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Abstract ： 
Underwater explosion cavitation has an important influence on the shock wave, explosion 

bubble, and structural deformation. The one-fluid model is usually used in underwater explosion 
cavitation. It is assumed that the cavitation is induced suddenly when the pressure is lower than 
the saturated pressure. The biggest deficiency of the model is that it is difficult to consider the 
temperature change in the cavitation domain. It is known that cavitation is sensitive to the 
temperature. In this paper, we study UNDEX cavitation characteristics based on the two-fluid 
model proposed by Chiapolino et al. (2017), which holds that the cavitation phenomenon is the 
result of the phase transition between the gas and liquid phases. This model is composed of the 
4-equation model with phase transition relaxation, which is solved by a simple fractional step. In 
this article, we briefly introduce the compressible multiphase fluids model and successfully extent 
it to the engineering research field of underwater explosion cavitation. Through the quantitative 
analysis of the vapor phase content, it is suggested that the initial mass fraction of vapor phase in 
water should be set to less than 10-7. Meanwhile, it can be observed that the bulk cavitation near 
the free surface can evolve into a vortex ring until it collapses. Numerical results show that the 
collapsed pressure cannot be ignored relative to the shock wave in the bulk and local cavitation. 
Numerical results of this paper display that the phase transition model shows a great prospect of 
engineering application in underwater explosion cavitation. 
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1. Introduction 

Phase transition and heat exchanges are examples of physical process appearing in many 
industrial applications involving multiphase compressible flows, such as ship and submarine 
propellers, rocket engine at ignition, and underwater explosion (UNDEX). Underwater explosion 
usually contains complicated sequence of the events that include detonation wave, shock wave, 
fluid-structure interactions and cavitation (Cole, 1948; Liu, 2006). From the published research 
papers on underwater explosion, there are many studies on the propagation of shock wave and the 
movement of explosion bubble, but the research on cavitation in underwater explosion is not 
enough. Cavitation can appear when an explosion occurs near water surface or structures. The 
pressure caused by cavitation collapse is one major concern in engineering application. The 
numerical model of cavitation plays an important role in the research and analysis of cavitation 
effect. It is helpful for understanding of the basic mechanisms that contribute to cavitation 
evolvement, which is one of the motivations that attract the research on cavitation flow.  

Owing to the strong discontinuities such as shock wave propagation in underwater explosion, 
both the liquid and vapor phases in water need to be considered as compressible fluids. In 
multiphase compressible flows modeling, phase transition between liquid and vapor phases has 
important effects in these applications, and has to be accounted for via appropriate phase transition 
models. There are mainly two methods designed to simulate the movement mechanism in the 
cavitation. The first one is the one-fluid cavitation model, such as the model developed by Liu et 
al. (Liu et al., 2004), Qin et al. (1999) and others. This type of cavitation model treats the liquid 
and vapor phase using one set of governing equations considering the two phases as the same fluid. 
The earliest one-fluid model used extensively in underwater explosion is the Cut-off model 
(Aanhold et al., 1998). In this model the pressure is set to a given saturated pressure once the flow 
pressure is detected to be lower than the saturated pressure. However, the equation of state of 
water is still used for the cavitation domain, which will bring great errors to the calculation of 
sound speed and mixing pressure in the mixture. Liu et al. (2004) developed the isentropic 
one-fluid model, which assumes the fluid to be a homogeneous mixture comprising isentropic 
vapor and liquid phases. Schmidt model (Schmidt et al., 1999) is an important one-fluid model 
and can work efficiently in simulating cavitating flow occurring in high pressure and high velocity 
nozzles. If this model is applied to simulate the large-scale unsteady cavitation with a large vapor 
to liquid density ratio, however, a “saturated” pressure that is much higher than physical saturated 
pressure has to be employed, resulting in nonphysical large cavitation pressure or numerical 
oscillation on the cavitation interface. Xie et al. (2006) improved the shortcomings of Schmidt 
model in the simulating the unsteady transient cavitating flows with a large vapor to liquid density 
ratio and proposed the modified Schmidt model. Daramizadeh et al. (2015) adopted a 
five-equation reduced model with a new isentropic cavitation model to simulate underwater 
explosion cavitation near the free surface. This new model assumed the equilibrium phase’s 
pressure, and obtained equations of cavitation fraction and pressure parameters. The key 
difference between these one-fluid cavitation models is that the equation of state of the cavitation 
domain is different when the fluid pressure is lower than the saturated pressure. 

