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ABSTRACT
Underwater explosion cavitation is generally simulated using a one-fluid model based on compressible multicomponent flows. Owing to the
lack of mass and heat transfer between liquid and vapor phases, this model is incapable of extensively analyzing the cavitation mechanism
in underwater explosion. In this study, we extend the phase transition model provided by Chiapolino et al. to the field of underwater explo-
sion cavitation. The model presents a more accurate description of the thermodynamics of cavitation processes involving liquid–vapor phase
transition. The numerical results show that the phase transition exhibits significant potential in the study of underwater explosion cavita-
tion, and the likely occurrence of creation, development, and collapse of the cavitation can be captured. A vortex band composed of a large
number of tiny cavitation bubbles can be observed in the numerical results, which is consistent with the experiment in underwater explo-
sion near a free surface. The variation range of the cavitation domain calculated by the phase transition model is basically consistent with
the experiment, which proves the reliability and accuracy of the calculation model. Meanwhile, the distribution characteristics of quantities
such as density, pressure, and vapor phase volume fraction in the cavitation domain can be effectively obtained in simulation, which are
usually difficult to capture in experiments. The creation mechanism of cavitation near a free surface and rigid wall is different. However, the
collapse mechanism is similar. The results of this study could provide an in-depth understanding of the dynamic behavior of cavitation in
underwater explosion.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077517

I. INTRODUCTION

Phase transition between liquid and vapor phases is a well-
established phenomenon, which occurs in nature and many engi-
neering applications such as flows around ships or submarine
propellers. When the underwater explosion (UNDEX) shock wave
reaches the free surface or structure surface, the air–water inter-
face and structure movement can lead to rarefaction wave occur-
rence, which can easily induce cavitation phenomena.1,2 For such
cavitation flows, the pressure caused by cavitation collapse is a
major concern in engineering. Therefore, the need to understand
the basic mechanisms that contribute to cavitation evolvement has
attracted extensive research on cavitation flows. Both experimen-
tal and numerical studies have been conducted to investigate such

cavitation phenomena. However, conducting an experimental study
can be challenging owing to the increase in precision requirements
and complexity of cavitation problems in engineering. As a result,
numerical simulation has attracted much attention in the past few
decades. The cavitation model has been developed for more than
half a century owing to the complex interactions between multiphase
flows.

Cavitation models in the field of compressible fluids are
mainly divided into two categories. The first is one-fluid cavitation
model.3–5 This model assesses the liquid and vapor phases using
average state quantity. The earliest one-fluid model used extensively
in UNDEX is the cut-off model.5 In this model, the pressure is equal
to the given value once the flow pressure is detected to be lower than
the saturated pressure. Phase transition between the liquid and vapor
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phases is not considered in this model. Moreover, the treatment of
unifying the internal cavitation domain to a given saturated pressure
can destroy the conservation of fluid motion. The vacuum model
is another type of one-fluid model. This model is mathematically
sound; however, it is difficult to extend to multi-dimensions.6 Liu et
al.4 proposed an isentropic one-fluid model, which treated the fluid
as a homogeneous mixture comprising isentropic vapor and liquid
phases. The Schmidt model is also an important model, which was
used to efficiently simulate cavitation flow occurring in high pres-
sure and high velocity nozzles.7 However, it cannot be extended to
the simulation of a large-scale unsteady cavitation with a large vapor
to liquid density ratio, which is easy to produce “saturated” pres-
sure that is significantly higher than physical saturated pressure. Xie
et al.8 made some improvement on the application of the Schmidt
model in unsteady transient cavitation flow and proposed the mod-
ified Schmidt model to ameliorate this problem. Daramizadeh and
Ansari9 adopted a reduced five-equation model to simulate under-
water explosion cavitation using a new isentropic cavitation model.
Some one-fluid models, owing to their simplicity and efficiency,
have been embedded in commercial software programs, such as LS-
DYNA, MSC.DYTRAN, ABAQUS, and AUTODYN. These models
are also used to predict the starting time and simple evolution pro-
cess of the cavitation domain in engineering without high precision
requirements. However, they are unable to predict and analyze the
mechanism of mass and heat conversion between liquid and vapor
phases in cavitation flow because of the assumption of homogeneity
in the cavitation domain and no phase transition between liquid and
vapor phases.

The second model is the two-fluid cavitation model, which
has been used by researchers, such as Le Métayer et al.,10–12 Saurel
et al.,13 and Pelanti and Shyue.14 Thermal and chemical relaxation
effects due to mass and heat conversion between liquid and vapor
phases are considered in this model. Therefore, new relaxation
source terms associated with heat and mass transfer appear in the
governing equations. Saurel et al.13 and Zein et al.15 directly inte-
grated these ordinary differential equations (ODEs), which required
a diminutive time step for stability because of the stiffness of the
chemical relaxation terms. Pelanti and Shyue employed phasic total
energy equations instead of the phasic internal energy equations
of the classical 6-equation system.14 Temperature and Gibbs free
energy exchange terms were included in the equations as relax-
ation terms to model heat and mass transfer and subsequently
liquid–vapor transition. This method influenced the development
of the cavitation phase transition model based on thermodynamic
equilibrium, which provides important support for the study of
the essential characteristics of cavitation. Subsequently, Pelanti and
Shyue extended the model to multiphase fluids involving the liquid
and vapor phases of one species and a third inert gaseous phase.16

