalized as Q/β3, and the 
time is t/β. In general, for both internal energy and kinetic energy of the 
dam, the normalized time-energy curves with different scaling factors 
are comparable. Further, the peak values of dam internal energy and 
dam kinetic energy are collected and plotted in Fig. 5. Before normali-
zation, the dam peak internal energy and kinetic energy fall on two 
separate curves but show a similar decreasing tendency with an increase 
of 1/β (Fig. 5(a)). However, after normalization to obtain the energy 
ratios QM/QP (superscript M represents the model and superscript P 
represents the prototype, likewise hereinafter), the dam peak internal 

energy and kinetic energy fall almost on one single curve that can be 
well predicted by the scaling law (Fig. 5(b)). These observations indicate 
that the energy of the dam obeys the scaling law in Table 1. This is 
critical since it makes the scaling of the more complex dam dynamic 
responses and failures possible. 

3.1.3. Velocity 
Results above demonstrate that the dam kinetic energy can well 

accord with the scaling law, i.e., QM/QP = β3. The kinetic energy Q 
depends on the mass W and the velocity v. With identical material 
density and geometrically similar models, the scaling of the mass can be 
guaranteed, i.e., WM/WP = β3. This implies that the velocity can also 
obey the scaling law, namely, the velocities of the prototype and models 
are identical. 

To verify this, Fig. 6 compares the velocity histories of some points of 
the dam models with β = 1, 1/30, and 1/100. It is noted that the x-ve-
locity in the figures represents velocity in the x-direction, and the z- 
velocity denotes velocity in the z-direction, and likewise for those below 
for displacement, strain, and stress. The coordinate direction and posi-
tions of referred points have been marked in Fig. 2. It can be found that 
for different points, the time-velocity curves of models with different 
scaling factors merge almost perfectly into one single curve. In addition, 
by collecting the peak velocities of more points, it is found that the peak 
velocities are not influenced by the scaling factor (Fig. 7(a)). Further, by 
normalization, the velocity ratios vM/vP are summarized and plotted in 
Fig. 7(b). It is found that for different scaling factors and different points, 
the velocity ratios vM/vP approximate the unity, suggesting that the 
velocities of the prototype and models are close. This finding indicates 
that dam velocity responses obey the scaling law in Table 1. 

Fig. 3. Shock wave pressure histories of points P2 and P3.  

Fig. 4. Normalized time-energy curves: (a) dam internal energy and (b) dam kinetic energy.  
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3.1.4. Displacement 
The good scaling of dam velocity responses implies that the dam 

displacement responses can also be well scaled. Fig. 8 illustrates the 
normalized time-displacement curves of some points of the dam models. 
Based on the scaling law (Table 1), the displacement is normalized as 
δ/β, and the time is t/β. It can be viewed that the normalized time- 
displacement curves with different scaling factors are generally com-
parable. In addition, by collecting the peak displacements, it is found 
that the peak displacements of different points fall on separate curves, 
but all exhibit a similar decreasing tendency with an increase of 1/β 
(Fig. 9(a)). Then, by summarizing the displacement ratios δM/δP, it is 
found that for different scaling factors and different points, the 
displacement ratios δM/δP fall almost on one single curve that well 
agrees with the predictions by the scaling law (Fig. 9(b)). These obser-
vations suggest that the dam displacement responses can comply with 
the scaling law in Table 1. 

3.1.5. Strain 
The strain is well-known to be associated with displacement 

(deformation). Roughly speaking, the strain ε of an element can be 
defined as the relative deformation Δl normalized by the original 
element length l0, i.e., ε = Δl/l0. More mathematically, the strain tensor ε 
is determined by the symmetrical form of the deformation (displace-
ment) gradient tensor F, i.e., ε = (F + FT)/2. The dam displacement 
responses are demonstrated to be well scaled, thus, the scaling of strain 
can be expected. To confirm, Fig. 10 depicts the time-strain curves of 
some points of the dam models. In general, the strain histories with 
different scaling factors are comparable. The whole tendency is similar, 
while the peak strains display some deviations. Table 6 summarizes 
more peak strains. It is noted that strains marked with the symbol “-” 
represent compression and “+” represent tension. It is found that the 
peak x-strains of dam models with different scaling factors are close with 
an average error (absolute value) to the prototype as low as 12.7% and a 

Fig. 5. Peak energy of the middle dam block: (a) Q-1/β curve and (b) QM/QP-1/β curve.  

