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Abstract: Track slippage and body sinking of the tracked mining vehicle in the traditional deep-sea mining system 
are the critical issues for operating stability. To solve this bottleneck problem, a novel ROV-based deep-sea mining 
system is proposed in this study, in which a remotely-operated vehicle (ROV) towering a sledge-shaped mining robot 
(MRT) named ROV-based Deep-sea Mining Vehicle (ROVDMV) is instead of the traditional tracked Deep-sea mining 
vehicle. The design of the ROVDMV can fundamentally overcome the bottleneck problem. However, the complex 
marine environment and multi-rigid-body design of the ROVDMV pose new challenges for its path-tracking control. 
Firstly, the dynamic model of the ROVDMV considering the ROV at a fixed depth is established based on the bicycle 
model, which is mainly used as the control object in the numerical simulation. Secondly, a learning-based path-tracking 
control strategy is proposed for the path-tracking control of the ROVDMV. In the control strategy, a novel 
nonparametric learning (NPL) method is introduced to learn the uncertain nonlinear dynamics considering the external 
disturbances and parametric uncertainty. The NPL method is proven to provide bounded estimated error. Besides, the 
enhanced NPL method can save approximately 33% of the computation time, and the average computation time for its 
optimization control problem is only 12.47ms. Finally, the numerical results show that the NPL method can learn 
nonlinear dynamics accurately, and the proposed strategy has proven to be effective.

Keywords: Deep-sea mining, dynamic modelling, learning-based model predictive control, ROV, path tracking

Nomenclature

𝑏 𝑙, 𝐿 the MRT’s width and length, the horizontal projection length of the steel frame

𝑢𝑀𝑅𝑇  𝑢𝑅𝑂𝑉 𝑣𝑀𝑅𝑇 𝑣𝑅𝑂𝑉, surge speed and sway speed

𝜓 𝜔𝑀𝑅𝑇 𝜔𝑅𝑂𝑉, MRT’s yaw angle and yaw rate

𝛿, the horizontal rotation angle of the ROV around the steel frame

𝐿𝑔 𝑞 𝐾𝑀𝑅𝑇 𝐾𝑅𝑂𝑉 𝐸, Lagrangian function and its state kinetic energy, potential energy
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𝐹𝑅𝑂𝑉, 𝐹𝑀𝑅𝑇 hydrodynamic force of the ROV, interaction force of the MRT

𝑀𝐴, the add mass matrix of the ROV

𝐶 𝐷, Centripetal and coriolis force matrix hydrodynamic damping matrix

𝑚𝑀𝑅𝑇 𝑚𝑅𝑂𝑉 𝐼𝑀𝑅𝑇 𝐼𝑅𝑂𝑉, mass and rotational inertia

𝑋𝑢 𝑌𝑣  𝑁r 𝑋𝑢 𝑋𝑢𝑢 𝑌𝑣 𝑌𝑣𝑣 𝑁𝑟 𝑁𝑟𝑟, hydrodynamic coefficient

𝑋𝑢 𝑋𝑢𝑢 𝑌𝑣 𝑌𝑣𝑣 𝑁𝑟 𝑁𝑟𝑟, hydrodynamic damping coefficient

𝐹𝑋  𝐹𝑌  𝑇𝑁, control input

𝐹𝑅 𝐹𝑅𝑐 𝐹𝑅𝑏, longitudinal resistance, compaction resistance bulldozing resistance

𝑀𝑜2, the ROV’s turning resistance moment

𝑓 𝜇𝑦, lateral friction force and lateral friction coefficient

𝑊 𝐶𝐼, underwater weight of the MRT terrain cone index

𝐸1 𝐸2 𝐸3, empirical coefficients

𝐹𝑅 𝐹𝑅𝑐 𝐹𝑅𝑏, longitudinal resistance, compaction resistance and bulldozing resistance

∆𝑧 𝑐, sinkage and apparent cohesion

𝑟𝑠, 𝜙 , the density of the sediment and angle of internal shearing resistance

𝑘𝑝𝑟 𝑘𝑝𝑐, coefficients of passive earth pressure

𝑁𝑟 𝑁𝑐, Terzaghi bearing capacity coefficient

1. Introduction

The deep sea is rich in mineral resources, including polymetallic nodules, cobalt-rich crusts, and polymetallic sulfides. 
The efficient exploitation of these mineral resources can help alleviate the shortage of terrestrial mineral (Sha et al., 
2023). To extract these resources, deep-sea mining systems serve as the essential equipment for harvesting minerals 
from the ocean floor, which lies thousands of meters beneath the surface. Currently, deep-sea mining remains in the 
research and exploration phase, primarily because deep-sea mining systems have not yet achieved the level of 
commercial viability. Since the concept of deep-sea mining was introduced, several collection methods have been 
proposed, ranging from ship-towed mining vehicles to Archimedes spiral self-propelled mining vehicles. At present, 
the hydraulic lift deep-sea mining system is regarded as a commercially viable option, as illustrated in Fig. 1(a). In this 
system, a deep-sea tracked mining vehicle must follow a designated mining path to collect mineral resources. The 
mineral ore, mixed with water, is then transported to the mining vessel through a buffer and lifting pipe by a lifting 
pump (H. Wu et al., 2023). The deep-sea tracked mining vehicle is one of the most central subsystems of the deep-sea 
mining system and must adhere to a predetermined mining path to gather the mineral resources. However, the traditional 
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heavy tracked mining vehicles face the challenge of significant grip and substantial subsidence when traversing on the 
seafloor sediments (Wang, Chen, Wang, Li, & Yang, 2023), and track slippage poses a key issue for accurate path 
tracking (Qin et al., 2021). Therefore, it is essential to develop an efficient and robust path tracking controller. 

Path tracking controllers based on geometric methods, such as Fuzzy PID (Dai, Su, & Zhang, 2020), line of sight 
(Yeu et al., 2012) and pure pursuit 2013), are efficient and straightforward to design, as they directly calculate the path 
tracking control law. However, since no anti-slip strategy is considered, the performance of path tracking control may 
degrade due to track slippage. To address this issue, model predictive control (MPC) (W. Li et al., 2023; Li, He, Ma, 
Liu, & Liu, 2023; P. C. Wu, Wen, Chen, & Jin, 2017) and learning-based methods (An, Zhou, & Wang, 2024; Q. Chen 
et al., 2023) have been employed to account for track slippage in the design of path tracking controllers. By incorporating 
anti-slip constraints, an MPC-based optimal control problem is formulated to derive the path tracking control law (Y. 
Li et al., 2023). Chen et al. propose a learning-based path tracking controller based on deep reinforcement learning 
(Chen et al., 2023), where an improved deep deterministic policy gradient is explored. By fully considering the slip rate 
of the tracks in the reward function, this path tracking controller effectively mitigates track slip and ensures robust path 
tracking performance. It is evident that the anti-slip control strategy can enhance the path tracking performance to some 
extent. However, the track slippage, which is a critical issue for operational stability, cannot be completely eliminated. 
This limitation represents an inherent disadvantage of traditional deep-sea mining systems.

tracked mining vehicle

buffer

lifting pump

lifting pipe

mining vessel
(a)

lifting pipe

lifting pump

buoyant

(b)

articulated rigid frame

MRT

mining vessel

ROV

Fig.1 Comparison of two deep-sea mining systems (a, traditional deep-sea mining system; b, ROV-based deep-sea 
mining system)

To address the inherent disadvantages of traditional deep-sea mining systems, a remotely operated vehicle (ROV)-
based deep-sea mining system is proposed, as illustrated in Fig. 1(b). In this collection method, the ROV-based deep-
sea mining vehicle (ROVDMV), which consists of an ROV and a mining robot (MRT), replaces the tracked mining 
vehicle. The ROV tows the MRT, allowing it to glide smoothly along the seabed via an articulated steel frame, while 
the ROV maintains a specific height above the seabed. Compared to the tracked mining vehicle, this approach increases 
the contact area with the substrate and reduces ground pressure. In conclusion, the novel collection method effectively 
mitigates issues related to slippage and body subsidence. The ROVDMV must track a predetermined mining path to 
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collect the mineral resources in the ROV-based deep-sea mining system, and the path tracking strategy for the 
ROVDMV requires thorough investigation. Firstly, the dynamic model of the ROVDMV needs to be established as the 
controlled object in the numerical simulation of path tracking, which is more complex compared to traditional mining 
vehicles. In the force analysis, the hydrodynamic forces acting on the ROV and the interaction forces between the MRT 
and the seabed sediment must be taken into account. Secondly, the uncertain nonlinear dynamics present a challenge 
for the path tracking strategy, primarily due to model mismatch between the established dynamic model and the actual 
system. Accurately obtaining the hydrodynamic parameters of the ROV and the soil mechanical parameters of the 
seabed is difficult. Additionally, external current disturbances and process noise resulting from irregular seafloor 
topography can also contribute to model mismatch. 

An efficient method for addressing model mismatch is based on a nonparametric learning (NPL) approach, wherein 
a mapping function is developed to estimate uncertain nonlinear dynamics (Calliess, Roberts, Rasmussen, & 
Maciejowski, 2020). The Kinky Inference (KI) prediction function, which utilizes the Lipschitz constant, is employed 
to accurately estimate the nonlinear unmodeled dynamics under random process noise. The Lazily Adapted Constant 
Kinky Inference (LACKI) rule is used to estimate the Lipschitz constant. However, the accuracy of this estimation is 
contingent upon a dense set of samples, resulting in high computational complexity. To address this issue, Kaikai Zheng 
proposes an event-triggering mechanism to enhance the method (Zheng, Shi, Shi, & Wang, 2023). For a known training 
set that encompasses all possible sampling points, the size of the training set can be reduced to ensure good real-time 
performance, with estimation accuracy remaining nearly uncompromised. It is important to note that the dynamics of 
the ROVDMV are coupled with its time-varying state, making it challenging to obtain a known training set in advance. 
Consequently, this method becomes less applicable. To tackle these challenges, the research focuses on studying the 
dynamics model of the ROVDMV and its learning-based path tracking control strategy. The main contributions of this 
paper are as follows.

1. A new method and equipment for deep-sea mining have been proposed, and the path tracking control of the 
ROVDMV is examined in the horizontal plane. Drawing inspiration from the bicycle model (Sun, Li, Li, & Li, 2022), 
a dynamic model of the ROVDMV has been developed as the controlled object in the numerical simulation.

2. A novel nonparametric learning method has been developed to address uncertain nonlinear dynamics, which 
encompass unknown external current disturbances and certain aspects of nonlinear dynamics affected by parametric 
uncertainty in the presence of random process noise. Based on the LACKI rule (Calliess et al., 2020), a new learning 
rule is introduced to enhance the learning performance. The training set, which consists of a limited number of sampling 
points, is dynamically updated by this learning rule to reduce online computational complexity. This approach 
effectively resolves the issue that the nonlinear programming (NLP) requires a previously known training set (Zheng et 
al., 2023). Furthermore, under the proposed learning rule, the estimated error of the nonlinear unmodeled dynamics is 
proven to be bounded.

3. A learning-based path tracking control strategy is proposed to achieve optimal path tracking performance. A virtual 
speed model predictive control (VSMPC) system is designed to compute the virtual speed control law, which aims to 
minimize the real-time path tracking deviation. Additionally, a learning-based model predictive control (LBMPC) 
framework is developed to determine the control input necessary for tracking the virtual speed control. In this framework, 
the learned uncertain nonlinear dynamics serve as the predictive model for the optimal control problem. With the 
estimated error proven to be bounded, the closed-loop stability can also be ensured (Zheng et al., 2023).
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Fig.2 Research framework

The remainder of this paper is organized as follows: Section 2 introduces the dynamic model of the ROVDMV. 
Section 3 introduces a novel nonparametric learning method. Section 4 proposes a learning-based path tracking control 
strategy. Section 5 provides the results and discussion. The research framework of this paper is illustrated in Fig. 2.

