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Abstract
Novel structural reliability methodology presented in this study being especially well-suited for multi-dimensional structural dynamics, being
physically measured, or numerically simulated over a representative timelapse. Gaidai multivariate reliability method has been applied to the
operational offshore Jacket platform, operating in Bohai Bay. This study demonstrates that it is feasible to accurtely estimate dynamic system
collapse risks under in situ environmental stressors. Modern reliability methods do not cope easily with high dimensionality of real
engineering dynamic systems along with nonlinear inter-correlations between various structural components. Jacket offshore platform has
been selected as the case study for this reliability analysis because of the variety of hotspot stresses, synchronously arising in several
structural parts. The authors provided straightforward, precise method for estimating overall risks of operational failure, damage, or hazard
for nonlinear multidimensional dynamic systems. When it comes to a design stage, the latter tool is of crucial importance for offshore
engineers.

KeywordsMonte Carlo simulation; System reliability; Jacket offshore structure; Bohai bay; Energy.

1
Article Highlights2
• State of the art multivariate Gaidai reliability3
methodology applied to 4D (4-dimensional) dynamic4
system, consisting of Jacket hot-spot stresses5
• Structural system’s reliability assessed, confidence bands6
given7
• Generic nature of advocated methodology discussed8

9

1 Introduction110

This study investigates offshore Jacket platform responses11
to drag-dominated hydrodynamic forces, acting on its12
support structure. Operating WHPB (Well Head Platform B)13
Jacket platform, located 50 kilometers offshore in the Bohai14
Bay BZ25-1 oilfield, was chosen for this study. Bohai Bay15
is the only China's inner sea, and in recent years it attracted16
significant industrial and research interests, due to increase17
in scientific and economic activities, notably within ocean18
renewable energy, marine engineering, and offshore (oil and19
gas) industry. In situ environmental parameters at the Bohai20
Sea are the primary input for both offshore structural and21
reliability studies, [1], [2] for Bohai bay operational venue22
were processed according to DNV (Det Norske Veritas)23
offshore engineering standards, [3], [4]. Using traditional24
engineering reliability methodologies to predict multi-25
dimensional structural system’s reliability and risks being26
often challenging, [6]-[8]. Challenges arise not only from a27
high number of system’s degrees of freedom, but also due28
to nonlinear cross-correlations between critical/key system29
components. Direct numerical MC (Monte Carlo)30
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simulations, or adequate measurements may be used to31
determine reliability-based design parameters for complex32
nonlinear structural systems, [9], [10], but often those33
datasets being quite limited. For other contemporary34
approaches to system’s reliability study, see [11], [12].35
Hence, for many nonlinear highly-dimensional engineering36
nonlinear dynamic systems, experimental and37
computational methods often may not present an affordable38
way of assessing structural risks, especially with long return39
periods, as being required by contemporary design. Novel40
Gaidai reliability methodology advocated here, being41
especially suitable for complex nonlinear structural systems,42
and it utilizes available dataset in a quite efficient way, thus43
reducing efforts, associated with either measurements, or44
numerical calculations. This study investigates structural45
stresses of offshore Jacket’s support structure, monitored46
simultaneously in various critical/hotspot locations, given47
realistic in situ environmental loads; no model48
simplifications or linearization of nonlinear effects has been49
required.50
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52
(a) Significant wave-heights (b) Average wave-periods53

54
Figure 1Wave-height and wave-period geographical contours in Bohai Bay, on annual basis [1]; star marks Jacket platform location55

56
57

Figure 1 presents location for Jacket platform in the58
Bohai Sea area, along with environmental wave59
height/period contour lines.60

61

62
63

Figure 2 Example of offshore Jacket platform64
65

Figure 2 illustrates Jacket platform, that is comparable to66
the Jacket studied here. Figure 3 shows the long-term MC67
statistical/reliability analysis flowchart.68

69

70
Figure 3 Flowchart for long-term environmental71
statistical/reliability analysis72

73
In contrast to univariate/bivariate statistical approaches,74

the multi-variate strategy, able to account for stresses at75
several crucial Jacket support locations, accounts for76
intrinsic stress dependence/coupling. The latter being77
obviously important feature for offshore engineers,78
particularly during the design phase. To summarize key79
contributions of this study:80
 Realistic offshore engineering installation has been81
studied, using novel system reliability methodology;82
 Structural damage risks have been assessed, using83
a multi-state spatiotemporal assessment model;84
 CIs for estimated return periods of interest have85
been provided.86
To put current study into historical perspective, following87