The second method is the two-fluid cavitation model, including Le Metayer et al. (2004, 2005, 
2013), Saurel et al. (2008), and Pelanti and Shyue (2014). This type of cavitation model treats the 
liquid and vapor phase as different fluids in the system governing equations in the whole process. 
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In addition to dealing with the ordinary convection between multiphase fluids, phase transition is 
modeled by considering thermal and chemical relaxation effects due to mass and heat conversion 
between liquid and vapor phase, which lead to prompt the mixture to the new desired equilibrium 
state. Therefore, the new relaxation source terms in phase transition system control equation 
associated with the heat and mass transfer appear. Chiapolino et al. (2016, 2017) proposes a 
simple and fast solver to compute thermodynamic equilibrium between liquid and vapor phase 
instead of the common iterative procedures in the 4-equation model, and allows systematic CPU 
saving over 50% without the cost of accuracy. Zhang (2020) adapts five-equation two-phase flow 
model for liquid-vapor phase transition in cavitating flows by temperature and chemical potential 
relaxation with the monotonic mixture speed of sound. This model is based on the volume fraction 
of each phase, and it is unable to deal with other fluids except liquid and vapor phase of a 
phase-transition fluid. 

At present, one-fluid model is mainly used in underwater explosion cavitation (Daramizadeh et
al., 2015; Shukla et al., 2010; Yu et al., 2021). This model belongs to phenomenological theory 
and cannot describe the mechanism of underwater explosion cavitation from the view of objective
nature. Because it cannot realize the continuous and conservative tracking and capture of the flow
distribution of each phase in cavitation domain. In order to overcome these difficulties, two-fluid 
cavitation model proposed by Chiapolino et al. (2016, 2017) is adopted in this paper. With the
phase transition relaxation model here, the generation of cavitation during the propagation of
rarefaction wave in underwater explosion can be simulated to provide a more accurate
understanding on the cavitation bubble collapse. The pressure loading of cavitation collapse is 
important to the assessment of the destructive effects on the submarine structure. This paper is 
organized as follows. In Section 2, the 4-equation model with phase transition is introduced; In 
Section 3, the numerical method is provided to solve the system of equations; In Section 4,
underwater explosion cavitation is simulated and discussed; Finally, some conclusions are made 
from this study.

2. Phase transition model based on 4-equation in multiphase compressible flows

2.1. Governing equations

The governing equations for multiphase compressible flows without phase transition are 
(Chiapolino et al., 2017) 

( )

( ) ( )

( ) ( )( )

( )

0

0

0

0k
k

t

p
t
E

E p
t

Y Y
t

ρ ρ

ρ
ρ

ρ
ρ

ρ ρ

∂ +∇ ⋅ = ∂
∂ +∇ ⋅ ⊗ + = ∂


∂ +∇ ⋅ + = ∂

∂ +∇ ⋅ =
 ∂

u

u
u u I

u

u

  (2.1) 

where , , ,p Eρ u account for the mixture density, flow velocity vector, mixture pressure and total 

energy per unit mass, respectively. Yk is mass fraction of the k-th phase fluid. The parameter k 

here is specified as follows: k = 1 for the liquid phase, k = 2 for the gas phase corresponding to 

vapor of species 1, and k = 3, …, N for the other fluids without phase transition. 
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2.2. Equation of state 

The Noble-Abel Stiffened-Gas (NASG) equation of state is used to describe different phase 
flows (Le Metayer and Saurel, 2016). The main formulas for the NASG EOS read for a given 
phase k = 1, …, N are 
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Where e, υ = 1/ r, T, g, c account for the internal energy, the specific volume, the temperature, the 

Gibbs free energy (also known as chemical potential energy) and the sound speed of the
considered phase, respectively. The Gibbs free energy can be obtained by g = h-Ts, with h and s
being the enthalpy and entropy, respectively. The parameters v,, , , , ,k k k k k kp C q q bγ ∞ ′ are constant 

coefficients characteristic of the thermodynamic properties of the fluid. It is convenient to obtain
these parameters once the saturation curves are known (Raurel et al., 2016). The formulas of 
specific volume, internal energy, temperature and entropy can be obtained by simple
transformation of Eq. (2.2), and it is helpful for compiling the computational program.
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A formulation connecting the saturation pressure and temperature can be obtained by equating 
the liquid and vapor Gibbs free energy g1 = g2, leading to the following formula: 
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Where Cp,k denotes heat capacity at constant pressure to the k phase with Cp,k = γkCv,k. 
For liquid water and its vapor phases, the NASG parameters are given in Table 1 (Le Metayer 

and Saurel, 2016). These parameters are used in the computational examples of this paper 
associated with water phase transition. 

