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Abstract

Accurate visual inspection of underwater infrastructure, such as bridge piers and retaining
walls, is often hindered by severe image degradation due to light attenuation and scattering.
This paper introduces an unsupervised enhancement framework tailored for restoring
underwater images containing structural cracks. The method combines a physical modeling
of underwater light transmission with a deep image translation architecture that operates
without requiring paired training samples. To address the loss of fine structural details,
this paper incorporates a multi-scale feature integration module and a region-focused
discriminator that jointly guide the enhancement process. Moreover, a physics-guided
loss formulation is designed to promote optical consistency and texture fidelity during
training. The proposed approach is validated on a real-world dataset collected from
submerged structures under varying turbidity and illumination levels. Both objective
evaluations and visual results show substantial improvements over baseline models, with
better preservation of crack boundaries and overall visual quality. This work provides a
robust solution for preprocessing underwater imagery in structural inspection tasks.

Keywords: underwater crack inspection; image restoration; physics-guided learning;
multi-scale features; unsupervised deep networks

1. Introduction
Underwater infrastructure inspection plays a vital role in ensuring the safety and

longevity of marine and civil engineering structures, such as bridge piers, offshore plat-
forms, and dams [1]. Cracks are one of the most common and critical forms of underwater
structural damage, as they may indicate material degradation, corrosion, or structural
failure [2]. However, due to the challenging underwater environment, characterized by
light attenuation, scattering, and color distortion, captured images often suffer from low
contrast, blurring, and severe color degradation [3–6]. These issues not only hinder visual
interpretation but also affect the accuracy of automated defect detection systems [7–9].

Conventional image enhancement methods, such as histogram equalization [10] or
Retinex-based approaches [11–13], often fail to adapt to the complex and variable underwa-
ter conditions. Recent advances in deep learning have enabled data-driven enhancement
techniques [14], including convolutional neural networks (CNNs) and generative adversar-
ial networks (GANs), to improve underwater image quality. In recent years, underwater
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image enhancement methods based on CNNs have shown significant advantages. Unlike
traditional imaging models that rely on complex parameter estimation, end-to-end training
frameworks represented by UWCNN [15], UD Net [16], and UIR Net [17] achieve automatic
extraction of multi-level representations through feature mapping learning from reference
images. To improve model performance, scholars have proposed various innovative ar-
chitectures: Lyu and team [18] designed a lightweight network, combined residual group
and channel attention mechanism to complete feature extraction, and optimized brightness
in YUV color space to enhance contrast; Wu et al. [19] proposed a two-stage enhancement
framework, which decomposes an image into high and low frequency components through
discrete cosine transform, and directly enhances high-frequency information using CNN, as
well as a low-frequency color correction strategy based on joint component map estimation.
The UIEC2-Net developed by Wang et al. [20] innovatively integrates RGB/HSV dual
color gamut features, and optimizes visual quality through pixel level enhancement, global
brightness saturation adjustment, and attention fusion modules. The perception-driven
dehazing network constructed by Li’s research group [21] adopts a dual network architec-
ture, in which the refined network optimized for multi-objective loss effectively improves
the color restoration effect. Despite significant progress, existing CNN methods still have
clear limitations. Due to the difficulty in obtaining accurately aligned degraded clear image
pairs in underwater environments, the strong dependence of the model on high-quality
paired data severely restricts its generalization ability in practical scenarios.

The underwater image enhancement technology based on adversarial generative
networks breaks through the dependence on paired data through unsupervised domain
mapping learning. The GAN framework generates high-quality enhancement results with-
out the need for supervised signals by establishing an adversarial mapping relationship
between the degraded image domain and the clear image domain [22]. On this basis,
a series of innovative architectures have emerged successively: Jiang et al. [23] constructed
a perception-driven enhancement network that integrates natural image prior constraints
and a deep neural network quality ranking mechanism to jointly optimize perception indi-
cators such as brightness and contrast. The Liu team [24] proposed a multi-expert learning
model that implements independent feature extraction for the differential attenuation char-
acteristics of RGB channels. Through cross-channel fusion, the decoder is guided to achieve
collaborative optimization of color correction and detail preservation. It is worth noting that
the UW-GAN designed by Hambarde et al. [25] adopts a cascaded deep network architec-
ture and embeds spatial-channel dual attention modules in single image depth estimation,
significantly improving depth prediction accuracy and supporting the enhancement ef-
fect. The current research also shows a trend of multidimensional technology integration:
the multi-scale dense GAN developed by Guo’s research group [26] integrates residual
multi-scale dense blocks and spectral normalization technology, effectively enhancing the
color space conversion ability. The cross domain adversarial mechanism innovated by
Li et al. [27] improve image contrast and color richness through a dual-channel discrimina-
tor and chromaticity distance loss function. The Sea-Pix-GAN proposed by Chaurasia [28]
creatively integrates three modules: color correction, contrast enhancement, and style
transfer, achieving significant breakthroughs in visual presentation effects.