Notations:  denote 𝑚 × 𝑛 real matrices by ℛ𝑚×𝑛. Denote 𝑛-dimensional unit matrix and 𝑚 × 𝑛 zero matrix by 𝐼𝑛 
and 0𝑚×𝑛. Given a positive definite matrix 𝑃 ∈ ℛ𝑚×𝑚, define matrix norm ‖𝑥‖2

𝑃 = 𝑥T𝑃𝑥,𝑥 ∈ ℛ𝑚×1. Define set 𝕂𝑁1:𝑁2

= {𝑁1,𝑁1 + 1,⋯,𝑁2 ― 1,𝑁2}. For a column vector 𝑏 ∈ ℛ𝑚×1, 𝑏𝑗 represents the element in 𝑗-th row. Denote the 
probability of an event 𝐴 by P(𝐴).

2. Dynamic Model of the ROVDMV

In this section, we derive the dynamic model of the ROVDMV for simulating its path tracking control. Compared to 
the towing force, the connecting force exerted by the flexible pipe on the ROV is relatively weak due to the saddle shape 
of the compensation soft pipe. Additionally, the mass of the steel frame is small in comparison to the mass of the ROV 
and MRT. 

o

𝛿
𝑢𝑅𝑂𝑉

𝑣𝑅𝑂𝑉

𝑣𝑀𝑅𝑇

𝑌2

𝑋2

𝑂2

𝑦

𝑥

𝑂1

𝑋1𝑢𝑀𝑅𝑇

𝑌1

𝜓

Fig.3 Coordinate frame of the ROVDMV
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To simplify the model, the forces exerted by the flexible pipe and the mass of the steel frame are disregarded during 
the modeling process. Additional simplifications are also made in the preliminary research of the ROVDMV mining 
vehicle. It is assumed that the MRT and the steel frame are rigid, while the ROV and the steel frame are articulated. 
Drawing inspiration from the bicycle model in an Ackermann steering vehicle (Sun et al., 2022), the ROV and MRT 
are analogized to the front and rear wheels of a bicycle, respectively, with the ROV functioning as the steering 
mechanism. To ensure stable steering, both the steering angle of the ROV and its angular velocity around the steel frame 
are designed to be minimal. Consequently, the small angle assumption for the steering angle is introduced in the 
subsequent dynamic modeling.

Moreover, suppose the remotely operated vehicle (ROV) tows the mobile robotic transporter (MRT) at a constant 
depth, with the MRT sliding along the seafloor surface. The dynamic model can be considered in the horizontal plane; 
however, both the ROV and MRT possess three degrees of freedom (DOFs) each. To simplify the dynamic modeling, 
the kinematic relationship between the DOFs of the ROV and MRT is analyzed first. Consequently, it is only necessary 
to examine the dynamics of three DOFs of the ROV.

2.1 Kinematic Model

Firstly, the global coordinate and the local coordinate frame of the ROV and MRT are defined, as shown in Fig.3. 
𝑂 ― 𝑥𝑦 denotes the global coordinate system. 𝑂1 ― 𝑋1𝑌1 denotes MRT’s local coordinate system, and 𝑂2 ― 𝑋2𝑌2 
denotes ROV’s local coordinate system. Then, surge speed 𝑢 and sway speed 𝑣 of the ROV and the MRT can be 
expressed as:

𝑢𝑀𝑅𝑇 = 𝑢𝑅𝑂𝑉 cos 𝛿 ― 𝑣𝑅𝑂𝑉 sin 𝛿 ,𝑣𝑀𝑅𝑇 = 𝑣𝑅𝑂𝑉 cos 𝛿 + 𝑢𝑅𝑂𝑉 sin 𝛿(1.)

where 𝛿 is the horizontal rotation angle of the ROV around the steel frame.

According to the bicycle model (Sun, Li, Li, & Li, 2022), MRT’s yaw rate 𝜔𝑀𝑅𝑇 is related to the surge speed of the 
MRT 𝑢𝑀𝑅𝑇 and the horizontal rotation angle of the ROV around the steel frame 𝛿:

𝜓 = 𝜔𝑀𝑅𝑇 =
𝑢𝑀𝑅𝑇𝛿

𝐿 (2.)

where 𝜓 is MRT’s yaw angle. 𝐿 is the horizontal projection length of the steel frame.

It can be seen both the ROV and the MRT have 3 degrees of freedom (DOFs), and the kinematic model of ROVDMV 
is given as follows:

𝑥 = 𝑢𝑀𝑅𝑇 cos 𝜓 ― 𝑣𝑀𝑅𝑇 sin 𝜓
𝑦 = 𝑢𝑀𝑅𝑇 sin 𝜓 + 𝑣𝑀𝑅𝑇 cos 𝜓

𝜓 = 𝜔𝑀𝑅𝑇 =
𝑢𝑀𝑅𝑇𝛿

𝐿
𝑢𝑀𝑅𝑇 = 𝑢𝑅𝑂𝑉 cos 𝛿 ― 𝑣𝑅𝑂𝑉 sin 𝛿
𝑣𝑀𝑅𝑇 = 𝑣𝑅𝑂𝑉 cos 𝛿 + 𝑢𝑅𝑂𝑉 sin 𝛿
𝛿 = 𝜔𝑅𝑂𝑉

(3.)

where 𝑥 and 𝑦 are MRT’s global coordinates. 𝜔𝑅𝑂𝑉 is ROV’s yaw rate. 
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2.2 Kinetic Model

The kinetic model of the ROVDMV consists of a kinetic equation of the ROV with 3 DOFs, which will be deduced 
using the Lagrangian method. Firstly, the kinetic energy of the ROV 𝐾𝑀𝑅𝑇and that of the MRT 𝐾𝑅𝑂𝑉 are given as:

𝐾𝑀𝑅𝑇 =
1
2𝑚𝑀𝑅𝑇 𝑢2

𝑀𝑅𝑇 + 𝑣2
𝑀𝑅𝑇 +

1
2𝐼𝑀𝑅𝑇𝜔2

𝑅𝑂𝑉 =
1
2𝑚𝑀𝑅𝑇 𝑢2

𝑅𝑂𝑉 + 𝑣2
𝑅𝑂𝑉 +

1
2𝐼𝑀𝑅𝑇

𝑢𝑀𝑅𝑇𝛿
𝐿

2

𝐾𝑅𝑂𝑉 =
1
2𝑚𝑅𝑂𝑉 𝑢2

𝑅𝑂𝑉 + 𝑣2
𝑅𝑂𝑉 +

1
2𝐼𝑅𝑂𝑉𝜔2

𝑅𝑂𝑉

(4.)

where 𝐼𝑅𝑂𝑉 and 𝐼𝑀𝑅𝑇 denote the rotational inertia of the ROV and the MRT. 𝑚𝑀𝑅𝑇 and 𝑚𝑅𝑂𝑉 are the mass of the ROV 
and the MRT, respectively. 

Note that the dynamics of the ROVDMV is considered in the horizontal plane, and the potential energy of the 
ROVDMV 𝐸 can be treated as a constant. Then, the Lagrange function of the ROVDMV 𝐿(𝑞,𝑞) is given as:

𝐿𝑔(𝑞,𝑞) = 𝐾𝑀𝑅𝑇 + 𝐾𝑅𝑂𝑉 ― 𝐸 =
1
2(𝑚𝑀𝑅𝑇 + 𝑚𝑅𝑂𝑉) 𝑢2

𝑅𝑂𝑉 + 𝑣2
𝑅𝑂𝑉 +

1
2𝐼𝑀𝑅𝑇

𝑢𝑅𝑂𝑉𝛿
𝐿

2

+
1
2𝐼𝑅𝑂𝑉𝜔2

𝑅𝑂𝑉 ― 𝐸(5.)

where the state 𝑞 and its first order derivative 𝑞 are denoted by  𝑞 = (𝑥𝑅𝑂𝑉,𝑦𝑅𝑂𝑉,𝛿)T and 𝑞 = (𝑢𝑅𝑂𝑉,𝑣𝑅𝑂𝑉,ω𝑅𝑂𝑉)T. 

Finally, the Lagrangian equation is given by:

𝑑
𝑑𝑡

𝐿𝑔

∂𝑞 ―
𝐿𝑔

∂𝑞 = 𝐹𝑅𝑂𝑉 + 𝐹𝑀𝑅𝑇 + 𝜏 + 𝜏𝑒 + 𝜏𝓌(6.)

where 𝐹𝑅𝑂𝑉 is the generalized hydrodynamic force of the ROV in the local coordinate system 𝑂2 ― 𝑋2𝑌2. Denote the 
generalized interaction force between the MRT and seafloor sediments in the local coordinate system 𝑂2 ― 𝑋2𝑌2 by 
𝐹𝑀𝑅𝑇. The control input is denoted by 𝜏 = (𝐹𝑋, 𝐹𝑌, 𝑇𝑁)T, which represents the forces and torques corresponding to the 
3 DOFs in the ROV’s local coordinate system. 𝜏𝑒 ∈ ℛ3×1 represents the unmodeled bounded external ocean current 
disturbance and model mismatch from parametric uncertainty. Denote the random bounded process noise force of 
seafloor sediments and the MRT from the rugged seafloor by  𝜏𝓌 ∈ ℛ3×1 (Dai, Xue, Su, & Huang, 2021).

Substitute Eq. 5 into Eq. 6, and the left side of Eq. 6 becomes:

𝑑
𝑑𝑡

𝐿𝑔

∂𝑢𝑅𝑂𝑉
―

𝐿𝑔

∂𝑥𝑅𝑂𝑉
= (𝑚𝑀𝑅𝑇 + 𝑚𝑅𝑂𝑉)𝑢𝑅𝑂𝑉 +

𝐼𝑀𝑅𝑇𝛿2

𝐿2 𝑢𝑅𝑂𝑉 = (𝑚𝑀𝑅𝑇 + 𝑚𝑅𝑂𝑉 + 𝑚𝛿)𝑢𝑅𝑂𝑉(7.)

𝑑
𝑑𝑡

𝐿𝑔

∂𝑣𝑅𝑂𝑉
―

𝐿𝑔

∂𝑦𝑅𝑂𝑉
= (𝑚𝑀𝑅𝑇 + 𝑚𝑅𝑂𝑉)𝑣𝑅𝑂𝑉(8.)

𝑑
𝑑𝑡

𝐿𝑔

∂𝜔𝑅𝑂𝑉
―

𝐿𝑔

∂𝛿𝑅𝑂𝑉
= 𝐼𝑅𝑂𝑉𝜔𝑅𝑂𝑉 ―

𝐼𝑀𝑅𝑇𝑢2
𝑅𝑂𝑉

𝐿2 𝛿(9.)

where 𝑚𝛿 = 𝐼𝑀𝑅𝑇𝛿2/𝐿2 denotes the added mass of the MRT in the horizontal rotation angle DOF. 