Coefficients Liquid water Water vapor air 
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( )J/kg/KpC  4285 1401 1007 
( )J/kg/KvC  3610 955 719 
γ  1.19 1.47 1.4 
( )PaP∞  7.028e8 0 0 

( )J/kgq  -1177788 2077616 0 
( )J/kg/Kq′  0 14317 0 
( )3m /kgb  6.61e-4 0 0 

( )/molW g  18 18 29 

Table 1. NASG coefficients for liquid water, water vapor, and air 

2.3. Phase transition model 

Under the conservative system (2.1), the equations of the mixture mass, mixture momentum and 

mixture energy are unaffected, while only mass fraction equation may be modified through phase 

transition relaxation process by Gibbs free energy relaxation terms (Chiapolino et al., 2017), 
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Where g1, g2 denote Gibbs free energy for liquid and vapor phases, respectively. ν represents 

relaxation parameter that controls the rate that thermodynamic equilibrium is reached, which will 

be zero for locations far from the interface between liquid and vapor phases. Such procedure is 

described as 

2      1
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                      (2.7) 

Where ε denotes a very small positive number (typically on the order of 10-8), so the inequality 

2 1Yε ε≤ ≤ −  represents the existence of both liquid and vapor phase in the mixture fluid element. 

At the liquid-vapor interface the relaxation parameter ν will be taken infinite in order to achieve 

equilibrium interface conditions with mass transfer instantly. Therefore, the system equations are 

solved using a simple fractional step approach that consists of the homogeneous hyperbolic 

system without mass and heat transfer, followed by the relaxation step through the solution of a 

simple system of algebraic equations for the equilibrium state variables. At each time step, the 

relaxation step equation corresponding to Eq. (2.6) can be expressed as 
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Where * *
1 2,Y Y  account for the two phases mass fraction at which thermodynamic equilibrium is 

reached, respectively. This equation describes the hyperbolic step solutions ( )1 2,Y Y  reach their 
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thermodynamic equilibrium values ( )* *
1 2,Y Y with a characteristic timeτ . Therefore, the solution 

of relaxation step ( )* *
1 2,Y Y  are regarded as the initial value of the new time step. 

During the phase transition process, the mixture specific volume 1/υ ρ= and internal energy 

e do not vary under the assumption of a single pressure and a single velocity in 4-equation model. 

The mass fractions of phases 3kY ≥  also remain constant, although the pressure and temperature 

vary and reach their equilibrium values ( )* *,p T . Therefore, the phase transition model will 

change to compute the equilibrium state ( )* *
1,2, , kp T Y =

 from the state ( ), , , , ke p T Yυ at every time 

step. Therefore, under the assumption of mechanical and thermal equilibrium, the mixture flow 

satisfies (Chiapolino et al., 2017; Zhang, 2020) 
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These formulas are well described in the literature (Chiapolino et al., 2017). They are also 

outlined in the section to keep this paper as self-contained as possible.  

There is an equivalence between the ideal gas mixture model that follows Dalton’s partial 

pressure law, and a gas phase with each constituent is assumed to occupy its own volume with 

assumption of temperature and pressure equilibrium, which leads to 
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where ˆ, , kR Wρ are the density of mixture gas, universal gas constant in molar units, and molar 

mass of species k, respectively.   

Under the assumption of mechanical and thermal equilibrium, the variables of R̂Tρ in Eq. (2.10) 

is constant. Therefore, the vapor partial pressure is directly proportional to the vapor molar 

fraction: 
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where partialp denotes the vapor partial pressure and p the mixture pressure. So that the expression 

satisfied at thermochemical equilibrium is 
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Using Eq. (2.9), the equilibrium state can be described as: 
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  Combining Eq. (2.4) and (2.13), there are four unknown variables ( )* * *
2, , ,satp T p Y  with four 

equations, which is vary suitable to use an iterative method such as Newton-Raphson method. The 

advancing formula for a single variable is 

 ( )
( )1

n
n n

n

f q
q q

f q+ = −
′

                            (2.14) 

where q denotes the unknows variable and ( )nf q′ partial derivative of the equation. 

For the sake of simplification, this paper assumes that they are all gas phases for 3k ≥ .In the 
case of other liquids appear in the phase 3k ≥ , it is necessary to delete the liquid molar fraction 
term in the formula (2.10) and (2.13). 

3. Numerical method 

  Following Pelanti and Shyue (2014), Chiapolino et al. (2016, 2017), and Zhang (2020), the 
system equations are solved using a simple fractional step method that consists of the 
homogeneous hyperbolic system solution step (Step 1) and follows by the relaxation step (Step 2) 
through the solution of a simple system of algebraic equations for the equilibrium state variables.  