Although CNNs have shown advantages in underwater image enhancement, their
practical applications are still limited by data bottlenecks. CNN models typically rely on
large-scale paired datasets for training [29]; however, the scarcity of high-quality reference
images in underwater environments leads to high data acquisition costs, severely limiting
the deployment efficiency of the model. In this context, GANs stand out as unsupervised
learning frameworks, achieving breakthroughs in enhanced performance through image
domain transfer modeling [30] without the need for paired data. However, it should be
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noted that existing GAN-based methods mostly focus on global chromaticity mapping and
contrast optimization, and have insufficient explicit modeling capabilities for fine-grained
structures, such as cracks. The technical challenges brought by the complex underwater
imaging environment mainly include the following: (1) blurred crack boundaries caused by
light scattering effects and suspended particle interference, and significantly reduced target
background contrast; (2) The variation in imaging depth and shooting angle causes uneven
illumination and local contrast fluctuations, resulting in abnormal visual characteristics
of cracks; (3) Improper enhancement operations can easily cause boundary distortion or
over enhancement artifacts, which in turn increases the risk of crack false detection. These
characteristics make it difficult for traditional global enhancement strategies to effectively
extract discriminative crack feature representations.

Conventional enhancement algorithms, such as histogram equalization and Retinex-
based models, typically rely on empirical formulations or parameter adjustments, which
this paper classifies as conflictive algorithms due to their limited robustness across variable
underwater imaging conditions. In contrast, CNN-based algorithms leverage data-driven
learning to automatically extract features and perform enhancement, achieving superior
results but requiring extensive paired training datasets that are often unavailable in under-
water environments. To address the limitations of both approaches, this study proposes
a physics-aware deep learning model that integrates underwater optical theory into a
CNN-based architecture, enabling robust and unsupervised enhancement of underwater
structural crack images. The approach is built upon the UNIT framework and augmented
with a physics-aware architecture that incorporates an underwater light propagation model.
A multi-scale feature preservation module is introduced to retain the fine-scale texture of
cracks, and a local PatchGAN discriminator is used to enhance structural realism. Addi-
tionally, a composite loss function with physical perception constraints ensures that the
enhanced images are both visually appealing and physically consistent with underwater
imaging principles.

By leveraging both domain knowledge and deep learning capabilities, the proposed
method achieves high-quality enhancement of underwater crack images without the need
for paired datasets. This work aims to provide a robust and interpretable solution for
underwater inspection applications, especially in scenarios where structural integrity
assessments depend on the accurate restoration of degraded visual information.

2. Methods
This study proposes an unsupervised image enhancement method based on physical

perception, which combines underwater light propagation theory and UNIT network
structure to achieve realistic restoration and detail enhancement of underwater crack
images. This mainly includes modules, such as underwater light propagation modeling,
improved UNIT structure, multi-scale feature preservation module, and optical consistency
loss function design.

2.1. Overview of the Overall Framework

This method takes unlabeled real underwater crack images as input and introduces
image degradation information based on physical models to guide the UNIT network to
learn unsupervised domain transfer and enhancement of underwater images. This frame-
work integrates an image translation network and a physical perception module, providing
physical consistency constraints while maintaining the network’s adaptive enhancement
capability, further improving image quality and structural fidelity. After completing net-
work training, low-quality underwater images can be converted into enhanced images with
high contrast, high-color reproduction, and clear crack details.
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The proposed enhancement pipeline is depicted in Figure 1. The raw underwater im-
age J is first processed via a physically-inspired light propagation module, which estimates
degradation factors like background light Bc and per-channel attenuation tc. The result is
passed to a multi-scale feature extraction module with frequency-aware attention, which
guides the decoder to recover high-resolution details. Meanwhile, a region-discriminator
provides fine-grained supervision by focusing on texture realism and crack edge sharp-
ness. The final restored image exhibits both global visibility and structural integrity of
crack features.

Figure 1. Diagram of the unsupervised framework for underwater structural crack image restoration.

2.2. Underwater Light Propagation Model

To simulate the degradation process of underwater images in reality, this paper in-
troduces the light propagation theory based on the Jaffe–McGlamery model [31,32]. The
degradation of underwater images mainly consists of three parts: absorption, scattering (as
shown in Figure 2), and backward reflection of light, especially in the red and green light
bands where degradation is most severe. In Equation (1), the observed underwater image
Ic(x) in channel c ∈ {R, G, B} can be expressed as:

Ic(x) = Jc(x)× tc(x) + Bc × (1 − tc(x)) (1)

where, Jc(x) is the scene radiance, tc(x) = e−βc×d(x) is the transmission map that depends
on the attenuation coefficient t, βc and the scene depth d(x), and Bc is the global background
light in channel c. By modeling the three channels of RGB separately, this study constructed
an optical consistency loss term for training constraints, guiding the process of image
enhancement to minimize physical deviations as much as possible.