Based on previous research (Long, Hu, Qin, & Bian, 2022), an empirical formula can be utilized to express the 
generalized hydrodynamic force of the ROV 𝐹𝑅𝑂𝑉, which consists of the added mass force, centripetal and Coriolis 
force and hydrodynamic damping force:
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𝐹𝑅𝑂𝑉 = 𝑀𝐴𝑞 + (𝐶 + 𝐷)𝑞(10.)

where the add mass matrix is denoted by 𝑀𝐴 = diag 𝑋𝑢,𝑌𝑣,𝑁𝑟 , where 𝑋𝑢,𝑌𝑣 and 𝑁𝑟 represent the hydrodynamic 

coefficients. Denote the hydrodynamic damping matrix by 𝐷 = diag
(𝑋𝑢 + 𝑋𝑢𝑢|𝑢𝑅𝑂𝑉|,𝑌𝑣 + 𝑌𝑣𝑣|𝑣𝑅𝑂𝑉|,𝑁𝑟 + 𝑁𝑟𝑟|𝜔𝑅𝑂𝑉|) where the symbols  𝑋𝑢,  𝑋𝑢𝑢, 𝑌𝑣, 𝑌𝑣𝑣, 𝑁𝑟 and 𝑁𝑟𝑟 are 
hydrodynamic damping coefficients. Centripetal and Coriolis force matrix 𝐶 can be expressed as:

𝐶 =
0 0 (𝑋𝑣𝑟 + 𝑚𝑅𝑂𝑉)𝑣𝑅𝑂𝑉 + 𝑋𝑟𝑟𝜔𝑅𝑂𝑉
0 𝑌𝑢𝑣𝑢𝑅𝑂𝑉 (𝑌𝑢𝑟 ― 𝑚𝑅𝑂𝑉)𝑢𝑅𝑂𝑉
0 𝑁𝑢𝑣𝑢𝑅𝑂𝑉 𝑁𝑢𝑟𝑢𝑅𝑂𝑉

(11.)

where 𝑋𝑣𝑟, 𝑋𝑟𝑟, 𝑌𝑢𝑣, 𝑌𝑢𝑟, 𝑁𝑢𝑣 and 𝑁𝑢𝑟 are hydrodynamic coefficients.

To further establish the Lagrangian equation (6), the interaction force 𝐹𝑀𝑅𝑇 needs to be deduced. Since the soft 
seafloor sediment can be considered plastic soil (Chen et al., 2023), the MRT is subjected to longitudinal resistance 𝐹𝑅 
and lateral friction force 𝑓 from a triangular load. Then, the mechanical sketch of the ROVDMV is established, as shown 
in Fig.4. Considering plastic soil, a lateral friction coefficient concerning the turning radius is used to express the lateral 
friction force (Al-Milli, Seneviratne, & Althoefer, 2010):

𝑓 = 𝜇𝑦
𝑊
2 (12.)

where 𝑊 represents the underwater weight of the MRT, and 𝜇𝑦 is the lateral friction coefficient:

𝜇𝑦 = 𝐸1 1 ― 𝑒
𝐶𝐼𝑏𝑙𝐸2
𝑚𝑀𝑅𝑇 1 ― 𝑒

𝐶𝐼𝑏𝑙𝐸3𝑟
𝑚𝑀𝑅𝑇 (13.)

in which 𝑙 and 𝑏 are the length and width of the MRT. 𝐶𝐼 represents the terrain cone index. Denote the turning radius of 
the MRT by 𝑟. 𝐸1, 𝐸2 and 𝐸3 are empirical coefficients. 

As shown in Fig.4, the lateral friction force 𝑓 can be equivalent to the ROV’s turning resistance moment 𝑀𝑜2 with 
respect to 𝑂2:

𝑀𝑜2 =
3
4 𝑙 + 𝐿 𝑓 ―

1
4 𝑙 + 𝐿 𝑓 =

1
2 𝑙𝑓 =

𝜇𝑦𝑊𝑙
4 (14.)

Then, the generalized interaction force 𝐹𝑀𝑅𝑇 can be obtained:

𝐹𝑀𝑅𝑇 = ― 𝐹𝑅 cos 𝛿𝑅𝑂𝑉 ,𝐹𝑅 sin 𝛿𝑅𝑂𝑉 , ― sg(𝜔MRT)𝑀𝑜2 (15.)

where sg( ∙ ) is a function denoted as sg(𝑥) = 1,𝑥 > 0;sg(𝑥) = ―1,𝑥 < 0;sg(𝑥) = 0,𝑥 = 0.
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𝐹𝐷 𝑂2

𝛿

𝑋2
𝑌2𝑓

𝑓

𝑙
4

𝐿

Fig.4 Mechanical sketch of the ROVDMV

Due to the sinkage on the soft seafloor sediment (Ruslan et al., 2023; Xu et al., 2022), the longitudinal resistance 𝐹𝑅 
consists of a compaction resistance 𝐹𝑅𝑐 and a bulldozing resistance 𝐹𝑅𝑏:

𝐹𝑅 = 𝐹𝑅𝑐 + 𝐹𝑅𝑏(16.)

where the underwater weight of the MRT and the soil properties will influence the sinkage characteristics (Yamada, 
Yamauchi, & Hashimoto, 2021).

Based on Bekker's pressure–sinkage relationship(Kar, 1987), the compaction resistance 𝐹𝑅𝑐 can be expressed as 
follows:

𝐹𝑅𝑐 =
𝑏

2𝑓 ∆𝑧2 ―
𝑏𝑒
𝑓

∆𝑧(17.)

where ∆𝑧 = 𝑒 + 𝑓𝑝 is the sinkage. 𝑝 = 𝑊/𝑏𝑙 is the normal pressure from the MRT acting on the soil. 𝑒 and 𝑓 satisfy 
the empirical formula(Liu & Wong, 1996):

𝑓 = 1.99 ― (18.)

𝑒 = 6.725 ― 2.568𝜏 + 0.245𝜏2,𝜏 ≥ 5kPa
𝑒 = 0,𝜏 < 5kPa (19.)

in which 𝜏 is the shear strength of soft seafloor sediment:

𝜏 = 𝑐 + 𝑝 tan 𝜙(20.)

where 𝑐 is the apparent cohesion, and 𝜙 is the angle of internal shearing resistance. 

Meanwhile, the bulldozing force can be expressed as a function between the mechanical properties of the soft seafloor 
sediment and the sinkage(Kar, 1987; Zeng et al., 2021):

𝐹𝑅𝑏 =
1
2𝑟𝑠∆𝑧2𝑘𝑝𝑟 + 𝑐∆𝑧𝑘𝑝𝑐 𝑏(21.)

where 𝑟𝑠 is the density of the sediment. Coefficients of passive earth pressure are denoted by 𝑘𝑝𝑟 and 𝑘𝑝𝑐:

𝑘𝑝𝑟 =
2𝑁𝑟

tan 𝜙 + 1 cos2 𝜙 ,𝑘𝑝𝑐 = (𝑁𝑐 ― tan 𝜙)cos2 𝜙(22.)
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where 𝑁𝑟 and 𝑁𝑐 represent the Terzaghi bearing capacity coefficients.

3. Novel Nonparametric Learning Method

The kinetic model of the ROVDMV (6) employed in a path tracking strategy relies on prior knowledge, including 
model parameters and external ocean current disturbances. However, accurately obtaining model parameters, 
particularly the mechanical properties of the seabed soil, poses significant challenges. Additionally, the random process 
noise generated by seafloor sediments, along with unknown external ocean current disturbances, can further contribute 
to model mismatches. 

To mitigate the effects of model mismatch, a novel nonparametric learning method has been developed based on the 
LACKI framework (Calliess et al., 2020; Zheng et al., 2023). This section introduces a learning rule designed to enhance 
the performance of the LACKI framework, ensuring both prediction accuracy and robust real-time performance. The 
innovative nonparametric learning (NPL) method effectively learns the values of uncertain nonlinear dynamics while 
accounting for unknown bounded external ocean current disturbances and uncharacterized process noise. 

3.1 Methodology

The control model used in a path tracking strategy is considered as a discrete nonlinear model of the form:

𝜒(𝑘 + 1) = 𝐴𝜒(𝑘) + 𝐵𝒰(𝑘) + 𝑓(𝜒(𝑘)) + 𝓌(𝑘)(23.)

where 𝜒 ∈ 𝕏 ⊂ ℛ𝑛𝑥×1 is the state vector, and 𝒰 ∈ 𝕌 ⊂ ℛ𝑛𝑢×1 represents the control input vector. State matrix 𝐴 and 
control matrix 𝐵 are time-invariant. Nonlinear function 𝑓(𝜒(𝑘)) ∈ 𝕐 ⊂ ℛ𝑛𝑥×1 represents the uncertain nonlinear 
dynamics with unknown bounded external disturbance, where 𝕐 is the output space. 𝓌 ∈ 𝕎 ⊂ ℛ𝑛𝑥×1 is the bounded 
unknown process noise: ‖𝓌‖∞ ≤ ℯ, where the positive constant ℯ is the upper bound, and 𝕎 is the process noise space. 
Sets 𝕏, 𝕌 and 𝕎 are assumed to be compact sets.

The estimated value of the uncertain nonlinear dynamic function 𝑓 is denoted as 𝑓. Define the sampled data set used 
for calculating the estimated value 𝑓 by

𝐷𝑛: = 𝑠(𝑟),𝑓(𝑠(𝑟)) |𝑟 ∈ 𝕂1:𝑁𝑛 (24.)

where 𝑠(𝑘): = (𝜒(𝑘),𝒰(𝑘)) ∈ 𝕊 ⊂ ℛ(𝑛𝑥+𝑛𝑢)×1 is the measured input value, and 𝕊 is the input space. 𝑁𝑛 is the number 
of recorded samples. For convenience, define the sampled input data set 𝒢𝑛≔ 𝑠(𝑟)|𝑟 ∈ 𝕂1:𝑁𝑛 . The measured output 
value of the uncertain nonlinear dynamic function 𝑓 is denoted as 𝑓(𝑠(𝑟)): = 𝜒(𝑟) ―𝐴𝜒(𝑟 ― 1) ―𝐵𝒰(𝑟 ― 1). The 
bounded unknown process noise holds that ‖𝑓 ― 𝑓‖∞ ≤ ℯ. 

Assumption 1: Nonlinear function 𝑓 is always Lipschitz continuous as:

∀𝑥,𝑦 ∈ 𝕂1:𝑁𝑛,‖𝑓(𝑠(𝑥)) ― 𝑓(𝑠(𝑦))‖∞ ≤ 𝐿∗‖𝑠(𝑥) ― 𝑠(𝑦)‖∞

where 𝐿∗ is the bounded Lipschitz constant, satisfying 𝐿∗ ≤ 𝐿∗, where 𝐿∗ is the upper bound. 

Remark 1: Note that Lipschitz constant 𝐿∗ is bounded, and sets 𝕏, 𝕌 and 𝕎 are assumed to be compact sets. Function 
𝑓 is also bounded. 

Definition 1 (Kinky Inference (KI) prediction function): With a sampled data set 𝐷𝑛 obtained, 𝑓(𝑠(𝑘),𝐿𝑛,𝐷𝑛): 𝕊
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→𝕐 is calculated by a KI prediction function:

𝑓𝑗(𝑠(𝑘),𝐿𝑛,𝐷𝑛): =
1
2 𝓊𝑗 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁𝑛 + 𝓁𝑗 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁𝑛 ,𝑗 ∈ 𝕂1:𝑛𝑥(25.)

𝓊 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁𝑛 : = min
𝑟 ∈ 𝕂1:𝑁𝑛

𝑓𝑗(𝑠(𝑟)) + 𝐿𝑛‖𝑠(𝑘) ― 𝑠(𝑟)‖
∞

+ ℯ(26.)

𝓁 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁𝑛 : = max
𝑟 ∈ 𝕂1:𝑁𝑛

𝑓𝑗(𝑠(𝑟)) ― 𝐿𝑛‖𝑠(𝑘) ― 𝑠(𝑟)‖
∞

― ℯ(27.)

where 𝐿𝑛 is the estimated Lipschitz constant, and the time complexity for the KI prediction function is 𝒪(2𝑁𝑛ℳ). ℳ 
is the time complexity for calculating the norm ‖ ∙ ‖∞.