Fig. 6. Time-velocity curves.  
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Fig. 7. Peak velocities of some points of the dam: (a) v-1/β curve and (b) vM/vP-1/β curve.  

Fig. 8. Normalized time-displacement curves.  

Fig. 9. Peak displacements of some points of the dam: (a) δ-1/β curve and (b) δM/δP-1/β curve.  
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maximum error of 31.4%. However, for the peak z-strains, the average 
error increases to 38.1%, and the maximum error is even up to 76.3%. 
This observation suggests that the dam strain responses in the x-direc-
tion and z-direction show different scalabilities. This difference mainly 
arises from the different failure modes of the dam in the two directions. 

According to the previous studies (Huang et al., 2020a, 2022a, 
2022b), dam responses in the x-direction mainly belong to the dam local 
responses, which are caused by the direct impact of the shock wave. 
These local responses manifest themself mainly as crush failures and 
thus are generally dependent on the dam compressive behaviors. 
However, dam responses in the z-direction mainly belong to the dam 
structural responses, which are controlled by the structural 
bending-induced tensile failure mode. More specifically, the shock 
loadings upstream act as bending loads and force the dam to bend 
downstream. In this way, the dam upstream face in the z-direction is 
under tension (see Points P1, P2, and P3 in Table 6) and can be damaged 
due to tensile failures, while the dam downstream face in the z-direction 
is accordingly under compression (see Points P4, P6, and P8 in Table 6). 
Clearly, the dam local responses in the x-direction such as crush failures 
are more straightforward, mainly depending on the shock wave peak 

pressures. By contrast, the dam structural responses in the z-direction 
are complicated, involving not only the shock wave peak pressure but 
also its impulse. With identical scaled distance designed by the Hop-
kinson scaling law, the shock wave peak pressures are close (Fig. 3), 
however, their impulses are dissimilar. This accounts for the different 
scalabilities of dam strain responses in the x-direction and z-direction. 

Fig. 11 summarizes the strain ratios εM/εP of different points. 
Compared to the good scaling of dam velocity and displacement re-
sponses (Figs. 7 and 9), the dam strain responses exhibit deviations, and 
the error increases with an increase of 1/β. Nevertheless, considering the 
high complexity of this problem and the average error of only 26.6% for 
all peak strains in Table 6, the dam strain responses are generally 
considered to follow the scaling law. 

3.1.6. Strain rate 
With strains being close, the strain rates of dam models will be 1/β 

times enhanced. Fig. 12 presents the strain-rate histories of two points 
before normalization. It is found that the peak strain rate of the proto-
type (point P2) is about 0.6 s− 1, and this value is about 18 s− 1 for the 
model with β = 1/30, and 60 s− 1 for the model with β = 1/100. In other 

Fig. 10. Time-strain curves.  

Table 6 
Summary of peak strain.  