To estimate the underwater physical parameters critical for image enhancement, this
paper employs a light propagation model based on the Jaffe–McGlamery formulation.
The light absorption and scattering coefficients are estimated based on environmental
conditions, such as water turbidity and depth, while the background light intensity is
determined using a global estimation technique. This paper quantitatively evaluated the
accuracy of our parameter estimation method by comparing the estimated values with
ground truth measurements obtained through controlled underwater experiments. The
results indicate that the estimation process achieves a high degree of accuracy, with mean
absolute errors for light attenuation coefficients between 5 and 8%, an RMSE of 0.02 for
background light intensity, and a correlation coefficient of 0.92 for depth estimation.
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Figure 2. Schematic illustration of underwater light propagation. The diagram shows the main
components affecting image formation: direct transmission from the object to the camera, backscatter
from suspended particles, and forward scatter along the line of sight. The ambient light source and
suspended particle distribution are also illustrated.

2.3. Improved UNIT Structure

The proposed method builds upon the foundational UNIT architecture, as shown
in Figure 3, which integrates Variational Autoencoders (VAEs) and GANs under the as-
sumption of a shared latent space between source and target domains. While UNIT is
effective for general unsupervised domain translation tasks, it is not specifically tailored to
the challenges of underwater imaging, particularly when preserving high-frequency crack
features under severe degradation. To this end, this paper proposes a physics-guided and
detail-aware variant of UNIT with three significant architectural improvements:

X Y

EX EY

GX GY

Z

Figure 3. UNIT basic architecture.

2.3.1. Shared Encoder with Physically-Constrained Latent Representation

The encoder network, denoted as EX for domain X and EY for domain Y, is designed
to extract domain-invariant structural representations while embedding domain-specific
degradations into the latent space Z (as shown in Figure 1). Unlike the original UNIT, this
paper incorporates a physics-guided regularization term into the encoder’s objective, enforc-
ing consistency with underwater light attenuation models (based on the Jaffe–McGlamery
formulation). This promotes representations that are not only compact but also physically
plausible under varying scattering and absorption conditions. (1) Weight-sharing strategy:
The last few convolutional layers of the encoders are shared across domains to encour-
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age learning of common geometric structures, such as cracks and edges. (2) Auxiliary
depth-light maps: The encoder optionally integrates side-channel depth priors or turbidity
estimations to modulate feature extraction via adaptive normalization layers.

2.3.2. Decoder with Multi-Scale Feature Fusion and Skip Connections

The decoder networks DX and DY are responsible for reconstructing enhanced images
from the latent representation Z (as shown in Figure 1). To recover fine crack-level details
and avoid the common problem of oversmoothing, this paper embeds a Multi-Scale Fea-
ture Enhancement Module (MSFEM) into the decoder. This module collects hierarchical
feature maps from early and middle layers and aggregates them via channel attention and
upsampling operations. (1) Skip connections: Inspired by U-Net, lateral connections are
established between corresponding encoder and decoder layers, facilitating the preserva-
tion of spatial localization and edge sharpness. (2) MSFEM block: Each decoding stage
includes an MSFEM that combines global contextual information and local details. This is
crucial for reconstructing high-frequency crack patterns that are easily lost in underwater
scenes. Mathematically, let Fl denote the feature map at level l. The fused output Ff used is
obtained by:

Ff used = σ(Concat(Up(Fl−1), Fl , Down(Fl−1)))⊗ Attention(Fl) (2)

where ⊗ denotes element-wise multiplication and Attention() is a learnable channel-
weighting mechanism.

2.3.3. Local-Region Discriminator Based on PatchGAN

Standard discriminators often evaluate the entire image globally, which may fail to
emphasize small yet critical structural features like cracks. This paper adopts a PatchGAN-
based local discriminator Dpatch that focuses on N × N patches (typically 70 × 70),
treating each patch as an independent classification task (real/fake). This improves the
model’s ability to preserve texture consistency and edge sharpness in enhanced images.
(1) Fine-grained feedback: The discriminator provides more granular feedback, penalizing
synthetic textures or blurred transitions introduced during enhancement. (2) Adversarial
loss formulation: This paper uses a least-squares GAN loss to stabilize training and mitigate
gradient vanishing problems:

Ladv = Ex

[
(D(x)− 1)2

]
+ Ez

[
D(G(z))2

]
(3)

2.4. Design of Optical Consistency Loss Function

In order to effectively integrate underwater optical physics models with image en-
hancement networks, this paper designs a composite loss function containing multiple
optical constraints, which is expressed as follows:

Ltotal = λ1 × Lrecon + λ2 × Ladv + λ3 × Lphy + λ4 × Lssim + λ5 × Lgrad (4)

where: Lrecon: Reconstruction loss, measuring the consistency between input and output
images in pixel space; Ladv: Adversarial loss, guiding the network to generate realistic
images; Lphy: Optical consistency loss, utilizing the rationality of constraining color chan-
nels with tc and Bc in physical models; Lssim: Structural similarity loss, used to maintain
the overall shape of crack structures; Lgrad: Image gradient loss enhances the clarity and
continuity of crack edges. Through the above multi-objective joint training strategy, the
network not only obtains global naturalness enhancement during the generation process,
but also achieves collaborative optimization of structural fidelity and optical consistency.
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Real underwater scenes often exhibit non-uniform lighting due to varying water tur-
bidity and sunlight attenuation. To address this, we introduce an illumination-adaptive con-
straint that penalizes spatially inconsistent enhancement across low-light regions. Specif-
ically, we define an inter-patch consistency loss across crack-relevant image regions to
ensure local contrast is enhanced proportionally:

Lrecon =
1
N ∑N

i=1

∥∥∥∆Iinput
i − ∆Ienhanced

i

∥∥∥ (5)

where, ∆Ii denotes the local contrast variation within region i, and N is the total number
of crack-adjacent patches. This loss encourages uniform enhancement while preserving
crack-texture modulation across uneven backgrounds.