Definition 2 (LACKI rule): Estimated Lipschitz constant 𝐿𝑛 is updated based on the LACKI rule:

𝐿𝑛 = max 𝐿𝑛―1, max
∀𝑥,𝑦 ∈ 𝕂1:𝑁𝑛,𝑥 ≠ 𝑦

‖𝑓(𝑠(𝑥)) ― 𝑓(𝑠(𝑦))‖∞ ― 𝜆
‖𝑠(𝑥) ― 𝑠(𝑦)‖∞

(28.)

where 𝜆 > 0 is a hyperparameter, and 𝐿0 can be set as a small positive constant. 

Remark 2: The positive hyperparameter 𝜆 is mainly used to deal with the unknown bounded process noise 𝓌(𝑘):

𝐿𝑛 ≤
‖𝑓(𝑠(𝑥)) ― 𝑓(𝑠(𝑦))‖∞ ― (𝜆 ― 2ℯ)

‖𝑠(𝑥) ― 𝑠(𝑦)‖∞
≤ 𝐿∗ +

2ℯ ― 𝜆
‖𝑠(𝑥) ― 𝑠(𝑦)‖∞

,𝜆 ≥ 2ℯ

if 𝐿𝑛 > 𝐿∗, there will be an overfitting to the unknown process noise. That’s why the minimum value of  𝜆 is 2ℯ, and 
the estimated Lipschitz constant 𝐿𝑛 is bounded:

𝐿𝑛 ≤ sup
∀𝑥,𝑦 ∈ 𝕂1:𝑁𝑛,𝑥 ≠ 𝑦

‖𝑓(𝑠(𝑥)) ― 𝑓(𝑠(𝑦))‖∞ ― (𝜆 ― 2ℯ)
‖𝑠(𝑥) ― 𝑠(𝑦)‖∞

≤ 𝐿∗(29.)

Definition 3 (minimal input space): Let the space ℒ ⊂ 𝕊 be the minimum input space, containing all possible sample 
points, and denote the minimum number of sample points by 𝑁ℒ.

Remark 3: Note that the real-time performance of the KI prediction function or the LACKI rule is related to the 
number of recorded samples 𝑁𝑛. If the number of recorded samples 𝑁𝑛 is reduced, the computational burden of Eq. 
(25) and Eq. (28) can be reduced. To achieve good real-time performance, the nominal minimum number of sample 
points 𝑁ℒ is used, which is assumed to be obtained from offline data. Denote the space ℒ ⊂ 𝕊 by the nominal minimal 
input space.

Here are two lemmas for the subsequent analysis.

Lemma 1 (Lipschitz Continuity, (Calliess et al., 2020)): The KI prediction function 𝑓(𝑠(𝑘),𝐿𝑛,𝐷𝑛) is also Lipschitz 
continuous with Lipschitz constant 𝐿𝑛:

∀𝑥,𝑦 ∈ 𝕂1:𝑁𝑛,‖𝑓(𝑠(𝑥),𝐿𝑛,𝐷𝑛) ― 𝑓(𝑠(𝑦),𝐿𝑛,𝐷𝑛)‖∞ ≤ 𝐿𝑛‖𝑠(𝑥) ― 𝑠(𝑦)‖∞(30.)
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Lemma 2 (Sample-consistency, (Calliess et al., 2020)): If the minimum input space ℒ is obtained, the LACKI rule 

is sample-consistent (up to 𝜆2), and the NPL estimated error ‖𝑓 ― 𝑓‖∞ is bounded:

∀𝑟 ∈ 𝕂1:𝑁𝑛,𝑓(𝑠(𝑟),𝐿𝑛,𝐷𝑛) ∈ ℬ𝜆
2

𝑓(𝑠(𝑟)) (31.)

‖𝑓(𝑠(𝑟)) ― 𝑓(𝑠(𝑟),𝐿𝑛,𝐷𝑛)‖∞ ≤  
𝜆
2 + ℯ(32.)

where ℬλ
2

𝑓(𝑠(𝑟)) = 𝑦 ∈ 𝕐|‖𝑦 ― 𝑓(𝑠(𝑟))‖∞ ≤  𝜆
2

 denotes the λ2-ball around the measured output.

Learning rule: The nominal minimum number 𝑁ℒ  and the estimated Lipschitz constant 𝐿𝑛 are two hyperparameters 
obtained offline, introduced in section 4.3. Different from the fixed sampled data set in (Zheng et al., 2023), the sampled 
data set 𝐷𝑁ℒ is updated over time:

𝐷𝑁ℒ
= 𝑠(𝑟),𝑓(𝑠(𝑟)) |𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘 (33.)

Remark 4: The sampled data set 𝐷𝑁ℒ, consists of sampled data from a continuous system arranged in time with the 
same sampling period. Under the learning rule, the distance between every two samples is bounded. At each sampling 

moment 𝑘, the oldest sample point 𝑠 𝑘 ― 𝑁ℒ  is discarded and the latest sample point 𝑠(𝑘) is retained. This construction 

method maintains the number of recorded samples 𝑁ℒ by updating the sampled dataset. Under the Learning rule, the 

time complexity for the KI prediction function is 𝒪 2𝑁ℒℳ .  

Definition 6 (KI estimated error (Zheng et al., 2023)): If the minimum input space is obtained, KI estimated error 

‖𝔟 𝑠(𝑘),𝐿𝑛,𝐷𝑁ℒ ‖∞ is bounded:

𝔟𝑗 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝐷𝑁ℒ =
1
2 𝓊𝑗 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁ℒ ― 𝓁𝑗 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁ℒ ,𝑗 ∈ 𝕂1:𝑛𝑥

sup ‖𝔟 𝑠(𝑘),𝐿𝑛,𝐷𝑁ℒ ‖∞ = ℯ(34.)

3.2 Theoretical Analysis

Lemma 2 and Definition 6 have shown that if the minimum input space ℒ is obtained, both the NPL estimated error 
and the KI estimated error are all bounded. It is important to note that the Learning rule is designed based on the 
nominal minimal input space. The conservative bounds of the NPL estimated error, as determined by the Learning 
rule, will be analyzed in the following sections. Here, we present two definitions and a lemma for further analysis:

Definition 4 (𝜺-convergent, (Zheng et al., 2023)): For a positive constant 𝜀, denote a point set 𝓈ℕ = {𝑠(𝑟)|𝑟 ∈ 𝕂1:ℕ} 

is 𝜀-convergent to a point 𝑠(𝑟∗) ∈ 𝕊 by 𝓈ℕ
𝜀

𝑠(𝑟∗): iff ∃𝑚 ∈ 𝕂1:ℕ,∀𝑟 > 𝑚,‖𝑠(𝑟) ― 𝑠(𝑟∗)‖∞ ≤ 𝜀.
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Definition 5 (𝜺-denseness, (Zheng et al., 2023)): For a positive constant 𝜀, denote a set sequence 𝒮ℕ = {𝓈𝑟|𝑟 ∈ 𝕂1:ℕ} 

is 𝜀-dense to a point 𝑠(𝑟∗) ∈ 𝓈ℕ by 𝒮ℕ
𝜀

𝑠(𝑟∗): if ∃𝑛 ∈ 𝕂1:ℕ, 𝓈𝑛
𝜀

𝑠(𝑟∗) ∧ 𝓈𝑛 ∈ 𝒮ℕ. Denote a set sequence 𝒮ℕ is 𝜀-dense 

to a point set 𝓈ℕ by 𝒮ℕ
𝜀

𝓈ℕ: ∀𝑠(𝑟∗) ∈ 𝓈ℕ:𝒮ℕ
𝜀

𝑠(𝑟∗).

Lemma 3 (Proof given in Appendix.A): Using the learning rule, for any sample point 𝑠(𝑘),𝑟,𝑘 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘 and 
positive constants 𝑝, there always exists a 𝜀∗-ball around 𝑠(𝑘), which is not all contained in the sampled data set 𝐷𝑁ℒ, 
with  𝜀∗ = 𝑝/𝐿∗: 

𝔟𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ ≤ 𝐿𝑛𝜀∗ + ℯ =
𝐿𝑛
𝐿∗ 𝑝 + ℯ ≤ 𝑝 + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(35.)

which denotes the conservative bound of the KI estimated error by 𝜀 = 𝑝 + ℯ.

Theorem 1: Using the learning rule, the nominal minimal input space ℒ is 𝜀ℒ-dense to the minimal input space ℒ:

P ℒ
𝜀ℒ

ℒ = (36.)

where 𝜀ℒ = 𝑝/𝐿𝑛 > 𝜀∗. 

Proof: From Lemma 3, the 𝜀∗-ball around a sample point 𝑠(𝑘) ∈ 𝕊,𝑘 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘 is equivalent to a neighborhood. 

Note that the unknown Lipschitz constant 𝐿∗ is estimated by 𝐿𝑛 using the hyperparameter 𝜆 in Definition 2. Then, for 
the nominal minimal input space, a larger neighborhood ℒ-ball can be obtained:

ℬ𝜀∗(𝑠(𝑘)) ⊂ ℬ𝜀ℒ
(𝑠(𝑘)) = 𝑠(𝑟) ∈ 𝕊|‖𝑠(𝑘) ― 𝑠(𝑟)‖∞ ≤ 𝜀ℒ ,𝑘 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(37.)

In Definition 5, ℒ
𝜀𝑛ℒ also satisfies:

∀𝑠 ∈ ℒ,∃𝑚 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘, ∀𝑟 > 𝑚:dist ℒ,𝑟 ≤ 𝜀ℒ(38.)

where the function dist ℒ,𝑠  satisfies: dist ℒ,𝑟 = min
𝑠∗ ∈ ℒ

‖𝑠∗ ― 𝑠(𝑟)‖
∞

,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘, and inequality (38) will be proved 

by contradiction. Give an assumption:

∃𝑠∗ ∈ ℒ,∀𝑚 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘, ∃𝑟 > 𝑚:dist ℒ,𝑟 > 𝜀ℒ(39.)

which means there is no sample point recorded in the 𝜀ℒ-ball around 𝑠∗.That is ℬ𝜀ℒ(𝑠(𝑘)) ∩ ℒ = 𝜙 . Define a probability 
by:

𝑝𝑟(𝑠∗) = P 𝑠(𝑟) ∈ ℬ𝜀ℒ
(𝑠(𝑘)) ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(40.)

Then, inequality (39) is equivalent to
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P ℬ𝜀ℒ
(𝑠(𝑘)) ∩ ℒ = 𝜙 =

𝑘

𝑟=𝑘―𝑁ℒ+1
(1 ― 𝑝𝑟(𝑠∗))(41.)

Note that the probability 𝑝𝑟(𝑠∗) is always nonnegative, and for 𝑝𝑟(𝑠∗) > 0, it satisfies:

lim
ℒ→∞

P ℬ𝜀ℒ
(𝑠(𝑘)) ∩ ℒ = 𝜙 = (42.)

which means the assumption fails. Then, the proof is completed.                                                                                     □

Here gives a lemma for further analysis of the conservative bound of the NPL estimated error:

Lemma 4: (Proof given in Appendix.B) For any sample point ∈ ℒ , denote 𝜉 = argmin
𝜉 ∈  ℒ

‖𝑠(𝜉) ― 𝑠(𝑟)‖∞,𝑟 ∈

𝕂𝑘―𝑁ℒ+1:𝑘 by the nearest sample point in the nominal minimal input space ℒ. With 𝜆 = 2ℯ, it holds that:

𝓁𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ ≤ 𝑓𝑗(𝑠(𝜉)) + 𝐿𝑛‖𝑠(𝜉) ― 𝑠(𝑟)‖∞ + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(43.)

and for 𝜆 > 2ℯ, Lemma 4 still holds. 