In the study, a cylindrical underwater explosion was simulated near
the rigid wall and free surface, and the occurrence of creation and
collapse of vapor cavities in the liquid region were captured. The
study is generally acknowledged as the first to apply the two-fluid
phase transition model to the field of underwater explosion cavita-
tion. Owing to the complex computation formulas and complicated
calculation programs in the six-equation system, Chiapolino et al.17

established the phase transition model based on the four-equation
system, in which the thermodynamic equilibrium conditions were
used to reduce and approximate the solution of the ODE relaxation

term to the solution of a simple system of algebraic equations. On the
basis of this new phase transition relaxation algorithm, Chiapolino
et al.18 proposed a simple and fast method to treat thermodynamic
equilibrium between liquid and vapor phases instead of the itera-
tive procedures in the four-equation model and also allow over 50%
systematic CPU saving without compromising accuracy. However,
in some of our test examples, the simple and fast solver produced
negative pressure or internal energy in the phase transition relax-
ation without a special treatment. Zhang proposed a two-phase flow
model for liquid–vapor phase transition in cavitating flows based
on the five-equation system using temperature and chemical relax-
ation with the monotonic mixture speed of sound.19 Compared
with Chiapolino model,18 the interface advection equation was non-
conservative and could not contain other fluid components in the
Zhang model.19

Generally, the one-fluid model has been extensively used in
underwater explosion cavitation than the two-fluid model. However,
owing to its inability to track the convection and phase transition
between liquid and gas phases, the one-fluid model is limited in the
study of occurrences of creation, evolution, and collapse mechanism
in underwater explosion cavitation. The development of cavitation
in underwater explosion has a significant impact on the shock wave
propagation, bubble movement, and structure damage. Therefore,
it is necessary to extensively study the cavitation phenomena in
underwater explosion. The two-fluid model describes the convec-
tion and transition process between the liquid and vapor phases
based on thermodynamics, which is similar to the essential mech-
anism of cavitation. Therefore, it is widely applied in the study of
underwater explosion cavitation. In this study, a two-fluid model
developed by Chiapolino et al.18 has been adopted for compressible
multiphase fluids, and some interesting phenomena are obtained.
The remainder of this paper is as follows: The four-equation model
with phase transition relaxation and the numerical methods with
mixture sound speed and HLLC Riemann solver are presented in
Secs. II and III, respectively. Several numerical examples are given
in Secs. IV A–IV C. Two-dimensional vapor bubble compression
and collapse are presented in Sec. IV D, and two cavitation phenom-
ena are shown in Sec. IV E. Finally, discussions and conclusions are
drawn in Sec. V.

II. CONTROL EQUATIONS WITH PHASE TRANSITION
RELAXATION
A. Compressible multiphase model without phase
transition

Under the assumption of no phase transition, the governing
equations for multiphase compressible flow without viscous and
thermal effects are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t
+∇ ⋅ (ρu) = 0,

∂(ρu)
∂t

+∇ ⋅ (ρu⊗ u + pI) = 0,

∂(ρE)
∂t

+∇ ⋅ ((ρE + p)u) = 0,

∂ρYk

∂t
+∇ ⋅ (ρYku) = 0,

(1)
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where ρ, p, u, and E account for the density, pressure, velocity
vector, and total energy per unit mass, respectively. Yk is the mass
fraction of the kth phase fluid, which can be specified as follows:
k = 1 for the liquid phase, k = 2 for the vapor phase, and k = 3, . . .,
N for the other non-condensable gaseous or liquid phases. In this
paper, Y3 denotes the mass fraction of air and Y4 denotes the mass
fraction of explosion gas.

B. System closure
The closure of the four-equation model is achieved using an

equation of state (EOS). In this model, both liquid and vapor phases
require a personalized EOS, with parameters carefully chosen to fit
the phase diagram. To facilitate the solution of the governing equa-
tions, it is generally necessary to use the same type of EOS for the
liquid and vapor phases. The building of such an EOS has been
addressed by Le Métayer et al.10 on the basis of the stiffened gas (SG)
EOS. Additionally, the same authors proposed an improved formu-
lation Noble-Abel Stiffened-Gas (NASG) EOS, which substantially
improves liquid specific volume accuracy by considering the repul-
sive molecular effects in addition to those existing in the SG EOS
(agitation and attraction).18,20 The main formulas for the NASG EOS
are given by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk(υk, ek) =
(γk − 1)(ek − qk)

υk − bk
− γkp∞k ,

Tk(pk, υk) =
(pk − p∞k )(υk − bk)
(rk − 1)Cv,k

,

gk(pk, Tk) = (γkCv,k − q′k)Tk − Cv,kTk ln
Tγk

k

(pk + p∞k )
γk−1 + bkpk + qk,

ck(pk, υk) =

¿
ÁÁÀγkυ2

k(pk + p∞k )
υk − bk

,

(2)

where e, T, c, g, and υ = 1/ρ account for the internal energy,
temperature, sound speed, Gibbs free energy, and specific volume,
respectively. The Gibbs free energy is obtained using g = h − Ts, with
h and s being the enthalpy and entropy, respectively. Here, C is the
phase specific heat at constant volume and b represents the covol-
ume of the fluid. Parameters γk, p∞k , qk, q′k are the constant coefficient
characteristics of the thermodynamic properties of the fluid. For the
properties of the thermodynamic nature of the NASG equation of
state, refer to Ref. 20. As shown in the study by Saurel et al.,21 it
is convenient to obtain these parameters once the saturation curves
[psat(T), υg,sat(T), υl,sat(T), hg,sat(T), and hl,sat(T)] are known. The
formulas of internal energy, specific volume, entropy, and tempera-
ture are obtained using a simple transformation of Eq. (2) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ek(pk, Tk) =
pk + γkp∞k
pk + p∞k

Cv,kTk + qk,

υk(pk, Tk) =
TkCv,k(γk − 1)

pk + p∞k
+ bk,

sk(pk, Tk) = Cv,k ln
Tk

γk

(pk + p∞k )
γk−1 + q′k,

Tk(ek, pk) =
(ek − qk)(pk + p∞k )

Cv,k(pk + γkp∞k )
.

(3)

TABLE I. NASG coefficients for liquid water, water vapor, and air.