2.5. Multi-Scale Feature Preservation Module

Considering the diverse forms and varying scales of underwater cracks, this paper
introduces the Multi-Scale Feature Preservation Module (MSFPM) to enhance the modeling
capability for cracks of different scales (as shown in Figure 4). This module is constructed
based on dilated convolution and embedded in the UNIT decoder to extract features at
the coarse, medium, and fine scales. Its structure includes the following: (1) Three dilated
convolution branches with different dilation rates (d = 1, 2, 4) are connected in parallel to
extract contextual information; (2) Channel attention mechanism weights feature responses
at various scales; (3) After fusion, it is sent to the decoder to improve detail restoration and
crack continuity.

Figure 4. Multi-scale feature preservation module.

To further retain high-frequency crack information, this paper extends the multi-scale
module by incorporating a frequency attention mechanism. Instead of using plain dilated
convolutions, this paper first decomposes intermediate features using a Discrete Wavelet
Transform (DWT), then attention weights are applied based on spectral energy in each sub-
band. In the frequency-aware extension of the multi-scale module, we apply a single-level
DWT to intermediate features using the Haar wavelet (db1) basis function. This choice
offers computational efficiency and strong spatial localization properties, which are well
suited for preserving sharp transitions, such as crack edges. The decomposed sub-bands
are then processed with a channel-wise attention mechanism to emphasize high-frequency
components relevant to crack detection:

Ak = σ(MLP( ∑
f∈Fk

∥∇ f ∥)) (6)

where, Fk represents the set of DWT components at scale k, and σ is the sigmoid activation.
The learned attention Ak is used to modulate the fusion weights in the decoder to favor high-
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frequency crack contours. This paper applies a single-level DWT using the Haar wavelet to
decompose intermediate feature maps into four sub-bands: LL, LH, HL, and HH. These
sub-bands represent low-frequency and directional high-frequency components. A channel-
wise attention mechanism was then applied to emphasize sub-bands containing meaningful
edge and texture information. This paper specifically adopts a 1-level decomposition to
ensure that spatial structure was preserved and computational complexity is minimized.

The module can more effectively preserve crack edges and texture information during
the enhancement process, improving the visual quality and subsequent recognition accu-
racy of the overall image. In summary, this method combines physical modeling with deep
image translation networks, balancing physical consistency, structural details, and image
realism, providing an innovative and high-performance solution for enhancing underwater
crack images.

2.6. Proposed Framework

Figure 5 shows the overall structure of the image enhancement method based on the
underwater light propagation model and the improved UNIT network fusion proposed in
this paper. The entire system consists of four main modules: input image preprocessing
module, underwater light propagation modeling module, improved UNIT image transla-
tion network, and multi-scale feature preservation and enhancement module. Each module
achieves collaborative enhancement through specific information flow, ensuring maximum
preservation of crack structure features while improving image quality.

Figure 5. The framework of the underwater crack image enhancement model.

The methods include an unsupervised image translation network with physical mod-
eling constraints, an improved UNIT structure, a multi-scale feature enhancement module,
and a joint optimization strategy for optical consistency loss. Specifically, the first inputs
are the original low-quality underwater crack images, which are often accompanied by
strong color distortion, blurring, and low-contrast phenomena. Before entering the en-
hancement network, the image is first normalized and physically degraded parameters are
estimated through a preprocessing module. This estimation is based on an underwater
light propagation model, which extracts the attenuation factor, background light intensity,
and preliminary scattering information for each color channel. These pieces of information



Buildings 2025, 15, 2150 9 of 20

will be guided as part of the physical perceptual loss in subsequent training to ensure that
the enhanced results are physically reasonable.

Next, the image is inputted into an improved UNIT network. This network consists of
two encoders (for the source domain and target domain, respectively), a shared latent space
module, and two decoders. In order to adapt to the sparsity and locality of crack features,
the encoder introduces a multi-scale extraction structure and maintains key spatial textures
through residual connections. Shared hidden space ensures structural consistency between
different image domains, thereby achieving unsupervised domain transformation learning.

In the decoder Section, this paper introduces a multi-scale feature preservation module
(MSFPM), which adopts a parallel dilated convolution structure (with dilation rates of 1, 2,
4) to effectively expand the receptive field and enhance the network’s modeling ability for
cracks of different scales. The outputs of each channel are weighted and fused through an
attention mechanism before being input into the decoder backbone, ultimately generating
an enhanced image. This module significantly improves the ability to express details in the
crack area of the image, especially in the restoration of edge information under complex
background interference.