Theorem 2: For the minimal input space ℒ, the NPL estimated error satisfies:

‖𝑓(𝑠(𝑟)) ― 𝑓(𝑠(𝑘),𝐿𝑛,𝐷ℒ)‖∞ ≤
𝐿𝑛 + 𝐿∗

𝐿𝑛
𝑝 + 2ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(44.)

and using the Learning Rule, the NPL estimated that the error in inequality (44) still holds.

Proof: for the nearest sample point 𝑠(𝜉) ∈  ℒ, it holds:

𝓊 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ ≤ 𝑓𝑗(𝑠(𝜉)) + 𝐿𝑛‖𝑠(𝜉) ― 𝑠(𝑟)‖∞ + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(45.)

From Lemma 4, it holds:

𝑓𝑗(𝑠(𝑘),𝐿𝑛,𝐷ℒ) =
1
2 𝓊𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ + 𝓁𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ

≤ 𝑓𝑗(𝑠(𝜉)) + 𝐿𝑛‖𝑠(𝜉) ― 𝑠(𝑟)‖∞ + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(46.)

which can be rewritten as:

‖𝑓𝑗 𝑠(𝑘),𝐿𝑛,𝐷ℒ ― 𝑓𝑗(𝑠(𝜉))‖
∞

≤ 𝐿𝑛‖𝑠(𝜉) ― 𝑠(𝑟)‖∞ + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(47.)

Combining the bounded process noise ‖𝑓 ― 𝑓‖∞ ≤ ℯ  and Assumption 1, it holds that:

‖𝑓𝑗(𝑠(𝜉)) ― 𝑓(𝑠(𝑘))‖∞ ≤ 𝐿∗‖𝑠(𝜉) ― 𝑠(𝑟)‖∞ + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(48.)
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Based on triangle inequality, sum inequalities (47) and (48):

‖𝑓(𝑠(𝑘)) ― 𝑓(𝑠(𝑘),𝐿𝑛,𝐷ℒ)‖∞ ≤ (𝐿∗ + 𝐿𝑛)‖𝑠(𝜉) ― 𝑠(𝑟)‖∞ + 2ℯ

≤
𝐿𝑛 + 𝐿∗

𝐿𝑛
𝑝 + 2ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(49.)

where the second inequality holds in Theorem 1. 

The validity of inequality (44) can be obtained by providing ℒ
𝜀ℒ

ℒ using the Learning Rule. According to Theorem 

1, the nominal minimal input space ℒ is 𝜀ℒ-dense to the input space ℒ. Then, the proof is completed.                      □

4. Learning-based Path Tracking Control Strategy

The control objective is that the ROV tows the MRT accurately to track the reference path point. A hierarchical 
control strategy consisting of a VSMPC controller and an LBMPC controller is developed, whose scheme is shown in 
Fig.5. 

Given a vector 𝜂𝑟 = (𝑥𝑟,𝑦𝑟, 𝜓𝑟,𝑢𝑟)T that stands for the reference path point, where 𝑥𝑟 and 𝑦𝑟 are reference position 
coordinates. 𝜓𝑟 is the reference yaw angle. 𝑢𝑟 is the reference surge speed of the MRT. Given a vector 𝜂 =
(𝑥,𝑦,𝜓,𝑢𝑀𝑅𝑇)T, the path tracking deviation is denoted by 𝑒𝜂: = (𝜂 ― 𝜂𝑟) = (𝑒𝑥,𝑒𝑦,𝑒𝜓,𝑒𝑢)T. The VSMPC controller is 
developed based on kinematic Model (3) to obtain the ROV’s virtual speed control law 𝜈𝑅𝑂𝑉 to converge path tracking 
deviation. 

With the uncertain nonlinear dynamics in Kinetic Model (6) learned through the proposed NPL method, the LBMPC 
controller is developed to compute the control input 𝜏 by formulating an optimal control problem aimed at tracking the 
ROV’s virtual speed control law 𝜈𝑅𝑂𝑉.

Offline 
Training

𝑁ℒ̅ 𝐿𝑛

𝜈̅𝑅𝑂𝑉

VSMPC Controller

Optimial Control 
Problem min 𝐽𝑙

ROVDMV
Kinematic Equation

𝜈̅𝑀𝑅𝑇

LBMPC Controller

NPL Mehod

Uncertain Nonlinear 
Dynamics Learning

Dataset Udpate 
𝐷𝑁ℒ̅

Optimial Control 
Problem min 𝐽𝑁

𝑓?(𝑠(𝑘), 𝐿𝑛 , 𝐷ℒ)

𝜒𝑀𝑅𝑇 𝜂𝑟

𝜏

𝜒𝑅𝑂𝑉

Constraints

Fig.5 Scheme of the learning-based path tracking control strategy

4.1 VSMPC Controller

Based on the kinematic model of ROVDMV in Eq. (3), the discretized state space model of the MRT can be obtained:
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𝜒𝑀𝑅𝑇(𝑘 + 1) = 𝐴𝑀𝜒𝑀𝑅𝑇(𝑘) + 𝐵𝑀𝒰𝑀𝑅𝑇(𝑘)(50.)

where increment of the MRT’s speed 𝒰𝑀𝑅𝑇≔(∆𝑢𝑀𝑅𝑇,∆𝑣𝑀𝑅𝑇,∆𝜔𝑀𝑅𝑇)T is the control input. Denote the state of the 
MRT by 𝒳𝑀𝑅𝑇: = (𝜂;𝜐𝑀𝑅𝑇). State matrix 𝐴𝑀 and control matrix 𝐵𝑀 satisfy:

𝐴𝑀 = 𝐼3 𝑇𝑙𝒥
03×3 𝐼3

,𝐵𝑀 = 𝑇𝑙𝒥
𝐼3

(51.)

where 𝑇𝑙 is the sampling time of the VSMPC controller. 𝒥 represents a transformation matrix:

𝒥 =
cos 𝜓 ― sin 𝜓 0
sin 𝜓 cos 𝜓 0

0 0 1
(52.)

To minimize the path tracking deviation with smooth speed change, a cost function 𝐽𝑙 is designed as follows:

 𝐽𝑙 =
𝑁𝑙―1

𝑖=0
‖𝑒𝜂(𝑖|𝑘)‖2

𝑄𝑙
+ ‖𝒰𝑀𝑅𝑇(𝑖|𝑘)‖2

𝑅𝑙
+ ‖𝑒𝜂(𝑁𝑙 |𝑘)‖2

𝑃𝑙
(53.)

where 𝑁𝑙 is predictive horizon in the VSMPC controller. 𝑄𝑙 and 𝑅𝑙 are weight matrices. Denote terminal weight matrix 
in the VSMPC controller by 𝑃𝑙.

Note that the MRT’s speed and the increment of the MRT’s speed are bounded, and constraints can be given as:

 𝜐𝑀𝑅𝑇 ∈ 𝕍𝑙≔ 𝜐𝑀𝑅𝑇|𝜐𝑀𝑅𝑇min ≤ 𝜐𝑀𝑅𝑇 ≤ 𝜐𝑀𝑅𝑇max ,𝒰𝑀𝑅𝑇 ∈ 𝕌𝑙≔ 𝒰𝑀𝑅𝑇|𝒰𝑀𝑅𝑇min ≤ 𝒰𝑀𝑅𝑇 ≤ 𝒰𝑀𝑅𝑇max (54.)

where 𝜐𝑀𝑅𝑇max and 𝜐𝑀𝑅𝑇min are known maximum and minimum MRT’s speed. 𝒰𝑀𝑅𝑇max and 𝒰𝑀𝑅𝑇min represent known 
maximum and minimum increments of the MRT’s speed. 

Then, an optimal control problem is formulated to calculate the MRT’s virtual speed control law 𝜈𝑀𝑅𝑇𝑑:

 min
𝒰𝑀𝑅𝑇(𝑖|𝑘),𝑖 ∈ 𝕂0:𝑁𝑙―1

 𝐽𝑙

s.t. 
𝜒𝑀𝑅𝑇(0|𝑘) = 𝜒𝑀𝑅𝑇(𝑘),𝒰𝑀𝑅𝑇(0|𝑘) = 𝒰𝑀𝑅𝑇(𝑘)
𝜒𝑀𝑅𝑇(𝑖 + 1|𝑘) = 𝐴𝑀𝜒𝑀𝑅𝑇(𝑖|𝑘) + 𝐵𝑀𝒰𝑀𝑅𝑇(𝑖|𝑘)
𝜐𝑀𝑅𝑇(𝑖|𝑘),𝜐𝑀𝑅𝑇(𝑁𝑙|𝑘) ∈ 𝕍𝑙
𝒰𝑀𝑅𝑇(𝑖|𝑘) ∈ 𝕌𝑙

(55.)

where denote the solution to the optimal control problem by  𝒰∗
𝑀𝑅𝑇(𝑖|𝑘),𝑖 ∈ 𝕂0:𝑁𝑙―1, and the MRT’s virtual speed 

control law 𝜈𝑀𝑅𝑇𝑑 can be obtained:

 𝜈𝑀𝑅𝑇𝑑 = 𝒰∗
𝑀𝑅𝑇(0|𝑘) + 𝜐𝑀𝑅𝑇(𝑘)(56.)

According to the kinematic model of ROVDMV (3), the ROV’s virtual speed control law 𝜈𝑑 can be calculated:

𝜈𝑑 =  𝑢𝑅𝑂𝑉,𝑣𝑅𝑂𝑉,𝛿
T

= 𝑢MRT,𝑣𝑀𝑅𝑇,
𝜔𝑀𝑅𝑇
𝑢MRT

𝐿
T

(57.)

Remark 5: At any time 𝑘, with the state matrix 𝐴𝑀 and the control matrix 𝐵𝑀 in optimal control problem (55) 
assumed to be constant, the optimal control problem (55) is equivalent to a quadratic programming (QP) problem. It is 
important to note that solving a QP problem involves minimal computational burden. Consequently, calculating the 
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virtual speed control of the ROV will not adversely affect the real-time performance of the learning-based path tracking 
control strategy.

4.2 LBMPC Controller

Based on thedeductions from the kinetic model of the ROVDMV in Section 2.2, a discretized Lipschitz nonlinear 
model (Yu, Maier, Chen, & Allgöwer, 2013) can be obtained:

𝜒𝑅𝑂𝑉(𝑘 + 1) = 𝐴𝑅𝜒𝑅𝑂𝑉(𝑘) + 𝐵𝑅𝒰𝑅𝑂𝑉(𝑘) + 𝑓(𝜒𝑅𝑂𝑉(𝑘)) + 𝓌𝑀𝑅𝑇(𝑘)(58.)

where 𝓌𝑀𝑅𝑇 ∈ ℛ4×1 is the unknown bounded process noise from the rugged seafloor. Denote the ROV state by 𝜒𝑅𝑂𝑉≔
(𝑢𝑅𝑂𝑉,𝑣𝑅𝑂𝑉,𝜔𝑅𝑂𝑉,𝛿)T. The state matrix 𝐴𝑅 and the control matrix 𝐵𝑅 satisfy:

𝐴𝑅 = ℳ―1

1 + 𝑇𝑅𝑋𝑢 0 0 0
0 1 + 𝑇𝑅𝑌𝑣 0 0
0 0 1 + 𝑇𝑅𝑁𝑟 0
0 0 𝑇𝑅 1

,𝐵𝑅 = ℳ
𝑇𝑅 0 0
0 𝑇𝑅 0
0 0 𝑇𝑅
0 0 0

,

ℳ =

𝑚𝑀𝑅𝑇 + 𝑚𝑅𝑂𝑉 + 𝑚𝛿 ― 𝑋𝑢 0 0 0
0 𝑚𝑀𝑅𝑇 + 𝑚𝑅𝑂𝑉 ― 𝑌𝑣 0 0
0 0 𝐼𝑅𝑂𝑉 ― 𝑁𝑟 0
0 0 0 1

(59.)

where 𝑇𝑅 is the sampling time of the LBMPC controller. ℳ is the mass matrix. Note that the added mass 𝑚𝛿 is related 
to the horizontal rotation angle 𝛿, and the state matrix 𝐴𝑅 and the control matrix 𝐵𝑅 are time varying. To match the 
Lipschitz nonlinear model (Yu et al., 2013), the added mass 𝑚𝛿 is simplified as a constant.