The homogeneous hyperbolic system (Step 1) can be solved in conservative form using the 
common reconstruction-and-evolve strategy within a finite volume formulation (Akturk, 2005). 
The reconstruction is addressed with the MUSCL-Hancock method using van Lee’s slope limiter 
and the numerical fluxes are built by HLLC approximate Riemann solver (Toro, 1997). In this 
step, the choice of sound speed in the mixture is very important. The Wood speed is used earlier in 
multicomponent flow computation (Kapila et al., 2001; Murrone and Guillard, 2005; Tiwari et al., 
2013). The non-monotonic behavior of the mixture sound speed by the Wood sound speed with 
respect to the volume fraction has been point out. Therefore, several monotonic mixture sound 
speed formulas have been created. Allaire et al. (2002) provided a monotonic speed in 
five-equation model. A monotonic frozen speed of sound was established for a pressure 
non-equilibrium six-equation model by Saurel et al. (2009). After a large number of tests by the 
authors, the difference between these two kinds of speed is very small. 
  For the relaxation step (Step 2), the relaxation ordinary differential equations are solved 
indirectly in the limit of stiff (instantaneous) thermal and chemical relaxation, which enforces the 
mechanical, thermal and chemical equilibrium conditions in the process of reaching the 
equilibrium state (Zhang, 2020). The final result is obtained by solving the system of algebraic 
equations. In general, these equations are non-linear and need to be solved numerically, for 
example by Newton-Raphson iterative method. 

4. Results and discussion 
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4.1. Convergence test and verification 

To verify the convergence properties of the phase transition model, a shock wave tube case is 
tested with different number of cells. This problem has been simulated by Chiapolino et al. (2017) 
using 100 cells. A two-phase mixture with initial mass fractions set to Y1 = 0.1 (liquid), Y2 = 0.2 
(vapor) and Y3 = 0.7 (air) is considered throughout the whole shock tube with an initial pressure 
ratio of 2 in 1 m length tube. The initial discontinuity is located at x = 0.5 m. The initial condition 
is 
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The parameters of NASG EOS for the liquid and vapor water can be found in Table 1. The fluid 
domain is discretized by 100, 200, and 400 cells, respectively. Fig. 1 displays the density, pressure, 
velocity, temperature, liquid and vapor mass fraction distribution at time t = 1 ms. The dashed 
lines represent the initial conditions. The short-dashed lines represent the solutions without phase 
transition (no P-T), and the thick lines represent the present relaxation algorithm (P-T) with 
different cells. We can notice from the plot that there is a significant difference in the calculated 
results with or without phase transition. Due to the consideration of the phase transition in water, 
the transition from liquid phase to vapor phase occurs near the right shock wave front, resulting in 
an increase in the mass fraction of the gas phase and a decrease in the mass fraction of the liquid 
phase. As a result of the phase transition, the shock wave speed and temperature on the right side 
decreased. 

The results with 100 cells in Fig. 1 show consistency with the simulation by Chiapolino (2017) 
represented by the symbol of upper triangle. We can find that the calculation accuracy increases 
gradually with the increase of the number of cells. 
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Fig. 1. Numerical results for shock tube test with a two-phase mixture made of liquid water, vapor water and air. 
The dashed lines represent the initial conditions. The short-dashed lines represent the solutions without phase 
transition (no P-T), and the thick lines represent the phase relaxation algorithm (P-T) with different cells. 

4.2. Compression effect of underwater explosion shock wave on cavitation 

The interaction between the cavitation bubble and shock wave is very complicated in 
underwater explosion, such as the explosion near the propeller and the protection of 
micro-cavitation against shock wave. In order to explore the interaction mechanism between 
shock wave and cavitation, we analyze two kinds of problems involving shock wave impact on 
cavitation. The first is the direct impact of underwater explosion shock wave on a single cavitation 
bubble, which can be easily extend to many cavitation bubbles with different arrangement. The 
second is that shock wave impacts on a very small amount of cavitation initially contained in 
water, which can be understood as the propagation of the underwater explosion shock wave in free 
field. The former cavitation has an initial shape (a circle in 2D, or a sphere in 3D), while the latter 
has no initial shape and only has an initial uniformly distributed vapor phase mass fraction in the 
whole flow field. The second case has never been researched before as author’s knowledge, and it 
is valuable to understand the propagation mechanism of underwater shock wave.  

4.2.1. Two-dimensional vapor bubble compression and collapse 

This example has been considered by Shukla et al. (2010), Johnsen and Colonius. (2006), 
Pelanti & Shyue. (2014), and Yu et al. (2020). We simulate a similar example with a stationary 
vapor bubble of radius 0.2 m situated at the location of (0.8, 0.6) m in a liquid-filled chamber as 

shown in Fig. 2. The rectangular computational domain for this problem is W = [0, 1.8]×[0, 1.5] m2, 

which is discretized by 900×600 uniform grids. The initial condition is 

 
Fig. 2. Schematic of computation with initial cavity and compressible wave from the left 

Shock wave 
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(4.2) 

The initial temperatures for the wave front, wave back and cavitation are set to 293, 320, and 
420 K, respectively. The electronic excitation, ionization, and dissociation caused by high pressure 
shock wave are not considered in this paper. Numerical results with the phase transition are shown 
in Fig. 3. Here we provide the contour plots for the mixture density, the vapor mass fraction, 

temperature and mixture pressure (from left to right) at four different times t = 47.6, 264.6, 350.3, 

and 406.2 ms (from top to bottom). Due to the left compression, the initial circular shape of the 

vapor bubble is deformed to a water-jet shape, which can be found from the vapor mass fraction 

and mixture pressure contour plots at 406.2 ms. During the compression of the spherical cavitation 

bubble, the temperature inside the bubble rises from 420 K at the beginning to more than 700 K 
and the temperature inside the bubble is non-uniformly distributed as shown in Fig. 3. Noticed that 
no spurious pressure oscillations at the interfaces are observed at different stages of the cavitating 
bubble compression, which shows that the ability of wave propagation capture and the phase 
transition treatment in the solver is effective. 