During the training process, the network is jointly driven by multiple loss terms.
Among them, physical awareness loss enhances the consistency of physical parameters
(such as color channel transmittance, scattering model fit, etc.) between the image and the
input image through contrast enhancement, limiting the output image of the network from
deviating from the physical laws of underwater imaging; Structural similarity loss (such as
SSIM, edge gradient loss) is used to maintain the continuity and clarity of crack texture
features; Adversarial loss ensures that the network generates images that are globally
perceived to be similar in style to real high-quality images.

Overall, the method framework shown in Figure 5 not only achieves unsupervised
transformation from degraded images to enhanced images, but also introduces the fusion of
underwater physical laws and visual perception mechanisms, improving the interpretability
and generalization ability of the model. This design is of great significance for solving the
problem of “excessive enhancement” or “enhancement distortion” in current underwater
crack image enhancement.

3. Results
3.1. Experimental Setup

The dataset used in this study consists of 1000 underwater crack images, 500 of which
are low-quality images captured under diverse underwater conditions (collecting data
through underwater robots, as shown in Figure 6). These include the following: Water
turbidity levels ranging from clear (0–5 NTU) to highly turbid (30–50 NTU); Illumina-
tion conditions, including both natural ambient light (e.g., outdoor daylight at depths of
0.5–1.5 m) and artificial lighting using LED arrays in dark or shaded environments (up
to 5 m depth); Depth variations from 0.3 m (shallow surface conditions) to 5 m, covering
both near-surface and semi-deep underwater environments. The remaining 500 images
are relatively high-quality reference images obtained under controlled conditions in clear
water with optimized lighting. All images are resized to 512 × 512 resolution and stored
in jpg format for model training and evaluation. The dataset is available upon request
for academic research purposes. Data acquisition covered estuarine (Pearl River Delta)
and tidal scenarios to ensure generalization. For benchmarking, this paper compares our
method with four state-of-the-art methods: Retinex-Net, UWCNN, WaterGAN, U-Former
and Restormer and the original UNIT model.
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Figure 6. Underwater image acquisition setup using a submersible robot. (a) Robot control; (b) robot
underwater work; (c) robot. The imaging system supports maximum depths of 200 m and oper-
ation radius up to 400 m, equipped with a 4K-resolution camera (also supporting 1080p@120fps
and 720p@240fps). High-intensity 8000-lumen LED lights with a 150◦ illumination angle and ad-
justable brightness provide consistent lighting in turbid water. The system ensures ≥2 m visibility in
5 NTU water and ≥1.5 m in 60 NTU water, enabling reliable high-resolution capture under realistic
inspection conditions.

To assess the practical deployability of the proposed method, this paper reports
the model’s size and inference speed on both high-end and embedded platforms. The
model occupies only 17.8 MB, thanks to its lightweight encoder–decoder architecture.
Inference time is 18.6 ms on an RTX 4090, enabling near real-time processing for low-
latency underwater visual inspection. This confirms the method’s suitability for real-world
deployment in autonomous underwater systems and robotic inspection pipelines. For fair
comparison, the input resolution was uniformly resized to 512 × 512, and each method
was trained for 100 epochs using the Adam optimizer. The evaluation metrics include Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Underwater
Image Quality Measure (UIQM), and Edge Preservation Index (EPI).

PSNR measures the ratio between the maximum possible pixel value and the mean
squared error (MSE) between the original and enhanced images:

PSNR = 10 × log10

(
MAX2/MSE

)
(7)

where, MAX is typically 255 for 8-bit images.
SSIM assesses the perceptual similarity between two images based on luminance,

contrast, and structure:

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (8)

where, µ and σ represent mean and standard deviation, and C1, C2 are constants for stability.
UIQM is a non-reference metric for underwater images, defined as a weighted combi-

nation of colorfulness (UICM), sharpness (UISM), and contrast (UIConM):

UIQM = c1 × UICM + c2 × UISM + c3UIConM (9)

where, the typical weights are: c1 = 0.0282, c2 = 0.2953, c3 = 3.5753.
EPI evaluates the sharpness and preservation of edges between the input and

enhanced images:

EPI =
∥∇Ienh∥∥∥∇Iinput

∥∥ (10)
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where, ∇I represents the gradient (e.g., via Sobel operator), and ∥ ∥ is the norm of the
gradient magnitude.

3.2. Weight Selection of Loss Function

The loss function includes five weighted components with empirically chosen coeffi-
cients: λ1–λ5. These weights were determined through grid search and performance tuning
on a validation set. A brief sensitivity analysis showed that the model’s performance is most
sensitive to the optical consistency λ3 and structural similarity λ4 terms, confirming their
critical roles in preserving physical realism and crack detail. The selected configuration
(10, 1, 5, 2, 1) offers a balanced trade-off between visual fidelity and structural accuracy.

To further support the credibility of our training setup, this paper has now conducted
a brief sensitivity analysis of the weighting terms. Specifically, this paper varied one
parameter at a time while keeping the others fixed and recorded the performance changes
in terms of PSNR and SSIM as shown in Table 1.