Coefficients Liquid water Water vapor Air

Cp(J/kg/K) 4 285 1 401 1007
Cv(J/kg/K) 3 610 955 719
γ 1.19 1.47 1.4
P∞(Pa) 7.028 × 108 0 0
q(J/kg) −1177 788 2 077 616 0
q′(J/kg/K) 0 14 317 0
b(m3/kg) 6.61 × 10−4 0 0
W(g/mol) 18 18 29

Based on the assumption that the Gibbs free energy of the liquid
phase is equal to that of the vapor phase in the equilibrium state, the
following formula can be obtained:

ln(psat + p∞2 ) = A + B + E ⋅ psat

Tsat
+ C ⋅ ln(Tsat) +D ⋅ ln(psat + p∞1 ),

(4)
with

A = Cp,1 − Cp,2 + q′2 − q′1
Cp,2 − Cv,2

, B = q1 − q2

Cp,2 − Cv,2
, C = Cp,2 − Cp,1

Cp,2 − Cv,2
,

D = Cp,1 − Cv,1

Cp,2 − Cv,2
, E = b1 − b2

Cp,2 − Cv,2
,

(5)
where Cp,k denotes the heat capacity at constant pressure for the
phase k, Cp,k = γkCv,k.

For liquid water and its steam, the NASG parameters deter-
mined in the [273–500] K temperature range are given in Table I.20

C. Phase transition model
Although the solution from Eq. (1) satisfies the pressure and

temperature equilibrium between individual phases in the mixture,
it is not guaranteed to satisfy the conditions of saturated pressure
and temperature (p, T) between the liquid and vapor phases as in
Eq. (4). Therefore, it is necessary to introduce the phase transition
model to ensure that the final equilibrium state (p∗, T

∗

) is saturated
at each step as shown in Fig. 1.

During the phase transition process, the mixture mass and
internal energy remain constant. Therefore, the thermal and chemi-
cal relaxation can be done by enforcing the mechanical, thermal, and
chemical equilibrium conditions as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T = Tk, p = pk,∀k,

g1 = g2, υ =
N

∑
k=1

Ykυk, e =
N

∑
k=1

Ykek.
(6)

As mentioned in Ref. 18, the ideal mixture model of Dalton’s
law and separate chemical species are equivalent when the fluids are
ideal gases evolving in both temperature and pressure equilibrium.
Therefore, the vapor partial pressure is directly proportional to the
vapor molar fraction,

ppartial =
Y∗2 /W2

Y∗2 /W2 +
N
∑
3

Yk/Wk

p∗ = psat(T∗), (7)
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FIG. 1. Schematic diagram of mass frac-
tion distribution of different phases in
fluid before and after phase transition
treatment. The dotted lines represent the
location of the volume division boundary.

where Wk is the molar mass of species k and the superscript “∗”
denotes the finial state. Therefore, the following system has to be
solved:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ppartial =
Y∗2 /W2

Y∗2 /W2 +
N
∑
3

Yk/Wk

p∗ = psat(T∗),

υ = Y∗1 υ1(T∗, p∗) + Y∗2 υ2(T∗, p∗) +
N

∑
k=3

Ykυk(T∗, p∗),

e = Y∗1 e1(T∗, p∗) + Y∗2 e2(T∗, p∗) +
N

∑
k=3

Ykek(T∗, p∗),

ln(p∗ + p∞2 ) = A + B + E ⋅ p∗
T∗

+ C ⋅ ln(T∗) +D ⋅ ln(p∗ + p∞1 ).
(8)

This system contains four unknown variables with four equa-
tions, which can be solved by the Newton iterative method.

III. NUMERICAL METHOD
The control equation (1) is strictly conservative in divergence

form and can be solved using the reconstruction-and-evolve strategy
in a finite volume formulation.22 The reconstructions are addressed
with the monotonic upwind scheme for conservation laws (MUSCL)
method using the van Leer slope limiter. The numerical fluxes are
built using the HLLC approximate Riemann solver.23 Here, we focus
on the choice of sound speed in the mixture and the construction of
the HLLC solver, a solver based on ordinary Euler equations.

A. Speed of sound for the estimates of wave speed
in the HLLC solver

The estimation of wave speed on both sides of the element
boundary is an important part in HLLC solver construction. This
is because the solver reconstruction can affect the accuracy of flux
solution. The Wood speed24 of sound is widely used in the multi-
component flow model.25–27 Based on a previous study,28 the Wood
speed of sound does suffer from the known numerical issue of non-
monotonic behavior within the material interface. This limitation
led to the development of the six-equation model by Saurel et al.,28

after which a monotonic frozen speed of sound c2
eq = Y1c2

1 + Y2c2
2

(subsequently adopted in Ref. 14) was proposed. Another model
for the monotonic speed of sound, known as the five-equation
model, was built by Allaire et al.29 The Allaire speed with the

mixture NASG EOS can be described as

c2
eq =
∑
k

ykξkc2
k

ξ
, (9)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξk = (
∂ρkek

∂pk
)

ρk

= 1 − ρkbk

γk − 1
,

δk = (
∂ρkek

∂ρk
)

pk

= −bk(pk + γkp∞k )
γk − 1

+ qk,

c2
k =
(hk − δk)

ξk
= γkυ2

k
pk + p∞k
υk − bk

,

ξ =
N

∑
k=1
(ϕkξk) =

N

∑
k=1
(ρYk

ρk
ξk),

(10)

where hk and ϕk denote the enthalpy per unit mass and volume frac-
tion for the kth phase, respectively, and ceq is the mixture speed of
sound.

With the increase in the water vapor volume fraction at atmo-
spheric pressure, three types of mixture sound speed models display
different characteristics, as shown in Fig. 2. The Allaire speed gen-
erally shows significant monotonic behavior with the increasing gas

FIG. 2. Representation of the different mixture speeds of sound for the liquid
water–air mixture under atmospheric conditions.
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FIG. 3. Comparison of different types of mixture sound speeds during the
numerical advection of the air–water interface.

volume fraction. Contrastingly, the frozen speed is basically constant
in a large range; however, it changes abruptly when it is very close to
the pure vapor phase. Comparatively, the non-monotonicity of the
Wood speed of sound is more apparent.