 

 

 

 
             （a）              （b）                (c)                (d) 
Fig. 3. Numerical results for the vapor-bubble compression test with phase transition model. The contour plots for 
(a) the mixture density; (b) vapor mass fraction; (c) temperature; (d) pressure at four different times t = 47.6, 
264.6, 350.3, and 406.2 ms. 

4.2.2. Compression of initial vapor phase in free water by shock wave 

Before assessing on the compression effect in water by shock wave, we need to determine the 

vapor phase mass fraction in water. The initial vapor phase mass fraction in ordinary water is not 

clearly recommended, and a weak volume fraction of vapor (10-3) is proposed by Saurel et al. 
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(2008). Considering that the density of vapor phase is less than 1 kg/m3 at atmospheric pressure, 

the mass fraction corresponding to the above volume fraction of the vapor phase is less than 10-5. 

In this case, we first analyze the mixture density of water at the temperature of 275, 285, 295, and 

305 K under atmospheric pressure (1 atm). The curve of the relationship between the mixture 

density and vapor phase mass fraction at different temperatures in ordinary water is shown in Fig. 

4. The liquid, vapor and air phase in water are all in saturated state in Fig. 4. We can find that the 

mixture density of water decreases with the increase of vapor phase mass fraction. As is known 

that the density of water is about 1000 kg/m3 at atmospheric pressure. Noticed that the mixture 

density of water in saturated state is much less than 1000 kg/m3 when the vapor phase mass 

fraction is greater than 10-6. Therefore, we recommend that the vapor phase mass fraction in water 

should be set less than 10-6 in numerical computation. 
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Fig. 4. The relationship between the mixture density and vapor phase mass fraction at different temperatures in 
free water 

In order to research the compression of initial vapor phase by shock wave in underwater free 

field, 1D model is used. In this section, the tube is 1m long, and the initial discontinuity is located 

at 0.5 m. The left fluid is high-pressure gas and the right is water. The left boundary is set 

symmetric condition and the right boundary is set transmission condition. This case is used to 

simulate the shock wave impact on the water with initial trace vacuoles, while the vapor phase 

mass fraction in water is in the range of 10-9~10-6. The initial conditions with vapor phase mass 

fraction 10-7 can be shown as follow 

( )
( )
( )

8 3

1 2 3 5 7 6

1380.4,0,4.29 10 ,0,10 ,0.999           0.5
, , , , ,

1049.4,0,10 ,0.999,10 ,4.58 10      0.5

x
u p Y Y Y

x
ρ

−

− −

 × <= 
× ≥

          

 

(4.3) 

The initial temperatures for left explosive gas and right water are set to 1080 and 295 K, 

respectively, while the gas is overheated and the water is saturated. The fluid domain is discretized 

by 400 cells. Fig. 5 displays the density, pressure, velocity, temperature, liquid and vapor mass 

fraction distribution under the condition of different vapor phase mass fraction mentioned above at 

time t = 0.2 ms. The case of both explosive gas and water without vapor phase are also added as a 

comparison (as depicted by “no vap” in the figure). 
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Fig. 5. Numerical results for shock wave compression on initial cavitation under different vapor mass fraction in 
water at t = 0.2 ms. (The “no vap” case in the last picture is zero everywhere and cannot be displayed in 
logarithmic coordinate) 

Fig. 5 shows that the explosive gas on the left compresses the right water, which causes the 

shock wave to propagate in the water. During the propagation of shock wave in water, a relatively 

stable domain will be formed behind the wave front. Under the impact of shock wave, the 

temperature of water increases from 295 to 312.6 K, and the vapor phase mass fraction decreases 

by about 3 orders of magnitude on average shown in Fig. 5. 

  Because a very small number of cavitation bubbles in water cannot be geometrically modeled 

separately, it is described based on statistical averages. It can be observed that the temperature 

increases, and the vapor mass fraction in water decreases after the compression of shock wave. By 

comparing the results under different vapor mass fraction in Fig. 5, it is suggested that the vapor 

mass fraction in numerical computation should be set to less than 10-7. 