The function 𝑓(𝜒𝑅𝑂𝑉), consisting of the nonlinear dynamics, 𝑔(𝜒𝑅𝑂𝑉), the model mismatch from parametric 
uncertainty and the simplification of the added mass 𝑚𝛿, 𝑔 and unknown external ocean current disturbance, ℎ𝑒, is 
given:

𝑓(𝜒𝑅𝑂𝑉) = ℳ―1(𝑔(𝜒𝑅𝑂𝑉) + 𝑔) + ℎ𝑒(60.)

where 

𝑔(𝜒𝑅𝑂𝑉) =
― 𝐹𝑅 cos 𝛿𝑅𝑂𝑉

𝐹𝑅 sin 𝛿𝑅𝑂𝑉
―sg(𝜔MRT)𝑀𝑜2

0
+

(𝑋𝑣𝑟 + 𝑚𝑅𝑂𝑉)𝑣𝑅𝑂𝑉𝜔𝑅𝑂𝑉 + 𝑋𝑟𝑟𝜔2
𝑅𝑂𝑉 + 𝑋𝑢𝑢|𝑢𝑅𝑂𝑉|𝑢𝑅𝑂𝑉

𝑌𝑢𝑣𝑢𝑅𝑂𝑉𝑣𝑅𝑂𝑉 + (𝑌𝑢𝑟 ― 𝑚𝑅𝑂𝑉)𝑢𝑅𝑂𝑉𝜔𝑅𝑂𝑉 + 𝑌𝑣𝑣|𝑣𝑅𝑂𝑉|𝑣𝑅𝑂𝑉
𝑁𝑢𝑣𝑢𝑅𝑂𝑉𝑣𝑅𝑂𝑉 + 𝑁𝑢𝑟𝑢𝑅𝑂𝑉𝜔𝑅𝑂𝑉 + 𝐼𝑀𝑅𝑇𝑢2

𝑅𝑂𝑉𝛿/𝐿2 + 𝑁𝑟𝑟|𝜔𝑅𝑂𝑉|𝜔𝑅𝑂𝑉
0

,ℎ𝑒

= ℳ―1 𝜏𝑒
0

With the function 𝑓(𝜒𝑅𝑂𝑉) learned by the novel NPL method, the state transition model used in the LBMPC 
controller is given as:

𝜒𝑅𝑂𝑉(𝑘 + 1) = 𝐴𝑅𝜒𝑅𝑂𝑉(𝑘) + 𝐵𝑅𝒰𝑅𝑂𝑉(𝑘) + 𝑓 𝑠𝑅𝑂𝑉(𝑘),𝐿𝑛,𝐷𝑁ℒ
(61.)

in which an extended state is given: 𝑠𝑅𝑂𝑉(𝑘) = (𝜒𝑅𝑂𝑉(𝑘),𝒰𝑅𝑂𝑉(𝑘)).

Denote the change of the control input by ∆𝒰𝑅𝑂𝑉(𝑘) = 𝒰𝑅𝑂𝑉(𝑘 + 1) ― 𝒰𝑅𝑂𝑉(𝑘). To minimize the virtual speed 
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deviation with smooth control input, the cost function 𝐽𝑛 is designed as follows:

𝐽𝑛 =
𝑁𝑛―1

𝑖=0
‖𝑒𝜈(𝑖|𝑘)‖2

𝑄𝑛
+

𝑁𝑛―2

𝑖=0
‖∆𝒰𝑅𝑂𝑉(𝑖|𝑘)‖2

𝑅𝑛
+ ‖𝑒𝜈(𝑁𝑛 |𝑘)‖2

𝑃𝑛
(62.)

where 𝑁𝑛 is the predictive horizon in the VSMPC controller. 𝑄𝑛 and 𝑅𝑛 are weight matrices. Denote terminal weight 
matrix in the LBMPC controller by 𝑃𝑛.  Consider constraints on the control input and the ROV’s speed:

𝜐𝑅𝑂𝑉 ∈ 𝕍𝑛≔ 𝜐𝑅𝑂𝑉|𝜐𝑅𝑂𝑉min ≤ 𝜐𝑅𝑂𝑉 ≤ 𝜐𝑅𝑂𝑉max ,
(𝒰𝑅𝑂𝑉,∆𝒰𝑅𝑂𝑉) ∈ 𝕌𝑙≔ (𝒰𝑅𝑂𝑉,∆𝒰𝑅𝑂𝑉)|𝒰𝑅𝑂𝑉min ≤ 𝒰𝑅𝑂𝑉 ≤ 𝒰𝑅𝑂𝑉max,∆𝒰𝑅𝑂𝑉min ≤ ∆𝒰𝑅𝑂𝑉 ≤ ∆𝒰𝑅𝑂𝑉max (63.)

Then, an optimal control problem is formulated to calculate the control input:

 min
𝒰𝑅𝑂𝑉(𝑖|𝑘),𝑖 ∈ 𝕂0:𝑁𝑛―1

 𝐽𝑛

s.t. 

𝜒𝑅𝑂𝑉(0|𝑘) = 𝜒𝑅𝑂𝑉(𝑘),𝒰𝑅𝑂𝑉(0|𝑘) = 𝒰𝑅𝑂𝑉(𝑘)
𝜒𝑅𝑂𝑉(𝑖 + 1|𝑘) = 𝐴𝑅𝜒𝑅𝑂𝑉(𝑖|𝑘) + 𝐵𝑅𝒰𝑅𝑂𝑉(𝑖|𝑘) + 𝑓 𝑠𝑅𝑂𝑉(𝑖|𝑘),𝐿𝑛,𝐷𝑁ℒ
𝜐𝑅𝑂𝑉(𝑖|𝑘),𝜐𝑅𝑂𝑉(𝑁𝑙|𝑘) ∈ 𝕍𝑛
{𝒰𝑅𝑂𝑉(𝑖|𝑘),∆𝒰𝑅𝑂𝑉(𝑖|𝑘)} ∈ 𝕌𝑛

(64.)

where the solution to the optimal control problem is denoted by  𝒰∗
𝑅𝑂𝑉(𝑖|𝑘),𝑖 ∈ 𝕂0:𝑁𝑛―1. Then, the control input can be 

obtained: 𝜏(𝑘) = 𝒰∗
𝑅𝑂𝑉(0|𝑘). 

Remark 6: There is no terminal constraint introduced in optimal control problems (55) and (64), and the stability 
analysis of the corresponding closed-loop system can be found in (Zheng et al., 2023).

4.3 Offline Training 

In this section, the offline training in Fig.4 is introduced as two processes: coarse tuning and fine tuning. A nominal 
MPC controller is designed to conduct one path tracking numerical simulation in the coarse tuning process. Based on 
the numerical simulation results, the LACKI rule is utilized to preliminarily obtain an estimated Lipschitz constant 𝐿𝑛, 
and an offline training algorithm is developed to preliminarily select a nominal minimum number of sample points 𝑁ℒ. 
In the c process, the estimated Lipschitz constant 𝐿𝑛 and the nominal minimum number 𝑁ℒ are utilized in the KI 
prediction function to formulate LBMPC controller in section 4.2. Then, similar to the coarse tuning process, another 
algorithm to optimize the two hyper-parameters is developed.

The nominal MPC controller is used to calculate the ROV’s control input, and optimal control problem (64) becomes:

 min
𝒰𝑅𝑂𝑉(𝑖|𝑘),𝑖 ∈ 𝕂0:𝑁𝑛―1

 𝐽𝑛

𝑠.𝑡. 
𝜒𝑅𝑂𝑉(0|𝑘) = 𝜒𝑅𝑂𝑉(𝑘),𝒰𝑅𝑂𝑉(0|𝑘) = 𝒰𝑅𝑂𝑉(𝑘)
𝜒𝑅𝑂𝑉(𝑖 + 1|𝑘) = 𝐴𝑅𝜒𝑅𝑂𝑉(𝑖|𝑘) + 𝐵𝑅𝒰𝑅𝑂𝑉(𝑖|𝑘) + 𝑔(𝜒𝑅𝑂𝑉(𝑖|𝑘))
𝜐𝑅𝑂𝑉(𝑖|𝑘),𝜐𝑅𝑂𝑉(𝑁𝑙|𝑘) ∈ 𝕍𝑛
{𝒰𝑅𝑂𝑉(𝑖|𝑘),∆𝒰𝑅𝑂𝑉(𝑖|𝑘)} ∈ 𝕌𝑛

(65.)

when one path tracking numerical simulation is done, a sampled data set 𝐷𝑛 can be obtained. Then, define the mean 
square error of the KI estimated error by:

MSE =
1
𝑛

𝑛

𝑖=1
‖𝔟 𝑠(𝑖),𝐿𝑛,𝐷ℒ ‖

∞
(66.)
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, and then the two offline training algorithms are given:

Algorithm 1 offline training algorithm for coarse tuning

1. Based on the sampled data set 𝐷𝑛, using LACKI rule to calculate the estimated 
Lipschitz constant 𝐿𝑛

2. set MSElast to a large positive constant, and give a small positive constant 𝜎

3. for 𝑖 = 2:𝑛

4.    calculate mean square error of the KI estimated error

5.      if |MSE ― MSElast| < 𝜎&MSE ≤ MSElast 

6.          break

7.      end

8.    MSElast= MSE

9. end

10. set  𝑁ℒ = 𝑖 ―1

Remark 7: From Lemma 3, the estimated error of the KI is bounded based on a nominal minimal input space. 
Theoretically, if the nominal minimal input space is appropriate, a small mean square error for the KI's estimated error 
can be achieved. Steps 4-9 in Algorithm 1 are employed to determine the suitable nominal minimum number of sample 
points, which subsequently allows for the identification of the appropriate nominal minimal input space.

Note that the state transition model in the nominal MPC controller does not account for external ocean current 
disturbances and parametric uncertainties, which limits the path tracking performance. In this case, sampled data set 
used in the LACKI rule may not be suitable enough, and the nominal minimum number 𝑁ℒ can be optimized. Then, 
the Algorithm 2 is introduced to search the optimal hyperparameters:

Algorithm 2 hyperparameter optimization algorithm for coarse tuning

1. set 𝑁ℒ and the estimated Lipschitz constant 𝐿𝑛 obtained from previous training.

2. perform one path tracking numerical simulation to obtain the data set 𝐷𝑛

3. based on the sampled data set 𝐷𝑛,using the LACKI rule to update estimated 
Lipschitz constant 𝐿𝑛
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4. set MSElast to a large positive constant

5. for 𝑖 = 𝑁ℒ:𝑛

6.    calculate mean square error of the KI estimated error 

7.      if |MSE ― MSElast| < 𝜎&MSE ≤ MSElast 

8.          break

9.      end

10.    MSElast= MSE

11. end

12. set  𝑁ℒ = 𝑖 ―1 

Remark 8: Similar to Algorithm 1, steps 4-10 in Algorithm 1 are also used to obtain the suitable nominal minimal 
input space. Algorithm 2 need be iterated to obtain the optimal parameters 𝑁ℒ and 𝐿𝑛.