The different behaviors of the above three mixture speeds in 1D
are shown in Fig. 3. Air and water are separated at x = 0.5 m at room
temperature and atmospheric pressure. The uniform velocity of the
whole flow field is 100 m/s. Figure 3 shows the different mixture
sound speeds at t = 3 ms. It can be observed that the frozen speed and
Allaire speed are monotonic within the water–air interface. As stated
by Perigaud and Saurel,30 when the Wood speed is used, the speed of
sound tends to be very low inside the mixture flow zone at interfaces,
leading to the occurrence of sonic points without any flow accelera-
tion. This further results in the difficult approximation of Riemann
invariants and Riemann solver convergence. It can be observed
that there are practically no transitional nodes at the discontinuity
when frozen speed is used, which is too ideal for actual procedures.
Figure 4 shows the schematic diagram of the three types of sound

FIG. 4. Schematic representation in the (x, t) diagram of the interaction between an
acoustic wave and the numerical diffusion zone of an interface computed with three
types of mixture sound speeds. The blue line in the left light gray zone denotes the
wave speed of pure air, and the yellow lines in the right blue zone denote the wave
speed of pure water. In the middle dark gray zone, the black line, blue dotted line,
and red line account for the wave speeds by Wood, Allaire, and the frozen method,
respectively.

speed wave transmission through diffuse interfaces corresponding
to Fig. 4. Based on the comprehensive comparison mentioned above,
the Allaire speed was preferred in all the examples.

B. HLLC Riemann solver
When the numerical flux construction on the x-direction

(which can be obtained in the same manner as the y-direction) is
used as an example, the intercell flux of the HLLC approximate
Riemann solver is given by23

FHLLC
i+1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(qL)0 ≤ sL,

F(qL) − sL(q∗L − qL)sL < 0 ≤ s∗,

F(qR) − sR(q∗R − qR)s∗ < 0 ≤ sR,

F(qR)sR ≤ 0,

(11)

q∗K =
sK − uK

sK − s∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρK

ρK s∗

ρK v

ρK EK + (s∗ − uρK)[ρK s∗ + pK/(sK − uK)]
ρK Yk,K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

K = L or R; k = 1, 2, . . . , N, (12)

where “L” and “R” refer to the left and right states of a cell side,
respectively, and k represents the individual phase. sL and sR are the
left and right wave speeds estimated using40

sR = max(uL + cL, uR + cR), sL = min(uL − cL, uR − cR). (13)

The middle wave speed s
∗

is given as

s∗ =
(ρu2 + p)

L
− (ρu2 + p)

R
− sL(ρu)L + sR(ρu)R

(ρu)L − (ρu)R − sLρL + sRρR
. (14)

A MUSCL–Hancock method is used to increase the model-
ing accuracy from first order to second order.23 The finite volume
method and structured grid are adopted in numerical schemes.

C. Solution procedure
The integrated algorithm can be summarized as follows: Given

all values at time step n, the values at time step n + 1 can be updated
as follows:

(1) At each cell boundary, the conservative variables are recon-
structed by the second order MUSCL–Hancock method
using the van Leer slope limiter, while the numerical fluxes
are obtained using the HLLC approximate Riemann solver.

(2) All flow variables are evolved with the Godunov type
method in the homogeneous hyperbolic step, and temporary
variables (υ, e, p, T, and Yk) are subsequently solved.

(3) The nonlinear system (8) is solved to obtain the equilib-
rium state (p

∗

, T
∗

, and Yk=1,2) using the Newton–Raphson
iterative method. It can be divided into the following
situations:
(3.1) If the liquid phase mass fraction satisfies

the condition of Y1 < 10−8, the fluid can be
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approximated as the gas mixture with overheated
vapor. No phase transition occurs at this condition,
and there is no need to solve the phase transition
[Eq. (8)].

(3.2) Otherwise, it is necessary to use the iterative method
to solve Eq. (8). The initial state can choose the
solution of step (2).

(4) Step (1) is repeated, followed by the next time step.

FIG. 5. Numerical results for the shock tube test with a two-phase mixture made of liquid water, vapor water, and air. The dashed black lines represent the initial conditions.
The dashed blue lines represent the solutions without phase transition (no P-T). The red lines represent the solutions with phase transition (P-T). The triangle symbols
represent the solutions from the study by Chiapolino et al.
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IV. NUMERICAL RESULTS AND DISCUSSION
A. Shock tube test with a mixture far
from the phase bounds

A two-phase mixture with initial mass fractions is set to Y1
= 0.1 (liquid), Y2 = 0.2 (vapor), and Y3 = 0.7 (air). This is con-
sidered throughout the shock tube with an initial pressure ratio of
two. This test has been simulated by Chiapolino et al.18 The ini-
tial discontinuity is located at x = 0.5 m, and the initial condition is
given as

(ρ, u, p, Y1, Y2, Y3) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1.941, 0, 2 × 105, 0.1, 0.2, 0.7), x < 0.5,

(1.018, 0, 1 × 105, 0.1, 0.2, 0.7), x ≥ 0.5.

(15)

The simulations are performed on meshes with 100 cells. The
results are shown at time t = 1 ms in Fig. 5. It can be observed
from the plots that there are some differences between the cases with
and without phase transition. The vapor mass fraction on transition
from the liquid phase to vapor phase occurs near the right shock
wave front using phase transition as shown in the vapor mass frac-
tion curve in Fig. 5, and the evaporation process induced by shock
compression can be captured clearly. Meanwhile, the condensation
induced by the expansion wave can be obtained as shown in the liq-
uid mass fraction curve in Fig. 5. The numerical results with phase
transition show consistency with Chiapolino’s solutions.

B. Shock tube test with a mixture containing mainly
liquid water

In the test, a shock tube with an initial pressure ratio of two
is considered. The vapor and air mass fractions are deduced as Y2
= 9.453 × 10−8 and Y3 = 10−5 in the left chamber and Y2 = 1.9198
× 10−7 and Y3 = 10−5 in the right chamber. The liquid mass fraction
Y1 is obtained by Y1 = 1 − Y2 − Y3. Because there are exces-
sive significant digits, all the values of Y1 shown in this paper are
approximate. The initial condition is given as

(ρ, u, p, Y1, Y2, Y3)

=
⎧⎪⎪⎨⎪⎪⎩

(1051.4, 0, 2 × 105, 0.999 99, 9.453 × 10−8, 10−5), x < 0.5,

(1046.5, 0, 1 × 105, 0.999 99, 1.919 8 × 10−7, 10−5), x ≥ 0.5.