4.3. The bulk cavitation near free surface in underwater explosion 

A two-dimensional axisymmetric model is used to simulate the cavitation phenomenon in 
underwater explosion near free surface. The rectangular computational domain for this problem is 
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W =[0, 1.5]×[0, 2] m2, which is discretized by 600×800 uniform grids as shown in Fig. 6. The 

spherical explosive gas has a radius of R0 = 0.03 m and is placed at L0 = 0.2 m under water surface. 
The thickness of air layer is 0.3 m, and the water depth is 1.7 m. The left boundary (y-axis) of the 
computational domain is set to the symmetry condition, and the other three boundaries are set to 
the transmission condition. The initial condition is 
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Fig. 6. Schematic of underwater explosion near free surface 
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(4.5) 

The initial temperatures for air, water and explosive gas are set to 295, 295, and 1080 K, 

respectively, while the air and explosive gas are overheated and the water is saturated. Numerical 

results are provided by the contours of the density, pressure, vapor volume fraction, and cavitation 

domain at four different times t = 0.20, 0.31, 0.64, and 1.08 ms as shown in Fig. 7. The coordinate 

range of all the observation windows in Fig. 7 is [-1, 1]×[0.5, 2] m2. Here, we define the element 

in which the vapor volume fraction in water is greater than 0.0005 (f2 > 0.0005) as the cavitation 

domain, excluding the element above free surface and near the explosion bubble interface that 

meet the condition. Since there is no exact criterion for judging the vapor phase content in the 

cavitation domain visible to the naked eye, the above definition is only a reference value and still 

needs to be further studied based on experimental results. Fig. 7 shows the typical moment of 

cavitation evolvement after the propagation of the underwater explosion shock wave impacts on 

the water surface. As the shock wave reaches the free surface, rarefaction wave is reflected and 

results in a sharp drop in pressure in the fluid. The saturated temperature corresponding to the 

falling liquid pressure decreases a lot, but the actual temperature in the area does not drop much, 

which induces the domain to be overheated. Therefore, it can be observed that the vapor volume 

fraction increases greatly and a low-pressure area appears as shown at 0.2 ms in Fig. 7. When the 

explosion bubble moves upward, the cavitation domain on the y-axis is compressed and begins to 
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deform. The cavitation domain begins to expand outward to form a vortex ring (from the 

two-dimensional axisymmetric model) at 0.31, 0.64 and 1.08 ms.  

 

 

 

 
Density             Pressure       Vapor volume fraction   Cavitation domain      

Fig. 7. Numerical results for underwater explosion cavitation near free surface with phase transition model. The 

contour plots for the density, pressure, vapor volume fraction, and cavitation domain at times t = 0.20, 0.31, 0.64, 

and 1.08 ms. The black dotted lines in the pressure contour plots represent the general locations of explosion 

bubble interface, and the red region in the cavitation domain contour plots represent the locations of cavitation in 

water. 

We set up several pressure measuring points on the axisymmetric axis (y-axis) at different 
vertical distance from the water surface. Fig. 8 shows the pressure time history curves at these 
points. The shock wave pressure is reduced sharply during the period of cavitation and the 
collapsed pressure is very obvious. It can be observed that when the distance between the 
measured point and the free surface is closer, the peak value of collapsed pressure is smaller. The 
peak values of cavitation collapsed pressure are 5.13, 5.84, 5.96, and 7.58 MPa, respectively. 
Meanwhile, it can be seen that the cavitation collapsed pressure at the closet measured point from 
the free surface rises later than others as shown in Fig. 8. This phenomenon can be explained from 
the evolvement of pressure contour plots in Fig. 7. The cavitation domain on the y-axis begins to 
be compressed by the high-pressure region directly below at 0.20 ms, and the cavitation begins to 
collapse gradually to produce water-hammer pressure. The high-pressure region comes from two 
aspects. Firstly, after the shock wave is reflected into a rarefaction wave on the water surface, the 
rarefaction wave propagates downward and then reflects into a compression wave when it reaches 
the explosion bubble interface. Secondly, during the expansion of the explosion bubble, it will 
have a certain compression effect on the upper fluid. Although the measuring point closest to the 
free surface is the earliest to produce cavitation due to the reflected rarefaction wave, it collapses 
at the latest.  
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Fig. 8. Pressure time-history curves for different vertical distance from the initial water surface on the 

axisymmetric axis (left) and schematic diagram of measuring point location (right). 

Fig. 9 shows the pressure time history curves of different horizontal distance from the center of 

explosive gas at a depth of 0.05 m. When the cavitation domain moves outward as shown in Fig. 7, 

the collapsed pressure gradually propagate to these horizontal measuring points. The peak values 

of these five points are 4.95, 2.88, 2.21, 1.85, and 2.60 MPa, respectively from the horizontal 

distance of 0.063, 0.125, 0.188, 0.250, and 0.313 m as shown in the right schematic diagram of 

Fig. 9. It can be seen that the effective loading time of cavitation collapsed pressure is much 

longer than that of the shock wave at the same measuring point. 
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Fig. 9. Pressure time-history curves for different horizontal distance from explosive gas at a depth of 0.05 m (left) 
and schematic diagram of measuring point location (right). 