Peak strain (10− 6) β = 1 β = 1/10 β = 1/30 β = 1/50 β = 1/80 β = 1/100 

P1, x- − 420 − 435 (+3.6%) − 494 (+17.6%) − 510 (+21.4%) − 507 (+20.7%) − 552 (+31.4%) 
P2, x- − 862 − 867 (+0.6%) − 853 (− 10%) − 861 (− 0.1%) − 754 (+12.5%) − 856 (− 0.7%) 
P3, x- − 1830 − 1840 (+0.5%) − 1770 (− 3.3%) − 1740 (− 4.9%) − 1970 (+7.7%) − 1690 (− 7.7%) 
P4, x- − 285 − 320 (+12.3%) − 339 (+18.9%) − 347 (+21.8%) − 348 (+22.1%) − 357 (+25.3%) 
P8, x- − 146 − 152 (+4.1%) − 180 (+23.3%) − 188 (+28.8%) − 155 (+6.2%) − 163 (+11.6%) 
P1, z+ 948 1200 (+26.6%) 1170 (+23.4%) 907 (− 4.3%) 791 (− 16.6%) 665 (− 29.9%) 
P2, z+ 6150 5600 (− 8.9%) 3450 (− 43.9%) 2510 (− 59.2%) 1860 (− 69.8%) 1460 (− 76.3%) 
P3, z+ 5270 6000 (+13.9%) 2890 (− 45.2%) 1910 (− 63.8%) 2710 (− 48.6%) 2110 (− 60%) 
P4, z- − 583 − 664 (+13.9%) − 780 (+33.8%) − 842 (+44.4%) − 882 (+51.3%) − 915 (+56.9%) 
P6, z- − 603 − 710 (+17.7%) − 786 (+30.3%) − 821 (+36.2%) − 850 (+41.0%) − 889 (+47.4%) 
P8, z- − 562 − 644 (+14.6%) − 727 (+29.4%) − 774 (+37.7%) − 828 (+47.3%) − 842 (+49.8%) 

Note: strain marked with symbol ‘-’ represents compression and ‘+’ represents tension. 
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words, the strain rate of the geometrically similar small-scale model is 
enhanced and is about 1/β times that of the prototype. Further, with the 
strain rate ε̇ according to the scaling law being normalized to ε̇ β, it is 
observed that the normalized strain-rate histories (Fig. 13) merge almost 
into one single curve. By collecting more peak strain rates, it is viewed 
that the peak strain rates of different points fall into different curves but 
all show a similar increasing tendency as the factor 1/β increases 
(Fig. 14(a)). However, by normalization to summarize the strain rate 
ratios ε̇M/ε̇P, it is found that the strain rate ratios of different points fall 
into almost one single curve that can well comply with the scaling law 
(Fig. 14(b)). All these observations indicate that the strain rate obeys the 
scaling law and will be 1/β times enhanced in the small-scale models. 

Fig. 15(a) and (b) depict respectively the peak DIFw
t (dynamic in-

crease factor for tension of saturated concrete) and DIFw
c (dynamic in-

crease factor for compression of saturated concrete) of some points 
varying with the scaling factor. As expected, for all points, both DIFw

t 

and DIFw
c increase with an increase of 1/β due to the enhanced strain 

rates of models. This causes the materials of small-scale models to be 
strengthened, which is well-known as the non-scalability of the strain- 
rate effect. As a result, this may introduce errors in the scaling of dam 
dynamic stresses and failures. 

3.1.7. Stress 
Stress is a much more complicated variable that can be influenced by 

different involved mechanical behaviors of concrete, such as the strain- 
hardening behavior, the strain-softening behavior, and the strain-rate 
effect. Mathematically, the dynamic stress σd can be viewed as func-
tions of the strain ε, the strain-hardening parameter (internal variable) k, 
the strain-softening parameter (damage) D, and the strain rate ε̇, i.e., σd 
= f (ε, k, D, ε̇). In view of this, whether the stress can comply with the 
scaling law deserves more attention. Fig. 16 presents the time-stress 
curves of some points of the dam models with different scaling factors. 
In general, the stress histories with three different scaling factors are 
comparable, with the whole tendency being almost identical. For the 
peak stresses, it is observed that the negative (compressive) peak stresses 
with different scaling factors are close, but those positive (tensile) peak 
stresses show great deviations. Table 7 collects more peak stresses. The 
stress marked with the symbol ‘-’ represents compression and ‘+’ rep-
resents tension. It is found that for compressive peak stresses, the 
average error (absolute value) to the prototype is only 18.5%, and the 
maximum error is 54%. However, for tensile peak stresses, the average 
error increases to 325%, and the maximum error is even up to 691%. 
These findings imply that the compressive stress generally follows the 
scaling law, while the tensile stress seems not. 