(16)

Numerical results are shown at time t = 1.5 ms with 200 grids
in Fig. 6. Because the liquid mass fractions on both sides of the dis-
continuity are too close to one (the deviation is less than 10−8), the
ordinate coordinate of the Y1 diagram in Fig. 6 is all shown as one.
It can be observed from the temperature diagram that it is quasi-
isothermal notwithstanding the slight evaporation and condensation
processes appearing through the shock and rarefaction wave prop-
agation. This example implies that the present relaxation algorithm
can analyze the limiting calculation conditions in which the flows
contain an extremely low mass fraction of the water vapor phase,
which is essential for the simulation of cavitation in underwater
explosion. According to the basic theory,41 it is believed that the gen-
eration of cavitation (the scale visible to the naked eye) originates
from the initial existence of an extremely low volume fraction of the
vapor phase in water.31

C. Double expansion test with a two-phase mixture
mainly made of liquid water

The following example simulates cavitation induced by ini-
tial subcooled water, which has also been researched by Chiapolino
et al.18 The initial temperature, pressure, and air mass fraction are
105 Pa, 293 K, and 10−5 throughout the entire tube, respectively. The
vapor and liquid mass fractions are then set to Y = 1.919 × 10−7 and
Y ≈ 0.999 98 in the entire tube. The initial velocity is set to −1 m/s at
left and +1 m/s at right chambers. The initial condition is given as

(ρ, u, p, Y1, Y2, Y3)

=
⎧⎪⎪⎨⎪⎪⎩

(1046.5,−1, 105, 0.999 99, 1.919 × 10−7, 10−5), x < 0.5,

(1046.5, 1, 105, 0.999 99, 1.919 × 10−7, 10−5), x ≥ 0.5.

(17)

The numerical results are shown at time t = 3.5 ms in Fig. 7.
Although there is litter difference in terms of density, pressure,
velocity, and temperature under the condition of phase transition,
there will be a big difference in the vapor volume fraction. The
phenomenon of vapor generation can be captured by the phase tran-
sition model in the vicinity of the discontinuity. Good agreement is
again obtained between the present and Chiapolino models.

D. 2D vapor bubble compression and collapse
We aim to simulate the vapor bubble compressed by the shock

wave in water, which has also been considered in Refs. 32–34. Here,
a similar example with a vapor bubble of radius 0.2 m set at the
location of (0.8, 0.6) in a liquid-filled chamber is shown in Fig. 8.
The computational domain is Ω = [0, 2.0] × [0, 1.2] m2, which is
discretized by 1000 × 600 uniform grids. The initial condition is

(ρ, u, p, Y1, Y2, Y3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1008, 0, 105, 0.999 95, 10−6, 5.209 × 10−5), x > 0.6,

(1026, 87, 108, 0.999 98, 10−8, 1.528 × 10−5), x < 0.6,

(0.61, 0, 105, 0.006 66, 0.99, 3.373 × 10−3) in cavity.

(18)

Figure 9 displays the contour plots of the density, pressure,
vapor mass, and volume fraction at different times of 0.40, 0.71, 0.89,
1.05, 1.09, 1.19, and 1.45 ms. It can be observed that after the circular
vapor bubble is compressed by a high pressure shock wave, it begins
to sag to the right and finally forms a water jet. Although the ini-
tial shock wave peak pressure is only 108 Pa, the maximum impact
pressure induced by the water jet reaches 2.4 × 108 Pa at ∼1.09 ms as
shown in Fig. 9. It can be observed that no spurious pressure oscilla-
tions at the interfaces can be found, which displays that the ability of
the phase transition treatment and wave propagation capture in the
solver is appropriate.

E. Two cavitation phenomena in underwater
explosion

Cavitation is an essential phenomenon in underwater explosion
and has a significant impact on shock wave loading, bubble move-
ment, and underwater structures. Several theories have explained
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and analyzed the generation, evolution, and collapse mechanism
of cavitation in underwater explosion.35–37 There is a significant
difference between theoretical and experimental results owing to
the simple hypothesis in the theoretical model. Many experimental

studies on underwater explosion cavitation have been conducted
in the past decade. Compared with the blurred images of cavita-
tion shown in several existing underwater explosion experiments,
Cui et al.38 obtained a set of clear images of cavitation near a free

FIG. 6. Numerical results for the shock tube test with a two-phase mixture made of liquid water, vapor water, and air. The dashed black lines represent the initial conditions.
The dashed blue lines represent the solutions without phase transition (no P-T). The red lines represent the solutions with phase transition (P-T). The triangle symbols
represent the solutions from the study by Chiapolino et al.

AIP Advances 12, 025209 (2022); doi: 10.1063/5.0077517 12, 025209-8

© Author(s) 2022

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

surface while studying the influence of different boundary condi-
tions on a small-charge underwater explosion bubble. These cavi-
tation images provide valuable information for numerical simula-
tion. In this study, we adopt the phase transition model based on

compressible multiphase fluids to partially emerge the cavitation
phenomenon near a free surface in the experiment. This is dis-
cussed in Sec. IV E 1. The cavitation near the structure in underwater
explosion is also an important phenomenon, and the occurrence of

FIG. 7. Numerical results for the shock tube test with a two-phase mixture made of liquid water, vapor water, and air. The dashed black lines represent the initial conditions.
The dashed blue lines represent the solutions without phase transition (no P-T). The red lines represent the solutions with phase transition (P-T). The triangle symbols
represent the solutions from the study by Chiapolino et al.