4.4. The local cavitation near solid wall in underwater explosion 

The local cavitation can be induced by the movement of structures and effect of the explosion 

bubble interface. In this section, the interaction between of the structure and flow is ignored in the 

local cavitation, and the structure is replaced by the solid wall. According to our experience, it is 

difficult to produce local cavitation in three-dimensional near-wall underwater explosion if we 

only rely on the effect of the explosion bubble interface. Because the shock wave attenuates 

rapidly in three-dimensional space, the reflective rarefaction wave from the explosion bubble 
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interface is very weak and difficult to reach the condition of cavitation. Next, we will analyze the 

local cavitation effect in one-dimensional and two-dimensional models, respectively.   

4.4.1. One-dimensional local cavitation model 

The first case is the one-dimensional underwater explosion as shown in Fig. 10. The length 
of explosive gas is 0.2 m with a distance of 0.5 m from the solid wall on the left. The computation 
domain for this problem is 2 m and discretized by 400 cells. The left and right boundary are fixed 
and transmitted conditions, respectively. The initial condition is 

2
0.5

x (m)

0.2

 
Fig. 10. Schematic of one-dimensional local cavitation model near the solid wall 
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  Fig. 11 shows the time history of pressure measuring points at different locations. It can be 
observed that the initial shock wave is reflected by solid wall, and the rarefaction wave will appear 
when the former reflective wave reaches explosion bubble interface. Due to the slow attenuation 
of shock wave in one-dimensional model and the reflection effect of solid wall, the peak pressure 
of local cavitation collapse is very large, which is almost equal to the peak pressure of shock wave 
at same measuring point in free field condition without wall reflection effect. 
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Fig. 11. Pressure time-history curves of different measuring points on x-axis 

4.4.2. Two-dimensional local cavitation model 

We now perform a 2D example as shown in Pelanti and Shyue (2019), and make some 
comparison and discussion under the same initial conditions between the two models. A 
cylindrical underwater explosion (UNDEX) is simulated near a rigid wall as shown in Fig. 12. An 
initial gas is surrounded by liquid water and located near an upper rigid wall. The computational 
domain is W = [-0.6, 0.6] × [-0.7, 0] m2, which is discretized by 480 × 280 uniform grids. The gas 
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bubble is located at (0, -0.22) m with a radius of 0.05 m. An ideal gas law is used for the explosion 
gas with γ = 2.  
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Fig. 12. Schematic of underwater explosion near a rigid wall. 

The initial condition is  
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(4.7) 

The initial temperature of water and explosion gas is set as 295 and 827 K. Fig. 13 shows the 
contours of the density, pressure, vapor volume fraction, and cavitation domain at times t = 0.2, 
0.325, 0.406, and 0.5 ms. The identification criterion of the cavitation domain is the same as that 
in Fig. 7, and the coordinate range of all the observation windows in Fig. 13 is [-0.6, 0.6] × [-0.7, 
0] m2. The black dotted lines indicate the general location of explosion bubble interface, and the 
red regions represent cavitation domain in water. It can be observed that the shock waves reflected 
from the upper rigid wall have reached the explosion bubble interface, and a small number of 
rarefaction waves have been reflected into the water at t = 0.2 ms. Meanwhile, the vapor volume 
fraction in the liquid water near the upper interface of the explosion bubble increases significantly. 
With the continuous reflection of the shock wave on the upper interface of the explosion bubble, 
the rarefaction wave in the near water fluid increases gradually, and the rarefaction wave region 
expands gradually. However, the rarefaction wave reflected directly for the first time are still not 
enough to induce cavitation occurrence in water. The cavitation did not occur until the rarefaction 
wave is reflected again on the wall as shown at t = 0.325 ms in Fig. 13. At t = 0.406 ms, the 
rarefaction wave reflected from the rigid wall weakens gradually, and its region expands to the left 
and right sides. At the same time, the rarefaction wave reaches the upper interface of explosion 
bubble and reflects into a compression wave, which has a certain compression effect on the 
cavitation domain. Therefore, it can be observed that the cavitation domain area becomes smaller 
and thinner. At t = 0.5 ms, the cavitation in the middle region almost completely collapses as 
shown in Fig. 13. 
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Density                 Pressure          vapor volume fraction       Cavitation domain 

Fig. 13. Numerical results for underwater explosion cavitation near a rigid wall surface with phase transition 

model. Pseudo-color plots of the pressure, vapor volume fraction, and cavitation domain (from left to right) at four 

different times t = 0.200, 0.325, 0.406, and 0.500 ms (from top to bottom). The black dotted lines indicate the 

general location of explosion bubble interface, and the red regions represent cavitation domain in water. 