To interpret, remember the function, σd = f (ε, k, D, ε̇). It must be 
noted that the employed Huang et al. model (Huang et al., 2020b) has 
currently not considered the strain-hardening behavior. Besides, the 
strain-softening behavior can influence the stress in the post-peak stage, 
however, it has no influence on the peak stress. In addition, the strain 
has been demonstrated in Section 3.1.5 that can be scaled. Thus, only the 
strain-rate effect is involved. In other words, the strain-rate effect should 
be responsible for the different scalabilities of dam compressive peak 
stresses and tensile peak stresses. It can be expected since, on one hand, 

Fig. 11. Strain ratios εM/εP versus 1/β. (Note: strain marked with symbol ‘-’ 
represents compression and ‘+’ represents tension). 

Fig. 12. Time-strain rate curves.  
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the strain rates of small-scale models are 1/β times enhanced (Figs. 13 
and 14). Consequently, the error of peak stresses to the prototype 
generally increases as the scaling factor decreases (Table 7). On the 
other hand, the tensile stress is very sensitive to the strain rate with the 
DIFw

t being increased from about 2 to 10 for the prototype and the model 
with β = 1/100, respectively (Fig. 15(a)). However, the compressive 
stress is of less strain-rate sensitivity, with the DIFw

c for the prototype and 
the model with β = 1/100 being about 1.5 and 1.8, respectively (Fig. 15 
(b)). Thereby, the dissimilar scalabilities of dam compressive stress and 
tensile stress are mainly attributed to the strain-rate effect. 

Fig. 17 summarizes the compressive stress ratios σM/σP. It is found 
that for different points and different scaling factors, the compressive 
stress ratios are generally close to the unity, suggesting again that the 
dam compressive stress responses obey the scaling law. 

4. Summary 

Dam dynamic responses of different types are summarized in Figs. 18 
and 19. Fig. 18 collects the ratios of dam model responses to dam pro-
totype responses, whilst Fig. 19 gathers these ratios again with the dam 
model responses being converted to the dam prototype according to the 
scaling law in Table 1. It is found that before conversion, dam dynamic 
responses including energy, velocity, displacement, strain, and 
compressive stress fall into different curves, but all can well accord with 
the scaling law (Fig. 18); after conversion, all the converted dam dy-
namic responses are comparable with the ratios of converted dam model 
responses to the dam prototype responses approaching the unity 
(Fig. 19). These findings reveal that most of the dam dynamic responses 
can generally comply with the scaling law in Table 1. 

It should be noted that the small-scale model is strengthened due to 

Fig. 13. Normalized time-strain rate curves.  

Fig. 14. Peak strain rates of some points of the dam: (a) ε̇-1/β curve and (b) ε̇M/ε̇P-1/β curve.  
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the enhanced strain rate. This, then, results in the differences in the 
dynamic responses of the prototype and small-scale models. For 
compressive stresses which are not very sensitive to the strain rate, the 
scaling theory in Table 1 still works. However, when the strain-rate ef-
fect is pronounced, such as in dam tensile stresses where the DIFw

t can 
increase greatly, the scaling law is violated. Thus, more efforts are 
required to correct the dimensional analysis-based scaling law. 

4.1. Similarity of dam failures 

Fig. 20 and Fig. 21 illustrate the failure patterns of dam models with 
different scaling factors from the upstream and downstream perspec-
tives, respectively. By inspections of Figs. 20 and 21, the following major 
observations can be found: (1) for all dams, the whole dam upstream 
face is covered by tensile damage, while almost no tensile damage 

appears in the dam downstream face; (2) for all dams, the dam upper 
part with thin cross-section is severely destroyed and the failures are 
very similar with a horizontal fracture visible along the change of dam 
downstream slope; (3) for dams with β = 1/30, 1/50, 1/80, and 1/100, 
the failure patterns are almost identical and failures concentrate mainly 
on two areas, one for the dam upper part with a horizontal fracture, and 
the other for the dam body with a slant penetrating fracture; (4) for the 
dam with β = 1/10, the failure pattern is still quite similar to those with 
smaller scaling factors, with the slant penetrating fracture still visible in 
the dam body, however, an additional crack appears near the dam 
bottom; (5) for the dam prototype, the slant penetrating fracture in the 
dam body still holds, however, compared to the dam models, the dam 
prototype is the most severely destroyed with the appearance of much 
more cracks in the dam body. 