AIP Advances 12, 025209 (2022); doi: 10.1063/5.0077517 12, 025209-9

© Author(s) 2022

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 8. Schematic of computation with the initial cavity and shock wave.

creation and collapse is dissimilar to that near a free surface. This
type of cavitation near a rigid wall using a multiphase flow model is
provided in Sec. IV E 2.

1. Underwater explosion cavitation
near a free surface

In the experimental arrangement,38 4.0 g PETN (pentaerythri-
tol tetranitrate) is detonated at a depth of 0.13 m from the free
surface in a 2 × 2 × 2 m3 cubic steel water tank filled with tap
water. Its TNT (trinitrotoluene) equivalence mass is ∼5.2 g. To sim-
ulate the occurrence of cavitation, a 2D axisymmetric model is used
to research the 3D cavitation near a free surface. This is presented
in Fig. 10. Calculations are performed on a rectangular computa-
tional domain Ω = [0, 1.5] × [−1.8, 0.2] m2 discretized using 600
× 800 uniform grids. The impenetrable boundary condition is
applied on the symmetric axis (y-axis), and the non-reflecting

FIG. 9. Numerical results of the density, pressure, vapor mass, and volume fraction at different times t = 0.40, 0.71, 0.89, 1.05, 1.09, 1.19, and 1.45 ms.
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FIG. 10. Schematic of underwater explosion near a free surface.

boundary condition is applied on the other three boundaries.
A highly compressed spherical explosive gas is located at (x, y)
= (0, −0.13) m, and the free surface is located at y = 0 m. With refer-
ence to the Geer–Hunter model39 and our numerical experience, the
initial explosion bubble produced after explosive initiation can be
simplified using an equivalent detonation model. The initial static
bubble has a radius of R0 = 0.01 m, and its density and pressure are
1606 kg/m3 and 109 Pa, respectively. An ideal gas law is used for the
explosion gases with γ = 1.8, and its molar mass is approximated by
the TNT with W = 227 g/mol.

The initial condition is

(ρ, u, p, Y1, Y2, Y3, Y4)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1.18, 0, 105, 0, 10−9, 0.999, 0) for air,

(1054, 0, 105, 0.999 9, 10−8, 4.73 × 10−7, 0) for water,

(1606, 0, 109, 0, 10−8, 0, 0.999) for gas.

(19)

The initial temperatures for explosive gas, air, and water are
1080, 295, and 295 K, respectively. Under this condition, the initial
air and explosive gas are overheated and the water is saturated. In
this test, we activate thermal and chemical relaxation (phase tran-
sition) for the liquid and vapor water phases. For comparison, we
run a simulation with no phase transition, which allows us to high-
light the effect of mass and heat transfer processes. The numerical
results are provided by the contours of the density, pressure, vapor
volume fraction, and cavitation domain (from top to bottom) at
four different times t = 0.103, 0.168, 0.334, 0.500, and 0.666 ms
(from left to right), as shown in Fig. 11. The coordinate range of

FIG. 11. Numerical results of the density, pressure, vapor volume fraction, and cavitation domain (from top to bottom) at five different times t = 0.103, 0.168, 0.334, 0.500,
and 0.666 ms (from left to right). The black lines indicate the general location of the explosion bubble interface, and the black dotted lines denote the location of the initial
free surface. The red region in the third column of frames represents the cavitation domain.
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all the observation windows in Fig. 11 is [−0.7, 0.7] × [−0.8, 0.2]
m2. When the vapor volume fraction in a fluid element is greater
than 0.5‰ (ϕ2 > 0.5‰), the element is marked as the red cavitation
domain, as shown in Fig. 11. It can be observed that the rarefac-
tion waves are reflected from the free surface and induce cavitation
occurrence above and below the free surface at t = 0.103 ms. In this
study, we refer to the cavitation in air above the water surface as the
vapor cavity to distinguish it from the underwater cavitation. At t
= 0168 ms, the rarefaction waves reach the explosion bubble inter-
face, and shock waves are reflected from the interface. With the
upward propagation of the reflected shock wave from the explosion
bubble interface, the cavitation on the symmetry axis (y-axis) begins
to collapse from the bottom to top, and the thickness of the cav-
itation on the y-axis starts to decrease, as shown at t = 0.334 ms.
However, the rarefaction wave region caused by the reflection of the
initial explosion shock wave on the free surface gradually expands,
consequently inducing new cavitation domain occurrence in the far
area on both sides of the y-axis. With the gradual collapse of the

cavitation in the region near the y-axis and the continuous formation
of the cavitation in the far area from the y-axis, the entire cavitation
under the free surface in the 2D axisymmetric coordinate system
forms into the shape of a vortex ring, as shown in Fig. 11. To some
extent, the existence of the explosion bubble induces the collapse of
cavitation. Because the bubble interface can reflect the rarefaction
wave propagating from the free surface into a shock wave, the cavi-
tation domain is compressed and subsequently induced to collapse.
For the case of deep-water nuclear explosion, the cavitation domain
is substantial because of the long loading time of the released shock
wave. Meanwhile, the explosion bubble interface is far from the
water surface, and it takes a long time for the cavitation to collapse,
resulting in a possible harm of the surrounding ships.

As shown in Fig. 12, we compare the experimental and numer-
ical results of the changes in the cavitation domain. The coordinate
range of all the numerical frames in Fig. 12 is [−0.4, 0.4] × [−0.68,
0.2] m2, which is similar to the window size of the experimental
frames. The marks from 01 to 05 in the lower left corner of the

FIG. 12. Comparison of experimental and numerical results on the cavitation domain. Experimental frames (top row plots) and the cavitation domain with phase transition
(middle row plots) and without phase transition (bottom row plots) are shown at times t = 0, 0.168, 0.334, 0.500, and 0.666 ms. The red and blue regions indicate the
cavitation and liquid water domains, respectively, and the green regions indicate the air domain above the free surface and explosion gas. The black dotted lines indicate
the initial free surface in experimental frames.
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experimental frames (top row plots) denote the serial number of
the photograph recorded by the camera, while the decimals on
the right denote the corresponding time (in ms). The numerical
results of the cavitation domain with and without phase transi-
tion are shown in the middle and bottom row plots, respectively.
It can be observed that the numerical results with phase transition
show excellent agreement with the experimental results. A vortex
band composed of a large number of tiny cavitation bubbles can
be observed, and the motion of the cavitation domain is similar to
the numerical results with phase transition. However, the cavitation
domain obtained by the model without phase transition is obviously
smaller than the experimental results.