Fig. 14 shows the numerical pressure time-history curves for three points on the y-axis with 

and without phase transition. It can be observed that the measuring point (H = 0 cm) on the rigid 

wall is the first to produce cavitation at t = 0.261 ms, which is consistent with the above 

conclusion that the direct rarefaction wave reflected directly for the first time cannot induce 

cavitation domain occurrence and needs to be further reflected and enhanced on the rigid wall. 

The measuring point (H = 5 cm) farthest from the rigid wall begins to produce cavitation at t = 

0.273 ms, but its cavitation is the first to collapse. As mentioned before, the reflected compression 

wave from the explosion bubble interface is the first to arrive at the measuring point (H = 5 cm), 

and the cavitation is compressed and collapses. Similar to the underwater explosion near a free 

surface, the phase transition has almost no effect on the early shock wave stage, but the effect on 

the cavitation stage is obvious and cannot be ignored. Fig. 15 shows the numerical pressure 

time-history curves for three points at a depth of 0.05 m with and without phase transition. It can 

be observed that the phase transition has a certain influence on these points in the cavitation 

collapse stage, but has no effect on the early shock wave stage.  
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Fig. 14. Numerical results of the pressure time-history curves for different vertical distance from the rigid wall on 

the axisymmetric axis (left) and the schematic diagram of measuring point location (right). 
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Fig. 15. Numerical results of the pressure time-history curves for different horizontal distance from explosive gas 
at a depth of 5cm (left) and the schematic diagram of measuring point location (right). 

Fig. 16 shows comparison between the present and Pelanti model on the time history of the 
pressure, vapor volume and mass fraction with/without phase transition on the point (0, 0) m at the 
center of the rigid wall. In both models, phase transition has no effect on the early shock wave. It 
can be observed from the pressure curves that the shock wave speed in present model is higher 
than that of Pelanti model, which is due to the different method of the mixture sound speed. The 
phase transition only affects the internal pressure of the cavitation domain, but has no effect on the 
collapsed pressure in Pelanti model. The phase transition effect in the present model not only 
increase the pressure in cavitation, but also causes the cavitation to collapse 0.02 ms in advance, 
but has little effect on the peak value and trend of the collapsed pressure. It can be observed that 
the peak pressure of cavitation collapse obtained by the present model is 73.47 MPa, which is 
59.2% higher than the 46.15 MPa of the Pelanti model. However, the maximum mass fraction and 
volume fraction of the vapor phase obtained by the present model are only about 10% of that of 
the Pelanti’s model under the condition of phase transition. The key difference between the two 
models lies in the equation of state for the liquid and vapor phases and the treatment of mass and 
transfer in the mixture fluids. Both numerical models need to be verified by experimental results 
in future. 
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Fig. 16. Comparison of the present and Pelanti’s model on the time history of the pressure, vapor volume and mass 

fraction with/without phase transition on the point (0, 0) m at the center of the rigid wall. 

4. Conclusions 

In this study, the 4-equation model with phase transition relaxation method has been introduced. 
The system equations are solved by a simple fractional step approach that contains hyperbolic and 
relaxation step. A MUSCL-Hancock method with HLLC approximate Riemann solver is applied 
to discretize the homogenous hyperbolic equations in hyperbolic step, and the nonlinear system is 
solved by Newton iterative method in the following relaxation step. The following conclusions 
can be drawn from this study: 

(1) It can be observed that the cavitation model based on the theory of phase transition in 
thermodynamics shows great potential in underwater explosion. Cavitation is not simply 
caused by the fact that the pressure is lower than the given saturated pressure, but is closely 
related to several thermodynamic state quantities of the flow field (such as pressure, 
temperature, internal energy, etc.). Vaporization and evaporation between liquid and gas 
phases may occur simultaneously in underwater explosion. The phase transition model can 
provide a new tool for exploring and revealing the mechanism and characteristic of 
cavitation in underwater explosion. 

(2) The initial vapor phase mass fraction contained in free water is quantitatively analyzed by 
the phase transition model, and the suggested value (<10-7) is obtained in the field of 
numerical simulation. If the cavitation is researched from the viewpoint of phase transition, 
the initial vapor phase mass fraction value is important and meaningful.  

(3) Considering the bulk cavitation near water surface in underwater explosion, the cavitation 
domain will evolve into a vortex ring until it collapses. It can be observed that when the 
distance between the measured point and the free surface is closer, the peak value of 
collapsed pressure is smaller. The cavitation collapsed pressure at the closet measured point 
on y-axis rises later than others, which is the result of the joint action of upward movement 
of explosion bubble and the compression wave reflected from the explosion bubble by the 
rarefaction wave. 

(4) The collapsed pressure cannot be ignored relative to the shock wave load in both of the 
bulk and local cavitation. The influence of cavitation effect should be fully considered in 
the process of impact damage assessment of underwater structures, which will be finished 
in future research.  
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