To explain, it should be noted that the concrete gravity dam with an 

Fig. 15. Peak DIFs of some points of the dam: (a) DIFw
t -1/β curve and (b) DIFw

c -1/β curve.  

Fig. 16. Time-stress curves.  
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approximately fixed bottom is like a vertical cantilever structure. The 
underwater explosion shock loadings upstream then act as bending 
loads that force the dam to bend downstream (Huang et al., 2020a, 
2022a, 2022b). This can be reflected in the x-displacement field pre-
sented in Fig. 22. The legend is set to accord with the scaling law. 
Despite some deviations, all the dams are observed to bend downstream 
like vertical cantilever structures, with the x-displacement increasing 
from the dam top to the dam bottom. Then, the bending of the dam 
requires that the whole dam upstream face in the z-direction is under 
tension, and accordingly, the dam downstream face is under compres-
sion. This can be fully supported by the z-strain field given in Fig. 23. It is 
observed that for all dams, the z-strain field in the dam upstream face is 
positive (tension), whilst that in the dam downstream face is negative 
(compression). This explains why the whole dam upstream face is 
covered by tensile damage (Fig. 20), while almost no tensile damage 
appears in the dam downstream face (Fig. 21). These observations 
suggest that all the dams with different scaling factors exhibit essentially 
the same failure mode, i.e., the structural bending-induced tensile fail-
ure mode (Huang et al., 2020a, 2022a, 2022b). This is critical since it 
indicates that the deviations in dam failures are not produced due to 
different failure modes of dams. 

The deviations in dam failures are then attributed mainly to the 
strain-rate effect. This can be substantiated as follows. Firstly, it has 
been verified that the strain rate of the small-scale model is 1/β times 
enhanced (Fig. 14) such that the small-scale model has been much 

strengthened (Fig. 15). Then, it is observed that with the increase of 1/β, 
the dam failures are getting slighter, with the dam prototype being the 
most severely damaged (Fig. 20). Secondly, it is found that although the 
strain rate increases linearly with an increase of 1/β (Fig. 14), the in-
crease in the DIF (Fig. 15) is rapid only at the beginning for the prototype 
and the small-scale model with β = 1/10, and is slow for models with 
smaller scaling factors. It is because the DIF grows slower and slower 
when the strain rate is sufficiently high and has an upper limit value, 
such as 10 for DIFt and 2 for DIFc of dry concrete (Eq. (10)). In this way, 
it is observed that the DIFt for the small-scale models with β = 1/30, 1/ 
50, 1/80, and 1/100 are close and are strongly different from those for 
the prototype and the small-scale model with β = 1/10. Then, it is 
observed that the dam failure patterns of small-scale models with β = 1/ 
30, 1/50, 1/80, and 1/100 are almost identical and are different from 
those for the prototype and the small-scale model with β = 1/10. 
Thirdly, the dam upstream face in the z-direction is under tension, while 
the dam downstream face is under compression. The tensile behavior is 
sensitive to the strain rate, while the compressive behavior is not. Then, 
it is observed that the failures in the dam downstream face are almost 

Table 7 
Summary of peak stress.  