Figure 13 shows the numerical pressure time–history curves for
two points on the y-axis with and without phase transition. The axis
y = 0 m represents the initial position of the free surface. It can be
observed that although the shock wave first reaches the measuring

point (y = −5.0 cm) far from the free surface, it produces a relatively
late cavitation. This is because the rarefaction waves begin to prop-
agate downward from the free surface, which is consistent with the
pressure propagation process in Fig. 11. We can also observe that the
cavitation on the measuring point (y =−5.0 cm) is the first to collapse
because the shock wave reflected by the rarefaction waves on the
explosion bubble interface first reaches this point. The phase transi-
tion has practically no effect on the early shock wave stage. However,
it has a great influence on the cavitation collapse stage. Rela-
tively, the collapse pressure at the measuring point of y = −2.5 cm
closer to the free surface fluctuates violently and the peak collapsing
pressure is high under the condition of phase transition. The phase
transition has little effect on the measuring point of y = −5.0 cm
on the entire pressure stage, which is due to the short duration
of cavitation. Therefore, the longer the duration of cavitation, the
more obvious the phase transition effect. This is because the phase

FIG. 13. Numerical results of the pres-
sure time–history curves for two points
on the axisymmetric axis (left) with
and without phase transition and the
schematic diagram of measuring points
(right).

FIG. 14. Numerical results of the pres-
sure time–history curves for two points
at a depth of 0.05 m with and without
phase transition (left) and the schematic
diagram of measuring points (right).
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FIG. 15. Time history of total volume of the cavitation domain underwater.

transition process is closely related to the mass and heat transfer
between the liquid and vapor phases. Figure 14 shows the numer-
ical pressure time–history curves for two points at a depth of 0.05 m
with and without phase transition. It can be observed that the phase
transition has a level of influence on the two measuring points in the
cavitation collapse stage. However, it has no effect on the early shock
wave stage.

Figure 15 shows the time history curve of the total volume of
the cavitation domain. It can be seen that the expansion process
and contraction process times of the total volume of cavitation are
approximate, and the entire cavitation movement cycle is ∼1.14 ms.
For the temperature in the cavitation domain, Fig. 16 reveals the
time history curves of maximum, minimum, and average temper-
ature changes in the cavitation domain similar to those in Fig. 12.
It can be observed that when the cavitation domain expands to
the maximum volume, the maximum and minimum temperatures

FIG. 16. Time history of the maximum, minimum, and average temperature
changes in the cavitation domain.

FIG. 17. Time history of the maximum, minimum, and average pressure changes
in the cavitation domain.

in the cavitation domain are 309.7 and 283.7 K, respectively; how-
ever, the average temperature in the cavitation domain is basically
constant at 294.6 K, which is equivalent to room temperature.

Figure 17 shows the time history curves of maximum, min-
imum, and average pressure changes in the cavitation domain. It
can be seen that the maximum pressure is maintained at ∼0.018
MPa most of the time in the expansion stage, while it mainly oscil-
lates above 0.018 MPa in the contraction stage, and the maximum
value reaches 0.029 MPa. The minimum pressure in the cavitation
domain frequently changes gently in the middle in the range of
3200–4800 Pa. However, the change gradient is significant in the
initial generation and final collapse stage of cavitation. The varia-
tion range of volume average pressures in the cavitation domain
is 9000–18 000 Pa, and its variation trend is consistent with that
of minimum pressure. It can be observed that the pressure in
the cavitation domain changes in the saturated state and has the

FIG. 18. Time history of the maximum and average vapor volume fractions in the
cavitation domain.
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FIG. 19. Time history of the maximum, minimum, and average densities in the
cavitation domain.

FIG. 20. Schematic of underwater explosion near a rigid wall.

characteristics of uneven distribution and large variation gradi-
ent. Meanwhile, the variation range of internal temperatures is
283.7–309.7 K as shown in Fig. 16, which indicates an apparent
phase transition in the cavitation domain.

Figure 18 reveals the time history curve of the maximum and
average variation of the vapor phase volume fraction in the cav-
itation domain, and the minimum value is 0.5‰. It can be seen
from the diagram that the volume fraction of the vapor phase in the
cavitation domain is 0.5‰–17.3%, and its peak does not appear at
the time when the cavitation volume expands to the maximum vol-
ume. Although the maximum volume fraction of the vapor phase in
the entire process of cavitation is not low, the average value of the
whole volume in the cavitation domain varies from 0.5‰ to 1.0%,
indicating that the average content of steam is relatively low. This
is consistent with the “cloud cavitation” observed in the previous
experiments shown in Fig. 12. Figure 19 shows the time history curve
of the maximum, minimum, and average variations of density in the
cavitation domain. It can be observed that the maximum density in
the cavitation domain varies from 1051 to 1061 kg/m3, and the aver-
age density ranges from 1039 to 1051 kg/m3. Combined with Fig. 18,
it can be observed that the content of the vapor phase in the cavita-
tion domain is generally diminutive, and its density is similar to that
of liquid phase water.