Table 1. Sensitivity analysis of weight.

Setting PSNR ↑ SSIM ↑
Baseline (λ1–λ5 = 10/1/5/2/1) 22.93 0.821

λ1 = 5 21.78 0.802
λ2 = 2 22.14 0.809
λ3 = 0 21.35 0.784
λ4 = 0 21.51 0.773
λ5 = 3 22.06 0.812

3.3. Training and Testing

The training loss of the proposed method and baseline model is shown in Figure 5.
During the training phase, the total loss of the model consists of multiple components,
including reconstruction loss, adversarial loss, style consistency loss, and cyclic consistency
loss. From the training curve (as shown in Figure 7), the following points can be observed:
(1) Rapid convergence: Within the first 20 epochs, the reconstruction loss and total loss
decrease rapidly, indicating that the improved encoding decoding structure has good
initialization and convergence. (2) Stability enhancement: Thanks to the introduction of
PatchGAN discriminator and multi-scale feature preservation module, the overall training
process has less fluctuation and the model optimization process is smoother. (3) Stable
Adversarial Learning: The absence of severe oscillations in adversarial losses indicates a
good game balance between the generator and discriminator, validating the effectiveness
of introducing shared hidden spaces and reconstructing consistency losses in the network
structure. It is worth mentioning that in underwater crack image enhancement tasks,
optimizing stability is crucial as the original image is often affected by light scattering
and blurring. From the loss curve, it can be seen that the proposed method has strong
anti-interference ability and good adaptability.

For Figure 8a, the initial PSNR is about 16.5 dB, gradually increasing to over 24 dB
within 50 epochs; The later stage (60–100 epochs) tends to converge, maintaining at
24.5–25 dB, reflecting a decrease in overall image distortion and clearer reconstruction;
From the perspective of image restoration, a higher PSNR means that the improved model
effectively reduces blurring and degradation in underwater imaging, especially suitable
for the true restoration of crack features. For Figure 8b, in the early stages of training
(0–30 epochs), SSIM rapidly improved from 0.55 to around 0.82, reflecting the model’s
ability to restore the main features of image structure in the early stages; After 50 epochs,
the curve tends to stabilize, and SSIM fluctuates within the range of 0.88–0.90, indicating
that the enhanced image is highly consistent with the reference image in terms of structural
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information; Compared to the baseline model, the improved UNIT model has significantly
better restoration performance in detail areas, especially at crack edges.

Figure 7. Training curve comparison.

Figure 8. Training curve comparison of PSNR and SSIM. (a) PSNR curve comparison; (b) SSIM
curve comparison.

These trends clearly demonstrate the effectiveness of the proposed model in addressing
underwater image degradation. The smooth loss convergence indicates stable training
dynamics, while the SSIM and PSNR metrics reflect strong structural and visual fidelity.
Especially under the challenging conditions of underwater crack detection, where scattering
and low contrast hinder visual clarity, our model preserves both geometric consistency and
perceptual quality, making it particularly suitable for practical deployment in underwater
inspection tasks, such as bridge pier crack monitoring.

Fifty newly collected low-quality images were used to test the enhancement effect of
the proposed model. The evaluation indicators PSNR, SSIM, UIQM, and EPI of the test
results were 22.93, 0.821, 3.67, and 0.712, respectively, showing excellent testing results.
Figure 9 shows an enhanced case effect, which demonstrates that the proposed method
can achieve color and contrast enhancement of low-quality images and higher visibility
of cracks.
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Figure 9. Enhancement cases of the proposed model. (a) raw images; (b) enhancement images.

3.4. Quantitative Evaluation

As shown in Table 2, the proposed method achieves the best performance across all
evaluation metrics. The PSNR value improves by approximately 2.4 dB compared to UNIT
and by over 7.3 dB compared to Retinex-Net. The SSIM index, which evaluates structural
fidelity, is also highest in our method, indicating superior preservation of crack textures.
Notably, the UIQM score demonstrates improved color and contrast correction, while
the EPI validates that our approach retains more edge detail, crucial for crack analysis.
Compared to recent transformer-based (U-Former, Restormer), the proposed method shows
superior performance on structure-sensitive metrics, such as SSIM and EPI. This highlights
its advantage in tasks requiring detailed defect localization, despite the simplicity and
lower computational cost of our architecture.

Table 2. Quantitative comparison of image enhancement methods.

Method PSNR ↑ SSIM ↑ UIQM ↑ EPI ↑
Retinex-Net 15.63 0.523 2.39 0.531

UWCNN 19.21 0.741 3.04 0.654
WaterGAN 20.14 0.768 3.26 0.672
Restormer 21.62 0.789 3.48 0.687
U-Former 22.01 0.802 3.57 0.692

Original UNIT 20.55 0.772 3.31 0.679
Ours (Phys-aware UNIT) 22.93 0.821 3.67 0.712

3.5. Qualitative Results

Figure 10 visually compares enhancement results from different methods on three
representative underwater crack images. The figure illustrates a visual comparison of
enhancement results across multiple methods: (a) represents the original image, while
(b) to (h) showcase the outcomes of Retinex-Net, UWCNN, WaterGAN, UNIT, Restormer,
U-Former and the proposed method, respectively. An analysis of each method’s perfor-
mance in terms of noise reduction, detail preservation, and image quality enhancement is
as follows:
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Figure 10. Visual comparison of enhancement results. (a) Original image, (b) Retinex-Net,
(c) UWCNN, (d) WaterGAN, (e) UNIT, (f) Restormer, (g) U-Former and (h) the proposed method.