Peak stress (MPa) β = 1 β = 1/10 β = 1/30 β = 1/50 β = 1/80 β = 1/100 

P1, x- − 6.74 − 7.64 (+13%) − 9.17 (+36%) − 9.53 (+41%) − 9.25 (+37%) − 10.4 (+54%) 
P2, x- − 14.9 − 15.9 (+6.7%) − 16.1 (+8.1%) − 16.7 (+12.1%) − 14.1 (− 5.4%) − 17.0 (+14.1%) 
P3, x- − 21.0 − 22.4 (+6.7%) − 23.8 (+13.3%) − 23.4 (+11.4%) − 24.0 (+14.3%) − 23.5 (+11.9%) 
P4, x- − 9.34 − 10.0 (+7.1%) − 10.2 (+9.2%) − 10.4 (+11.3%) − 10.3 (+10.3%) − 10.5 (+12.4%) 
P6, x- − 7.79 − 8.34 (+7.1%) − 8.67 (+11.3%) − 9.11 (+16.9%) − 10.2 (+30.9%) − 10.4 (+33.5%) 
P8, x- − 7.28 − 8.26 (+13.5%) − 9.3 (+27.7%) − 9.82 (+34.9%) − 10.4 (+42.9%) − 10.4 (+42.9%) 
P1, z- − 5.43 − 5.18 (− 4.6%) − 5.14 (− 5.3%) − 4.95 (− 8.8%) − 5.09 (− 6.3%) − 4.89 (− 9.9%) 
P2, z- − 12.0 − 11.9 (− 0.8%) − 11.6 (− 3.3%) − 12.3 (+2.5%) − 11.0 (− 8.3%) − 12.6 (+5.0%) 
P3, z- − 36.6 − 38.1 (+4.1%) − 42 (+14.8%) − 38.9 (+6.3%) − 42.0 (+14.8%) − 39.1 (+6.8%) 
P4, z- − 13.3 − 14.9 (+12.0%) − 15.9 (+19.5%) − 16.4 (+23.3%) − 16.6 (+24.8%) − 17.0 (+27.8%) 
P6, z- − 12.5 − 14.2 (+13.6%) − 15.3 (+22.4%) − 15.8 (+26.4%) − 16.1 (+28.8%) − 16.8 (+34.4%) 
P8, z- − 12.0 − 13.8 (+15.0%) − 15.6 (+30.0%) − 16.5 (+37.5%) − 17.6 (+46.7%) − 17.7 (+47.5%) 
P1, z+ 1.90 3.28 (+72.6%) 5.19 (+173%) 6.41 (+237%) 7.73 (+307%) 8.43 (+344%) 
P2, z+ 2.13 4.74 (+123%) 7.22 (+239%) 8.36 (+293%) 9.70 (+355%) 10.19 (+378%) 
P3, z+ 1.52 3.71 (+144%) 8.13 (+435%) 8.56 (+463%) 12.02 (+691%) 10.96 (+621%) 

Note: stress marked with symbol ‘-’ represents compression and ‘+’ represents tension. 

Fig. 17. Compressive stress ratios σM/σP versus 1/β. (Note: stress marked with 
symbol ‘-’ represents compression). 

Fig. 18. Ratios of dam model responses to dam prototype responses.  
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identical (Fig. 21), while for the dam upstream face, the dam failures of 
the prototype and the small-scale model with β = 1/10 are more severe 
than those with smaller scaling factors (Fig. 20). All these observations 
suggest that the strain-rate effect should be responsible for the de-
viations in dam failures. 

It can be found that results in Sections 3.1 and 3.2 can draw a similar 
conclusion, i.e., when the strain-rate effect is prominent, such as in dam 
tensile stresses and tensile failures, the dimensional analysis-based 
scaling law in Table 1 is violated. Thus, corrected scaling laws with 
consideration of the strain-rate effect deserve more attention. 

On the other hand, since the small-scale dam models are strength-
ened due to the enhanced strain rate, predictions of the dam failures by 
small-scale model tests with the uncorrected scaling law are conserva-
tive. However, from another point of view, the failures in the small-scale 
dam models indicate the most vulnerable positions of the dam. This 

suggests that the small-scale model tests, despite the incomplete scaling 
law due to the strain-rate effect, can be used to identify the vulnerable 
positions of the dam prototype. This is critical since reinforcement 
measures beforehand can be applied to the identified vulnerable posi-
tions of the dam prototype to withstand the foreseeable attacks. For 
instance, in this study, for small-scale dam models with β = 1/30, 1/50, 
1/80, and 1/100, the dam failure patterns are almost identical with the 
appearance of two penetrating tensile fractures, one in the dam upper 
part and the other in the dam body (Fig. 20). Thus, the two positions are 
considered to be the most vulnerable positions of the dam prototype and 
need to be strengthened. 