2. Underwater explosion cavitation near a rigid wall
When the high-pressure explosive gas is close to the structure

in underwater, the local cavitation will appear in the fluid due to the
structural motion and the effect of the explosion bubble boundary.
In this chapter, the motion effect of the structure is ignored, and
the structure is simplified to a fixed solid wall. A two-dimensional

FIG. 21. Numerical results of the density, pressure, vapor volume fraction, and cavitation domain with and without P-T (from top to bottom) at different times t = 0.24, 0.28,
0.41, 0.46, 0.50, and 0.55 ms (from left to right). The red areas represent the cavitation domain in the fourth and fifth row contours.
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FIG. 22. Comparison of the evolution process of the cavitation domain area with
and without phase transition conditions.

symmetric model is used as shown in Fig. 20. The cylindrical explo-
sive gas has a radius of R0 = 0.05 m and is located at the distance
of L0 = 0.25 m from the lower rigid wall. The rectangular computa-
tional domain for this problem is Ω = [0, 1.2] × [0, 1.4] m2, which is
discretized by 600 × 700 grids. The initial condition is

(ρ, u, p, Y1, Y2, Y3, Y4)

=
⎧⎪⎪⎨⎪⎪⎩

(1606, 0, 109, 0, 10−6, 0, 0) for gas,

(1054, 0, 105, 0.999 9, 10−8, 4.73 × 10−7, 0) for water.

(20)

The numerical results are provided by the contours of the
pressure, vapor volume fraction, and cavitation domain with and
without phase transition (P-T) (from left to right) at six different
times t = 0.24, 0.28, 0.41, 0.46, 0.50, and 0.55 ms (from top to bot-
tom) as shown in Fig. 21. The red regions represent the cavitation
domain in the third and fourth columns of plots. The identification
criterion of the cavitation domain is the same as that in Figs. 11
and 12. The coordinate range of all the observation windows in
Fig. 21 is the whole domain as shown in Fig. 20. It can be observed
from the pressure plots that the compressed wave reflected from the
lower rigid wall has reached an explosion bubble interface, and the
rarefaction wave has been reflected to the lower water domain at
0.24 ms. However, there is no obvious cavitation domain in water,
which is due to the fact that the reflected rarefaction wave intensity
is not strong enough to cause the liquid phase in water to convert
into a large amount of vapor phase. At 0.28 ms, the rarefaction wave
has just reached the rigid wall. As more and more rarefaction waves
are reflected on the rigid wall, the rarefaction waves near the wall
are strengthened, and obvious cavitation regions gradually appear

FIG. 23. Pressure time–history curves
for different vertical distances from the
rigid wall on the symmetric axis (left) and
the schematic diagram of the measuring
point location (right).

FIG. 24. Pressure time–history curves for
different horizontal distances from explo-
sive gas at a depth of 5 cm (left) and
the schematic diagram of the measuring
point location (right).
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in water. The area of the cavitation domain reaches the maximum
at about 0.41 ms. Since then, due to the movement of the explosion
bubble and occurrence of the compressed wave from the reflection
of the rarefaction wave at the explosion bubble interface, the cavita-
tion domain in water gradually becomes smaller at 0.46 and 0.50 ms.
The cavitation domain completely collapses at 0.55 ms as shown in
Fig. 21. It can be observed from the cavitation domain contour
plots that the range of the cavitation domain is obviously reduced
under the condition of without phase transition. Figure 22 shows the
comparison of the evolution process of the cavitation domain area.
There are many differences in the starting time, duration, and maxi-
mum area of cavitation, which show that the phase transition has an
important influence on the development of cavitation.

Figure 23 shows the pressure time–history curves for four
points on the symmetric axis (y-axis). It can be observed that the
point on the rigid wall (H = 0 cm) is the first to produce cavita-
tion at t = 0.288 ms, which accords with the above conclusion that
the rarefaction wave reflected from the explosion bubble interface
for the first time cannot induce cavitation and needs to be further
reflected and enhanced on the rigid wall. Figure 24 shows the pres-
sure time–history curves for four points at a depth of 0.05 m. It can
be observed that the nearer the point to the symmetric axis (y-axis),
the earlier the cavitation occurs.

V. DISCUSSION AND CONCLUSIONS
In this paper, we adopted a numerical model for

compressible multiphase flows based on the phase transition18

and extended the model to the application in underwater explosion
cavitation. The multiphase equations are solved using a simple
fractional step approach that contains hyperbolic and relaxation
steps. A monotonic mixture speed of sound is adopted using the
HLLC approximate Riemann solver. The numerical model is first
tested in several 1D shock tube and 2D vapor bubble examples and
subsequently extended to underwater explosion cavitation near a
free surface and rigid wall. The following conclusions are drawn:

(1) The Allaire speed is the most preferred mixture sound
speed near the discontinuity in multiphase fluids based
on the numerical results, while the Wood speed is non-
monotonous, and the frozen speed is too ideal for an actual
process. Therefore, the Allaire speed is adopted in this study.

(2) Generally, the phase transition model is sensitive to the vapor
mass fraction. Therefore, the discontinuous problems with
different vapor mass fractions are simulated in 1D shock
tube tests. The numerical results show that the phase tran-
sition model in this study presents superior adaptability
and can accurately capture the vaporization phenomenon
in the propagation of shock waves and the condensation
phenomenon in the propagation of rarefaction waves.

(3) It can be observed that the phase transition in thermodynam-
ics shows great potential in the study of underwater explosion
cavitation. For the underwater explosion near a free surface,
the numerical results show that the rarefaction wave reflected
by the initial explosion shock wave on the free surface leads to
the cavitation creation, while the compression wave reflected
from the upper interface of the explosion bubble causes cav-
itation collapse. It can also be observed that a vortex band

composed of a substantial number of tiny cavitation bubbles
in numerical results with phase transition is consistent with
the experimental results in underwater explosion near a free
surface.

(4) For the underwater explosion near a rigid wall, it can be con-
cluded that the direct rarefaction wave reflected directly for
the first time cannot induce cavitation creation. The cavita-
tion begins to occur only when the direct rarefaction wave
is reflected again on the rigid wall and further strengthened.
The cavitation begins to collapse when the compression wave
reflected from the upper interface of the explosion bubble
impacts the cavitation domain.

Although the phase transition model in this study provides an
effective method for underwater explosion cavitation, some limita-
tions do exist. The interactions between the explosion gas, water, air,
and structures are complex, and numerical results need to be further
verified by experiments. In addition to the phase transition model,
we aim to develop a solution that can alleviate the challenges present
in the current research field. These progressions will be introduced
in the future.
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