Retinex-Net exhibits moderate noise reduction capabilities, with some residual noise
still perceptible in the enhanced image; although it retains details to a certain extent,
the overall image sharpness is not markedly improved, and the overall image quality
enhancement is relatively limited.

UWCNN demonstrates proficient noise reduction, effectively minimizing noise arti-
facts; it also excels in detail preservation, resulting in enhanced texture and edge defini-
tion in the processed image, and significantly elevates image quality, yielding a visually
pleasing outcome.

WaterGAN displays average noise reduction performance, with some noise persisting
in the enhanced image; its detail preservation is moderate, with slight detail loss observed,
and while image quality is somewhat improved, the effect is less pronounced compared
to UWCNN.

UNIT performs well in noise reduction, effectively suppressing noise; however, its
detail preservation is comparatively average, with some details appearing slightly blurred,
and although overall image quality is enhanced, the improvement is less significant than
that of UWCNN.

The enhancement effect of Restormer and U-Former was close to the proposed method.
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Figure 11 highlight localized zoomed-in views. Red arrows indicate regions
of improved crack clarity and edge recovery—especially at branching points and
junction discontinuities.

Figure 11. The localized crack magnification views.

The proposed method excels in noise reduction, achieving a nearly noise-free image; it
also demonstrates superior detail preservation, meticulously maintaining texture and edge
information, and substantially enhances image quality, delivering the most visually appeal-
ing result. In conclusion, the proposed method outperforms the other evaluated methods
in noise reduction, detail preservation, and image quality enhancement, with UWCNN
also showing strong performance, particularly in noise reduction and detail preservation.
Retinex-Net and WaterGAN offer relatively average overall performance, while UNIT,
despite its effective noise reduction, has room for improvement in detail preservation.

In general, the proposed method successfully restores realistic color balance, removes
scattering effects, and preserves fine-scale cracks that are lost in other methods. In contrast,
UWCNN and Retinex-Net tend to oversmooth the cracks, and WaterGAN produces artifacts
under uneven lighting. The introduction of physics-aware constraints and multi-scale
enhancement helps our network generate images that are not only visually superior but
also structurally informative for downstream defect detection tasks. Whether it was
quantitative or qualitative evaluation, Restormer and U-Former were basically similar
to the proposed method, but the quantitative evaluation indicators were slightly lower
than the proposed method.

3.6. Ablation Study

To validate the contribution of each component, this paper conducted an ablation
study by removing one module at a time from the full model: (1) Ours- OnlyPhys: A variant
where only the physics-guided loss term is retained during training; (2) Ours-Phys.Loss:
Without physics-aware loss; (3) Ours-MSFEM: Without the Multi-scale feature enhancement
module; (4) Ours (full): The complete model.

Results in Table 3 and Figure 12 confirm that both the physics-aware loss and the multi-
scale feature enhancement module contribute significantly to the final performance. The
absence of either module leads to a noticeable drop in PSNR and UIQM scores, highlighting
their effectiveness in guiding physically consistent learning and enhancing crack texture
details, respectively.
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Table 3. Ablation study results.

Configuration PSNR ↑ SSIM ↑ UIQM ↑
Ours-OnlyPhys 20.41 0.763 3.08
Ours-Phys.Loss 21.12 0.788 3.31
Ours-MSFEM 21.64 0.794 3.43

Ours (full) 22.93 0.821 3.67

Figure 12. Ablation study results.

3.7. Expand Applications

To demonstrate the practical applications of our proposed method, this paper tested it
on real-world underwater detection tasks. In a bridge pier detection (as shown in Figure 13),
the enhancement method significantly improved the visibility of cracks in images captured
under high turbidity and shallow depths. These examples illustrate the applicability of our
method in diverse real-world scenarios, highlighting its potential for improving underwater
inspection tasks in civil engineering, maritime safety, and environmental monitoring.

Figure 13. Real-world underwater enhanced cases. (a) Original image; (b) enhanced image.

3.8. Post-Enhancement Crack Detection Performance

To evaluate the utility of enhanced images for real-world inspection, this paper con-
ducted a crack detection experiment using a UNet-based segmentation model. The model
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was trained on high-quality reference crack masks and then tested on three input types:
raw underwater images, images enhanced by baseline methods, and images enhanced by
our proposed framework. As shown in Table 4, our method achieved the highest scores in
mIoU, F1-score, and pixel accuracy. This confirms that the enhancement not only improves
visual quality but also retains discriminative features necessary for downstream analysis,
such as structural crack detection. Some sample visual comparison is provided in Figure 14.