It was noted that some review literature (Chen et al., 2021; Wang 
et al., 2020a) had summarized the failures of real dams due to under-
water explosions in historical wars. It was found that the failures of real 
gravity dams were observed as breaches with different depths in the dam 
upper part. In the current study with small-scale dam models, the fail-
ures of dam models were observed as penetrating fractures in the dam 
body. However, if the dam encountered a secondary attack, together 
with the upstream hydrostatic water pressure, similar breaches as those 
of real gravity dams can be expected in the dam model with the exis-
tence of penetrating fractures. This finding suggested that the failures of 
real dams and dam models were similar and thus consolidated the 
conclusions obtained in this study. Detailed comparisons and discus-
sions of failures between real dams and dam models can be found in our 
previous study (Huang et al., 2020a). 

5. Conclusions 

In this study, the scaling of dynamic responses and failures of con-
crete gravity dams subjected to underwater explosion shock loadings has 
been investigated. The dimensional analysis-based scaling law, which is 
essentially the geometrical scaling law for dam structures and the 
Hopkinson scaling law for underwater explosion shock loadings, is 
adopted. Based on small-scale centrifuge tests, a numerical scheme that 
comprises six numerical simulations with geometrical scaling factor β =
1, 1/10, 1/30, 1/50, 1/80, and 1/100 is devised. The scaling of dam 
dynamic responses, including energy, velocity, displacement, strain, 
strain rate, and stress, is conducted, and similarities of dam failures are 

Fig. 19. Ratios of the converted dam model responses to dam proto-
type responses. 

Fig. 20. Similarity of dam failures (upstream perspective).  
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Fig. 21. Similarity of dam failures (downstream perspective).  

Fig. 22. Similarity of dam x-displacement fields.  

Fig. 23. Similarity of dam z-strain fields (negative strain denotes compression).  
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discussed. The strain-rate effect is highlighted. The major conclusions 
are summarized as follows.  

(1) The dam models with different scaling factors exhibit essentially 
the same failure mode, i.e., the structural bending-induced tensile 
failure mode. On this basis, most dam dynamic responses, 
including energy, velocity, displacement, strain, strain rate, and 
compressive stress, can well comply with the dimensional 
analysis-based scaling law.  

(2) The strain rate of the small-scale model is 1/β times enhanced. 
Therefore, when the strain-rate effect is pronounced, such as in 
dam tensile stresses and dam tensile failures, the dimensional 
analysis-based scaling law is violated. Corrected scaling law with 
consideration of strain-rate effect is required.  

(3) Due to enhanced strain rates of small-scale models, the dam 
failures are getting slighter as the scaling factor decreases, with 
the dam prototype the most severely destroyed. In particular, the 
dam failures for small-scale models with scaling factors β = 1/30, 
1/50, 1/80, and 1/100 are almost identical. 

(4) With the numerical scheme designed according to the dimen-
sional analysis-based scaling law, the predictions of dam failures 
by small-scale model tests are conservative due to the strain-rate 
effect. However, from another point of view, the small-scale 
model tests, despite the incomplete scaling law, can be used to 

identify the most vulnerable positions of the dam prototype. 
Then, reinforcement measures beforehand can be applied to the 
identified vulnerable positions of the dam prototype to withstand 
the foreseeable attacks. 
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Appendix A. Mesh convergence study 

It is well known that the mesh size of the numerical model can influence the predictions by numerical simulations with the finite element method. 
In this study, a mesh size of 6 mm is adopted for the model scaled by a geometrical scaling factor β = 1/80, and the same mesh density is kept for the 
prototype and the other small-scale models. This mesh size has been examined previously (Huang et al., 2022a), where convergent results can be 
obtained for the small-scale model with β = 1/80. However, whether the same mesh density is suitable for the prototype and for the other small-scale 
models needs to be further verified. Thereby, a mesh convergence study in terms of the dam failures will be presented here. 