5. Results and discussion

Numerical simulations are conducted to evaluate the learning performance of the novel NPL method and to verify 
the path tracking control performance of the learning-based path tracking control strategy. The dynamic model of the 
ROVDMV, as deduced in section 2, is employed as the controlled object. This paper focuses on the learning-based path 
tracking control strategy, utilizing scale models for the ROVDMV, with parameter values provided in Section 5.1. The 
learning-based path tracking control strategy is applied to the ROVDMV’s path tracking control, where the uncertain 
nonlinear dynamics learned by the NPL method are treated as unknown. Numerical simulations are performed using 
MATLAB, with an AMD Ryzen Threadripper PRO 3995WX 64-Core 2.70 GHz CPU and 256 GB of RAM running 
Windows 10. Optimal control problems (64) and (65) are solved using the MATLAB function “fmincon(·),” while 
optimal control problem (55) is addressed using the MATLAB function “quadprog(·).”

To verify the superiority of the proposed learning-based path tracking control strategy, a comparative numerical 
simulation was conducted. The only difference with the proposed learning-based path tracking control strategy is that 
optimal the in the comparative numerical simulation is the absence of the optimal strategy. Specifically, there is no 
approach to address model mismatch arising from parametric uncertainties and external disturbances under process 
noise. “MPC” denotes simulation results from the comparative numerical simulation, while “LBMPC” denotes 
simulation results from the proposed learning-based path tracking control strategy. The reference path of the MRT is 
generated by a sine curve:  

𝑥𝑟 = 𝑡
𝑦𝑟 = 5 sin 0.05𝑡
𝜓𝑟 = arctan (0.25 cos (0.05𝑡) )
𝑢𝑟 = 1

(67.)
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5.1 Preliminary validation based on a degenerated individual ROV model

Indeed, validating the ROVDMV model and the learning-based path tracking control strategy is essential for the 
research's feasibility. However, the deep-sea mining system discussed in this paper is a complex, kilometer-scale giant 
system, making it challenging to establish an experimental model for the underwater mining system. Due to constraints 
in experimental conditions and funding, we utilize results from a degraded ROV model found in the existing literature 
(Tijjani, Chemori, & Creuze, 2021) to validate the proposed LBMPC controller. The yaw angle control with the 
proposed LMPC controller is performed in the presence of complex, unknown external ocean current disturbances. 

Table.1 Yaw angle control performance

Method
Average yaw angle 

deviation (°)

Max yaw angle 

Deviation (°)

Proposed control strategy 0.05 0.01

Comparative control strategy 0.07 0.08

As the deviation results shown in Table 1, the achieved reductions yaw angle deviations demonstrate feasibility and 
advantages of the proposed LMPC controller. In the proposed learning-based path tracking control strategy, the VSMPC 
controller converts the MRT's control objective into the individual motion control for the ROV. Given that the LBMPC 
controller has been shown to be effective for the individual control of the ROV, it is theoretically applicable to the 
ROVDMV as well.

5.2 Parameters Set

The parameters of the ROVDMV scaled model are presented in Table 2. The hydrodynamic parameters of the 
ROV are referenced from Chen and Bian (2023), while the parameters for the soft seafloor sediment are derived from 
Al-Milli et al. (2010), Dai et al. (2021), and Zeng et al. (2021).

Table 2. Parameters of the dynamic model of ROVDMV

Parameter Value Parameter Value Parameter Value

𝐿 0.5 m 𝑙 2 m 𝑏 1.4 m

𝑚𝑀𝑅𝑇 40.5 kg 𝑚𝑅𝑂𝑉 48.85 kg 𝐼𝑅𝑂𝑉 11.6 kgm2

𝐼𝑀𝑅𝑇 45.85 kgm2 𝑚𝛿 4.12 kg 𝑋𝑢 -3.9 kg

𝑌𝑣 -149.9 kg 𝑁r -53.87 kgm2 𝑋𝑢 -4.1 kg/m
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 𝑁𝑟 -547 kgm2/s/rad 𝑌𝑣𝑣 -553.4 kg/m 𝑋𝑢𝑢 -8.2 kg

𝑁𝑟𝑟 -1037 kgm2/s/rad 𝑌𝑣 -285.7 kg/m 𝑋𝑣𝑟 -149.9 kg

𝑌𝑢𝑟 -120.8 kg 𝑋𝑟𝑟 -13.18kgm/rad 𝑌𝑢𝑣 -120.8 kg

𝑁𝑢𝑟 -13.6 kg 𝑁𝑢𝑣 -163.9 kg 𝐸1 0.95

𝐸2 -0.1 𝐸3 -0.1 𝐶𝐼 420

𝑊 244.5 N 𝜙 6.2 ° 𝑁𝑟 0.1

𝑁𝑐 6.36 𝑟𝑠 12.2 kN/m3 𝑐 5.4 kPa

Based on discretized state space models (50) and (58), a dynamical model of the ROVDMV is deduced as the 
controlled object in the numerical simulation. To verify the robustness against parametric uncertainty, external 
disturbance and process, the parametric uncertainty, which leads to a perturbation of the nonlinear dynamics 𝑔, is 
modeled as 𝑔 = 0.1𝑔. 

Moreover, a complex unknown external ocean current disturbance, which combines the constant disturbance and the 
time varying disturbance, is introduced: 

ℎ𝑒 =
0.1 ∗ +0.2 ∗ sin(0.5𝑡)
0.1 + 0.15 ∗ sin(0.5𝑡)
0.05 + 0.1 ∗ sin(0.5𝑡)  

0
(68.)

The unknown uniformly distributed bounded process noise is defined as: 𝓌𝑀𝑅𝑇 = 𝓌1
𝑀𝑅𝑇,𝓌2

𝑀𝑅𝑇,𝓌3
𝑀𝑅𝑇,0

T
, 

𝓌1
𝑀𝑅𝑇 ∈ [ ―0.005,0.005], 𝓌2

𝑀𝑅𝑇 ∈ [ ―0.005,0.005], 𝓌3
𝑀𝑅𝑇 ∈ [ ―0.005,0.005]。

Parameters in the VSMPC controller and the LBMPC controller greatly influence on the path tracking performance. In 
the optimal control problem (55), the weight matrices 𝑄𝑙 and 𝑃𝑙 are used to minimize the path tracking deviation, while 
the weight matrix 𝑅𝑙 is used to ensure smooth changes in the virtual ROV speed control law. Similarly, in optimal 
control problems (64) and (65), the weight matrices 𝑄𝑛 and 𝑃𝑛 are used to minimize virtual speed deviation, and the 
weight matrix 𝑅𝑛 is used to achieve smooth control input. To intuitively demonstrate the superiority of the proposed 
learning-based path tracking control strategy, the weight matrices and constraints in optimal control problems (64) and 
(65) are all set to be identical. Table 3 presents the parameters used in the three optimal control problems (55), (64) and 
(65).

Table.3 Parameters used in the optimal control problems
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Parameter Value Parameter Value Parameter Value

𝑄𝑙 (44,52,1595,305)T 𝑃𝑙
(84,72,

1895,355)T 𝑅𝑙
(84,72,

1895,355)T 

𝑄𝑛 (44,10,133)T 𝑃𝑛 (54,15,143)T 𝑅𝑛 (30,10,75)T

𝑇𝑙 0.05 𝑇𝑛 0.05 𝜐𝑀𝑅𝑇min ― (0,0.3,0.02)T

𝜐𝑀𝑅𝑇max (1.5,0.3,0.02)T 𝒰𝑀𝑅𝑇min ― (0.05,0.01,0.002)T 𝒰𝑀𝑅𝑇max ― 𝒰𝑀𝑅𝑇min

 𝜐𝑅𝑂𝑉min ― (0,0.3,0.01)T 𝜐𝑅𝑂𝑉max (1.5,0.3,0.01)T 𝒰𝑅𝑂𝑉min ― 𝒰𝑅𝑂𝑉max

𝒰𝑅𝑂𝑉max (80,80,95)T ∆𝒰𝑅𝑂𝑉max (10,1,10)T ∆𝒰𝑅𝑂𝑉min ― ∆𝒰𝑅𝑂𝑉max

5.3 Learning Performance Evaluation

Note that the proposed NPL method is mainly developed from  (Zheng et al., 2023). To intuitively demonstrate its 
superiority, numerical simulations are conducted on the stabilization control of the system from the literature (Zheng et 
al., 2023). As the results recorded in Table.4, the mean square error of the proposed NPL method is smaller than that of 
the comparative NPL method. After offline training, the number of the sample points in the proposed NPL method is 
nearly half of the comparative NPL method. Since the time complexity of the KI prediction equation is positively 
correlated with the number of samples, the simulation time for the whole stabilization control of the proposed NPL 
Method can be reduced by approximately 33%. 

Table.4 Performance of the two NPL Methods

Proposed NPL Method Comparative NPL Method 

Number of the sample points  6 13

Mean square error 0.0856 0.1251

Simulation time (s) 82.27 123.18
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Fig.6 Results of the learned uncertain nonlinear dynamics (comparing the reference values, estimated values, actual 
values with noise (left) and results of histogram (right) of the NPL estimated error)

It can be seen the proposed NPL learning method exhibits better learning performance. Therefore, the following 
analysis focuses on the learning performance of the proposed NPL learning for the ROVDMV’ uncertain nonlinear 
function.

According to Remark 8, with hyperparameter 𝜆 set to 0.0111, offline training is conducted, and the results are 
recorded in Table 4. The iteration step equals to 0 means the data set used in offline training is from simulation results 
of the comparative numerical simulation. The MSE converges to a constant value when the iteration step exceeds 3. 
Besides, the estimated Lipschitz constant 𝐿𝑛 and the nominal minimum number of sample points 𝑁ℒ also tend to be 
invariable. Then, 𝑁ℒ is then set as 5, and Ln as 0.5578.

To visually evaluate the learning performance of the NPL method, with 𝑁ℒ and 𝐿𝑛 set according to the offline training 
results, a numerical simulation for path tracking is conducted using the proposed learning-based path tracking control 
strategy, with parameters set according to the offline training results. The numerical simulation results are presented in 
Figures 6 and 7, where the distribution of the NPL estimated error is illustrated in histograms (Figure 6, right). Since 
the values of the nonlinear function vary periodically, the results for the first 32 seconds are displayed in Figure 6 (left). 
The solid black line represents the actual values, while the solid gray line indicates the measured output values of the 
nonlinear function, which include process noise. To determine whether the NPL estimated error is bounded, the black 
dotted line—derived by adding and subtracting the upper bound of the process noise from the actual values—is utilized. 
The KI estimated error is depicted in Figure 7, where the scatterplot is shown on the left and the histogram is presented 
on the right.

Table 5 Offline training results
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Iteration step MSE 𝐿𝑛 𝑁ℒ

0 0.0043 0.2712 4

1 0.0032 0.5344 5

2 0.0031 0.5546 5

3 0.0029 0.5578 5

 4 0.0029 0.5578 5

5 0.0029 0.5578 5

Fig.7 Results of scatterplot (left) and histogram (right) of the KI estimated error.

As shown in Fig.7, the estimated error for the KI is less than 0.8%, which satisfies the conservative upper bound 
analyzed in Lemma 3,set at 0.003. Additionally, as illustrated in Fig. 6, the estimated values align closely with the 
actual values, and the NPL estimated error remains bounded. The absolute value of the NPL estimated error is less than 
the conservative upper bound established in Theorem 2. When comparing the estimated values with the measured 
output values, their trends are consistent, indicating that the estimated values are closer to the actual values. This 
suggests that process noise is filtered to some extent by the NPL method. The histograms in Fig. 6 reveal a trend toward 
normal distribution in the estimated values, with the estimated errors primarily concentrated around zero. However, 
there is a time delay of one sampling period in the estimated values. According to the learning rule, the nominal minimal 
input space contains only sample points from previous moments, rather than encompassing all possible sample points. 
This explains the observed delay. Overall, the NPL method demonstrates good learning performance.