Table 4. Comparison of crack detection performance.

Method mIoU ↑ F1-Score ↑ Pixel Accuracy ↑
Non-enhanced method 0.427 0.581 0.752
Proposed method 0.632 0.741 0.861

Figure 14. Comparison of detection cases.

4. Discussion
Although our method demonstrates competitive performance against established

CNN- and GAN-based models, such as Retinex-Net, UWCNN, WaterGAN, and UNIT, this
paper acknowledges that more recent transformer-based models designs have reported
strong performance on general underwater scenes. However, most of these models are
not specifically designed to retain fine structural features, such as cracks, under heavy
degradation. Moreover, the added complexity of transformer-based methods often results
in slower inference speeds and higher data requirements. By embedding physical priors
into both the network architecture and loss functions, the proposed method balances
interpretability, performance, and application specificity, making it particularly suitable for
real-time underwater crack inspection tasks.

The experimental results demonstrate that our proposed method effectively address-es
common underwater image degradation issues, including low contrast, color shift, and
detail loss. Unlike prior models that rely purely on data-driven learning, our integration
of physical modeling ensures better generalization across varying underwater conditions.
Moreover, the multi-scale feature enhancement module plays a key role in refining crack
edges without introducing noise or artifacts. Limitations of our current implementation
include the reliance on estimated water parameters during preprocessing, which may
introduce bias in extreme environments (e.g., muddy estuaries). Future work could explore
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end-to-end learning of physical parameters and improved generalization via synthetic-to-
real domain adaptation.

5. Conclusions
This paper presents a novel unsupervised image enhancement method for underwater

crack images, which integrates underwater optical modeling with an improved deep
learning framework. By incorporating the Jaffe–McGlamery light propagation model
into the UNIT architecture, the proposed approach ensures physically consistent and
perceptually accurate enhancement results. The introduction of a multi-scale feature
preservation module enables effective reconstruction of fine crack details across varying
spatial scales, while the PatchGAN-based local discriminator further improves structural
realism and texture clarity. Extensive experiments on a self-collected underwater crack
dataset demonstrate the superiority of the proposed method over existing state-of-the-
art approaches in terms of both quantitative metrics (PSNR, SSIM, UIQM, and EPI) and
qualitative visual results. Ablation studies confirm the critical role of physics-aware loss
and multi-scale enhancement in achieving accurate restoration. Furthermore, the model
exhibits strong generalization and robustness to diverse underwater environments, making
it suitable for real-world inspection tasks, such as bridge pier monitoring.

(1) This paper proposed a physics-aware unsupervised image enhancement method
that effectively integrates underwater light propagation theory with an improved
UNIT network.

(2) A multi-scale feature preservation module and local PatchGAN discriminator were
introduced to enhance structural details, especially for fine crack textures.

(3) Experimental results demonstrate that our method outperforms state-of-the-art ap-
proaches in both visual quality and structural fidelity.

(4) The designed optical consistency loss ensures enhanced images remain consistent
with underwater imaging principles.

(5) The proposed framework is robust and generalizable, making it suitable for practical
underwater inspection tasks, such as bridge pier crack detection.

While previous studies, such as Retinex-based methods and UWCNN, focus on en-
hancing global image properties without considering the underlying physical degradation
process, our proposed method integrates a physical regional model that incorporates un-
derwater light propagation theory. This modeling of optical phenomena, such as scattering
and absorption, helps maintain color consistency and crack visibility in challenging un-
derwater conditions. Furthermore, this paper introduces a multi-modification strategy
through our multi-scale feature preservation module, which enables the preservation of fine
crack details across different spatial scales. This is complemented by a PatchGAN-based
discriminator, which ensures enhanced texture realism by focusing on small image patches.
Together, these innovations result in a more detailed and physically accurate restoration
compared to existing models.

In summary, this work offers a physically grounded, detail-preserving, and unsuper-
vised solution to underwater image enhancement, advancing the reliability of visual-based
underwater structural defect detection. Future research will explore end-to-end learning
of physical parameters and domain adaptation techniques to further improve the adapt-
ability of the model under complex real-world conditions. Meanwhile, for the gradient
loss term, this paper employs the Sobel operator to compute image gradients along hori-
zontal and vertical directions. This operator provides a balance between edge localization
and noise robustness, and is widely used in structural loss computation. However, this
paper acknowledges that alternative gradient operators could offer better alignment with
the characteristics of underwater crack edges: The Scharr operator provides improved
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rotational symmetry and better gradient estimation, particularly useful in cases where
crack edges are shallow or noisy. The Laplacian operator captures second-order derivative
information, emphasizing transitions and junctions—potentially useful in branching or
curved crack structures. The Canny edge detector, though non-differentiable, could inspire
future work in hybrid or auxiliary supervision setups using its output as pseudo-labels
for edge guidance. Exploring the effectiveness of these alternative operators in the loss
formulation could be a promising direction for future research, particularly in enhancing
edge preservation under extreme degradation or turbidity.
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