It is trivially noted that the dam failures of small-scale models with scaling factors β = 1/30, 1/50, 1/80, and 1/100 are almost identical (Figs. 20 
and 21) and are different from those for the prototype and the small-scale model with β = 1/10. Thereby, the mesh convergence study can be 
conducted on the prototype and two small-scale models with β = 1/10 and 1/80 as representative. Three different mesh densities are considered, 
named as coarse mesh, medium mesh, and finer mesh. Corresponding to the three different mesh densities, the mesh sizes of the small-scale model 
with β = 1/80 are 8, 6, and 4 mm, respectively, which according to the scaling law are 640, 480, 320 mm for the prototype, and 64, 48, 32 mm for the 
small-scale mdel with β = 1/10. The total elements for the three different mesh densities are 600737, 1259544, and 4048802, respectively. 

Fig. A1 demonstrates the mesh size effect on the dam failures of the small-scale model with β = 1/80, while Fig. A2 for the prototype and Fig. A3 for 
the small-scale model with β = 1/10. It is observed that with three different mesh sizes, the dam failures are generally similar, which indicates that the 
predictions are not very sensitive to the mesh size. It can also be found that with medium mesh and finer mesh, the dam failures are almost the same 
(Figs. A1, A2, and A3), which indicates that convergent results can be obtained with the medium mesh. These findings suggest that the mesh size 
employed in this study is appropriate and will not affect the conclusions obtained.

Fig. A1. Mesh size effect on dam failures of small-scale model with scaling factor β = 1/80   
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Fig. A2. Mesh size effect on dam failures of the prototype  

Fig. A3. Mesh size effect on dam failures of small-scale model with scaling factor β = 1/10  

Appendix B. Similarity of dam failures based on centrifuge test UE-02 

To enrich the results and consolidate the conclusions in this study, another numerical scheme with the inclusion of six numerical simulations is 
designed, which is based on the centrifuge test UE-02. As presented in Table B1, the numerical simulation SUE-10 is the simulation of centrifuge test 
UE-02, and the other five numerical simulations are then designed based on the scaling law (Table 1). It should be noted that the scaled distance in this 
scheme is maintained near 0.9687 m/kg1/3, which is quite larger than that in Table 4. Hence, the dam failures will be slighter. Fig. B1 compares the 
dam failures. It is observed that for small-scale models with β = 1/10, 1/30, 1/50, 1/80, and 1/100, the dam failures are almost identical, where only 
the dam upper part is severely destroyed with a horizontal fracture visible along the dam downstream slop. However, by inspections of the failures in 
the dam bottom, it can be found that the dam failures are getting more and more severe with an increase of 1/β. The dam prototype is the most severely 
damaged, where dam failures concentrate not only on the dam upper part, but also on the dam body with the appearance of two penetrating fractures. 
These findings are similar to those for Table 4, as presented in Section 3.2, and thus the conclusions are consolidated.  

Table B1 
Numerical scheme based on centrifuge test UE-02  

No. 

Parameters Prototype Model 

SUE-07 SUE-08 SUE-09 SUE-10 SUE-11 SUE-12 

Scaling factor/β 1 1/10 1/30 1/50 1/80 1/100 
Acceleration of gravity/ng 1 10 30 50 80 100 
Dam height, h/m 27.5 2.75 0.917 0.55 0.344 0.275 
Water depth, Hw/m 30 3 1 0.6 0.375 0.3 
Standoff distance, Rc/m 5 0.5 0.167 0.1 0.0625 0.05 
Detonation depth, L/m 5 0.5 0.167 0.1 0.0625 0.05 
Explosive weight, W/kg 137.5 0.1375 5.09 × 10− 3 1.1 × 10− 3 0.27 × 10− 3 0.1375 × 10− 3 

Scaled distance, Z = Rc/W1/3/m/kg1/3 0.9687 0.9687 0.9708 0.9687 0.9670 0.9687   
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Fig. B1. Similarity of dam failures  
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