5.4 Path Tracking Performance Verification

To visually demonstrate the superiority of the proposed learning-based path tracking control strategy, Figure 8 
illustrates the reference trajectory alongside the MRT's trajectory under both the and the path tracking deviation, where 

position deviation is denoted by 𝑒𝑝 = 𝑒2
𝑥 + 𝑒2

𝑦. Table 6 shows the average and maximum values of the path tracking 
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deviations, and the computing time. Compared with the MRT’s trajectory under “LBMPC”, the MRT’s trajectory under 
“LBMPC” fits the reference trajectory better, especially at the amplitude of the sine curve.  As shown in Fig.9 and Table 
4, yaw angle deviations of the “MPC” and “LBMPC” are small, less than 1°.  However, path tracking deviations of 
“LBMPC” are smaller than that of “MPC”. Average position deviation of “LBMPC” is reduced from 0.32m to 0.01m, 
a reduction of about 97%. Maximum position deviation of “LBMPC” is reduced from 0.81m to 0.01m, a reduction of 
about 98%. It can be seen that the proposed learning-based path-tracking control strategy achieves ideal control 
performance and shows better robustness against strong disturbances and random noise. Moreover, the computing time 
of the “MPC” and “LBMPC” are almost the same. The difference is that the optimization control problem of LBMPC 
incorporates the KI prediction function in the state transition model. That means the NPL method will not bring much 
extra computational burden when solving the optimal control problem, and good real-time performance can be ensured.

Fig. 8 MRT trajectory Fig. 9 Path tracking deviation

Table.6 Path tracking performance

Average position deviation (m) Max position deviation(m) Average computing time(ms)

MPC 0.32 0.81 12.31

LBMPC 0.01 0.01 12.47

For a more detailed analysis, range of the ROV’s speed and the control input are shown in Fig.10 and Fig.11. The 
mean squared error (MSE) values are used to evaluate the smoothness of the control input is recorded in Table.7. It can 
be seen that the 𝐹𝑌’s MSE of LBMPC is reduced about 60% compared with that of MPC.  The 𝑇𝑁’s MSE of LBMPC 
is reduced about 74% compared with that of MPC. As shown in Fig.11, the peak values of both 𝐹𝑌 and 𝑇𝑁 have also 
Significantly decreased. Correspondingly, the sway velocity and the yaw rate of the LBMPC ranges more smoothly. 
Therefore, the proposed learning-based path tracking control strategy can enhance the smoothness of the control input. 
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However, the 𝐹𝑋’s MSE is decreased significantly. Nevertheless, the ROV’s surge speed of the LBMPC is also closer 
to the expected value that of the MPC. Note that the ROV need maintain a constant surge speed to drag the MRT to 
track the path. As the surge speed of the ROV is close to the desired surge speed, the control input 𝐹𝑥 mainly addresses 
the external disturbance under the random unknown process noise to track the constant surge speed. This explains why 
the 𝐹𝑋’s MSE has not decreased significantly. To illustrate more intuitively, another three types of control input 
trajectory are given: one without external disturbances and noise (NoOcdRan), one with only external disturbances 
(Ocd), and one with both external disturbances and noise present (OcdRan).

From Fig.12, it can be observed that the control input in the “NoOcdRan” scenario is relatively smooth. In contrast 
to the control input in the “NoOcdRan” case, the input under the “Ocd” scenario exhibits a sinusoidal trend. This is 
noteworthy because the ocean current disturbance mainly consists of a sinusoidal signal, and the control input reacts 
accordingly with a similar pattern. Comparing the control inputs from the “OcdRan” and “Ocd” cases, a random 
chattering trend is evident. This behavior indicates that the control input is also addressing external disturbances and 
process noise. 

Table.7 MSE of the control input

MPC LBMPC

𝐹𝑋 13.78 13.33

𝐹𝑌 25.49 62.82

𝑇𝑁 8.21 31.72
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Fig. 10 ROV speed Fig. 11 Control input

 

Fig. 12 Control inputs under different simulation cases

6. Conclusion

In this paper, we propose a novel method and equipment for deep-sea mining, focusing on the path tracking control 
of the ROVDMV in the horizontal plane. Inspired by a bicycle model, we establish a dynamic model of the ROVDMV 
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for further simulation analysis. Utilizing the KI prediction function and the LACKI rule, we employ a new 
nonparametric learning method to capture the nonlinear dynamics affected by external current disturbances. This 
nonparametric learning (NPL) method can filter out the process noise to some extent, yielding accurate estimated values. 
However, since the sample points are derived from past moments, the estimated values exhibit a time delay of one 
sampling period. Despite this delay, the NPL estimated error remains small and bounded. A learning-based path tracking 
control strategy is proposed for the ROVDMV, which consists of a Variable Speed Model Predictive Control (VSMPC) 
controller and a Learning-Based Model Predictive Control (LBMPC) controller. The VSMPC controller is responsible 
for calculating the virtual speed control law, while the LBMPC controller tracks this virtual speed control law, utilizing 
learned nonlinear dynamics as the state transition model in its optimal control problem. Numerical simulations 
demonstrate that the strategy achieves minimal path tracking deviation and smooth control inputs. Furthermore, the 
inherent robustness of Model Predictive Control (MPC) effectively addresses the estimated errors in Nonlinear 
Programming (NPL), confirming the efficacy of the proposed learning-based path tracking control strategy.

However, as demonstrated in Section 5.2, the estimated error of the NPL is significantly lower than the upper bound 
established in Theorem 2. This indicates that the upper bound is overly conservative. Consequently, the theoretical 
analysis of the upper bound of the NPL estimated error can be refined, and we intend to pursue this research in the 
future.
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Appendix

A Proof of Lemma 3

Proof: Write the ball around 𝑠(𝑘) as: ℬ𝜀∗(𝑠(𝑘)) = {𝑠(𝑟) ∈ 𝕊|‖𝑠(𝑘) ― 𝑠(𝑟)‖∞ ≤ 𝜀∗},𝑘,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘.

For any sampled data 𝑠 ∈ ℬ𝜀∗(𝑠(𝑘)), it satisfies:

𝓊𝑗 𝑓𝑗(𝑟),𝑠,𝐿𝑛,𝑁ℒ = min
𝑠 ∈ ℬ𝜀∗(𝑠(𝑘))

𝑓𝑗(𝑠) + 𝐿𝑛‖𝑠 ― 𝑠(𝑟)‖∞ + 𝑒

≤ 𝑓𝑗(𝑠) + 𝐿𝑛‖𝑠 ― 𝑠(𝑟)‖∞ + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(69.)

𝓁𝑗 𝑓𝑗(𝑟),𝑠,𝐿𝑛,𝑁ℒ = max
𝑠 ∈ ℬ𝜀∗(𝑠(𝑘))

𝑓𝑗(𝑠) ― 𝐿𝑛‖𝑠 ― 𝑠(𝑟)‖∞ ― 𝑒

≥ 𝑓𝑗(𝑠) ― 𝐿𝑛‖𝑠 ― 𝑠(𝑟)‖∞ ― ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(70.)

Then, the KI estimated error satisfies:
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𝔟𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝐷𝑁ℒ
=

1
2 𝓊 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁ℒ ― 𝓁 𝑓𝑗(𝑠(𝑟)),𝑠(𝑘),𝐿𝑛,𝑁ℒ

≤ 𝐿𝑛‖𝑠 ― 𝑠(𝑟)‖∞ + ℯ ≤ 𝐿𝑛𝜀∗ + ℯ =
𝐿𝑛
𝐿∗ 𝑝 + ℯ ≤ 𝑝 + ℯ(71.)

Then, the proof is completed.                                                                                                                      □

B Proof of Lemma 4

Proof: firstly, it can be easily found that:

𝓊𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ ≤ 𝑓𝑗(𝑠(𝜉)) + 𝐿𝑛‖𝑠(𝜉) ― 𝑠(𝑟)‖∞ + ℯ,𝑟 ∈ 𝕂𝑘―𝑁ℒ+1:𝑘(72.)

if an inequation 𝓁𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ ≤ 𝓊𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ  can be proved, the proof is completed. The inequation 

will be proved by contradiction. Give an assumption:

𝓁𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ > 𝓊𝑗 𝑓𝑗(𝑟),𝑠(𝑘),𝐿𝑛,𝑁ℒ (73.)

For convenience, two sample points are given:

𝑟0 = argmin
𝑟 ∈  𝕂𝑘―𝑁ℒ+1:𝑘

𝑓𝑗(𝑠(𝑟)) + 𝐿𝑛‖𝑠(𝑘) ― 𝑠(𝑟)‖∞ + ℯ(74.)

𝑟1 = argmax
𝑟 ∈  𝕂𝑘―𝑁ℒ+1:𝑘

𝑓𝑗(𝑠(𝑟)) ― 𝐿𝑛‖𝑠(𝑘) ― 𝑠(𝑟)‖∞ ― ℯ(75.)

Then, inequality (73) is equivalent to:

𝑓𝑗(𝑠(𝑟1)) ― 𝐿𝑛‖𝑠(𝑟1) ― 𝑠(𝑟)‖∞ ― ℯ > 𝑓𝑗(𝑠(𝑟0)) + 𝐿𝑛‖𝑠(𝑘) ― 𝑠(𝑟0)‖∞ + ℯ(76.)

which can be rewritten as:

𝑓𝑗(𝑠(𝑟1)) ― 𝑓𝑗(𝑠(𝑟0)) ― 2ℯ > 𝐿𝑛(‖𝑠(𝑟1) ― 𝑠(𝑟)‖∞ + ‖𝑠(𝑘) ― 𝑠(𝑟0)‖∞) > 𝐿𝑛‖𝑠(𝑟1) ― 𝑠(𝑟0)‖∞(77.)

It can be obtained that:

𝑓𝑗(𝑠(𝑟1)) ― 𝑓𝑗(𝑠(𝑟0)) ― 2ℯ
‖𝑠(𝑟1) ― 𝑠(𝑟0)‖∞

> 𝐿𝑛(78.)

Based on Remark 2, it holds:

𝑓𝑗(𝑠(𝑟1)) ― 𝑓𝑗(𝑠(𝑟0)) ― 2ℯ
‖𝑠(𝑟1) ― 𝑠(𝑟0)‖∞

≤ 𝐿𝑛(79.)

, and it can be seen that inequality (78) and (79) are contradictory, which means the assumption fails. Then, the proof 
is completed.
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For 𝜆 > 2ℯ, inequality (78) becomes:

𝑓𝑗(𝑠(𝑟1)) ― 𝑓𝑗(𝑠(𝑟0)) ― 𝜆
‖𝑠(𝑟1) ― 𝑠(𝑟0)‖∞

> 𝐿𝑛 ―
𝜆 ― 2ℯ

‖𝑠(𝑟1) ― 𝑠(𝑟0)‖∞
(80.)

and inequality (79) becomes:

𝑓𝑗(𝑠(𝑟1)) ― 𝑓𝑗(𝑠(𝑟0)) ― 𝜆
‖𝑠(𝑟1) ― 𝑠(𝑟0)‖∞

≤ 𝐿𝑛 ―
𝜆 ― 2ℯ

‖𝑠(𝑟1) ― 𝑠(𝑟0)‖∞
(81.)

Thus, for 𝜆 > 2ℯ, Lemma 4 still holds.                                                                                                                    □
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