chronology may be referred to:88
1987-System Reliability of Offshore Jacket Structures by89
Ideal Plastic Analysis90
1990-Wave Loading Effect In Offshore Structural91
Reliability92
1998-A reliability-based design format for jacket platforms93
under wave loads94
2003-System reliability of jack-up structures based on95
fatigue degradation96
2009-Reliability-Based Earthquake Design of Jacket-Type97
Offshore Platforms Considering Pile-Soil-Structure98
Interaction99
2011-System failure probability of offshore jack-up100
platforms in the combination of fatigue and fracture101
2012-Structural reliability of offshore platforms considering102
fatigue damage and different failure scenarios103
2014-Seismic Reliability of a Fixed Offshore Platform104
Against Collapse105
2018-Probabilistic Seismic Collapse Analysis of Jacket106
Offshore Platforms, [12], [14].107
For alternative probabilistic design approaches, used for108

offshore platforms along with their structural elements, see109
e.g., [15]-[21]. Estimating multivariate design110
failure/damage probability/risk often being challenging in111
complex engineering contexts, [22], [23].112

2 Gaidai reliability method113
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Considering piecewise jointly-stationary, MDOF (Multiple114
Degrees of Freedom) dynamic system, having key/critical115
components � � , � � , � � , … being parts of the system’s116
dynamic MDOF time-record � � , � � , � � , … ,117
observed/recorded/measured over sufficient (representative)118
timelapse (0, �). 1D system key/critical component’s global119
maxima being denoted here as ��

max = max
0≤�≤�

� � , ��
max =120

max
0≤�≤�

� � , ��
max = max

0≤�≤�
� � , … for the whole121

timelapse(0, �). By suitably long (representative) timelapse122
� , one essentially means large enough value of � with123
respect to dynamic system’s auto-correlation, and relaxation124
times. Let �1, …, ��� be dynamic system key component’s125
local maxima of the component process �(�) at discrete126

instants of time-instants, temporally increasing, �1
� < … <127

���
� within (0, �) . Definitions for remaining MDOF128
dynamic system’s key components, � � , � � , … with129
�1, …, ���; �1, …, ��� etc., being quite similar. For ease of130
use, it has been assumed that all dynamic system’s key131
component’s local maxima being non-negative. The goal is132
to accurately determine risks of Jacket dynamic system133
hazard/failure, or target dynamic system’s hazard/failure134
risk/probability135

�� = Prob(��
max > �� ∪ ��

max > �� ∪ ��
max > �� ∪ …)136

(1)137
related to target system’s survival probability � , expressed138
as139

� ≡ 1 − �� = 0, 0, 0, , …
��, ��, �� , … ���

max, ��
max, ��

max , … ��
max, ��

max, ��
max, …� d��

max���
max���

max… (2)140
141

being target dynamic system’s probability of non-142
exceedance of all dynamic system’s critical/key143
component’s values �� , �� , �� ,... simultaneously; with ∪144
standing for logical unity operation; and ���

max, ��
max, ��

max , …145
being target joint PDF of key component’s global maxima,146
over observational timelapse (0, �) . Next, MDOF dynamic147
system’s vector � � , � � , � � , … to be scaled to its148
nondimensional version: ��, ��, ��, … , with �� = �

��
, �� =149

�
��

, �� = �
��

. It is not practicable to directly assess the latter150
dynamic Jacket system’s joint PDF (Probability Density151
Function), due to dynamic system’s high-dimensionality,152
and given limitations of the underlying raw dataset. More153
specifically, dynamic system being considered to have154
failed/damaged, or entered into state of hazard, when either155
system’s key components � � exceeds ��, or � � exceeds156
�� , or � � exceeds �� , etc., or, equivalently, when either157
��, ��, ��, … eexceeds 1. Let one arrange system’s key158
component’s local maxima time-instants �1

� < … <159
���

� ; �1
� < … < ���

� ; �1
� < … < ���

� into a single temporal160
merged system’s vector, �1 ≤ … ≤ �� , in a monotonously161
non-decreasing temporal order, with �� =162
max { ���

� , ���
� , ���

� , … } , � ≤ �� + �� + �� + … Local163
maxima of each of MDOF dynamic system’s load/response164
key components, namely � � or � � , or � � , etc., being165
represented with their occurrence times �� . System’s 1D166
key components ��, ��, ��, … local maxima being167
combined/coalesced, coherent with merged/coalesced168
temporal vector �1 ≤ … ≤ �� , forming temporally169
increasing synthetic nondimensional system’s vector170
� � ≡ ��� = �1, �2, …, �� , with171
�� = max { ���| ∃ ��, ���

� = �� , ���| ∃ ��, ���
� =172

�� , ���| ∃ ��, ���
� = �� , …} for � = 1, . . , � , see Red ellipse173

highlights case of simultaneous maxima for 2 different Jacket174
system’s components.175
Figure 4. Next, "scaling" parameter 0 < � ≤ 1 will be176
introduced, in order to artificially reduce hazard/limit/risk177
values for all system’s nondimensionalized key components.178
System’s survival probability � � being defined as smooth179
function of scaling parameter �; with � ≡ � 1 according to180
Eq. (1). In order to account for dependency between181

neighboring �� , following memory approximation182
(conditioning level �) being implemented183

Prob{�� ≤ � | ��−1 ≤ �, …, �1
≤ �} ≈ Prob{��
≤ � | ��−1
≤ �, …, ��−�
≤ �}, � > �

(3)

By tracking each individual hazard/failure/risk event, that184
happened locally prior in time, the intention is now to185
prevent cascading/clustering FPSO system’s inter-correlated186
exceedances. Since MDOF dynamic process � � has been187
considered to be piecewise ergodic, hence quasi-stationary,188
probability/risk �� � ≔ Prob �� > � ��−1 ≤189
�, …, ��−� ≤ �} for � > � will be also independent of � and190
solely dependent on conditioning level � . As a result, non-191
exceedance (survival) probability may be approximately192
calculated, using Poisson assumption193

��(�) ≈ exp ( − � ∙ �� � )  , � ≥ 1
(4)

Note that Eq. (3) follows from Eq. (2) if194
neglecting Prob(�1 ≤ �1

�) ≈ 1 , as design failure/damage195
probability being of small order of magnitude, with � ≫ �.196
It should be noted that Eq. (4) is comparable to a well-197
known MUR (Mean Up-crossing Rate) equation for the198
hazard/failure probability/risk (probability of exceedance).199
Regarding conditioning parameter �, convergence is present200

� = lim
�→∞

��(1) ; � � = lim
�→∞

�� � (5)201
A well-known non-exceedance (survival) probability202
relationship with a matching MUR rate function results203
from Eq. (4) for � = 1, as can be shown204
� � ≈ exp ( − �+(�) �); �+ � = 0

∞ ����� �, � ��� (6)205
with �+(�) denoting MUR of the risk level � for the above206
assembled non-dimensional vector � � , assembled from207
scaled MDOF FOWT system’s critical/key components208

�
��

, �
��

, �
��

, … . Eq. (4) turning into well-known non-209
exceedance probability relationship with corresponding210
MUR (Mean Up-crossing Rate) function211

� � ≈ exp ( − �+(�) �); �+ � = 0
∞ ����� �, � ��� (7)212

with �+(�) being MUR of dynamic response level � for213
non-dimensional dynamic Jacket system’s vector � � ,214
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introduced above. The Rice's formula, given by Eq. (7),215
yields MUR, with ���� being the joint PDF for �, �� , with216
�� being time derivative �' � , [47]217

218
Red ellipse highlights case of simultaneous maxima for 2 different219
Jacket system’s components.220
Figure 4 Illustration on how 2 exemplary processes X and Y being221
combined into 1 new synthetic vector � �222

223
In the above, stationarity assumption has been used, [53],224

[54]. The proposed methodology may also treat wide range225
of non-stationary cases. The following is an example of how226
the suggested technique may be applied to handle non-227
stationary circumstances. Given in-situ scatter diagram,228

consisting of � = 1, . . , � environmental sea-states, each229
short-term environmental state having individual occurrence230
probabilities ��, so that �=1

� ��� = 1. Corresponding long-231
term equation being232

��(�) ≡
�=1

�

��(�, �)� �� (8)

with ��(�, �) being the same function as in Eq. (6), but233
corresponding to a specific short-term environmental state,234
indexed with number � . The above presented ��(�)235
functions are often regular in their distribution tail, namely236
for extreme values of � approaching 1 . For � ≥ �cut−on ,237
PDF tail behaves similar to exp − �� + � � + � with238
�, �, �, � being 4 fitted constants, matching appropriate PDF239
tail cut-on �cut−on value. Optimal values of 4240
parameters �, �, �, � may be determined, using SQP241
(Sequential Quadratic Programming) technique,242
implemented in NAG (Numerical Algorithm Group) library,243
[45]. Major advantage of suggested methodology, compared244
to traditional MC-based methods for MDOF offshore245
systems, is that will Gaidai reliability methodology is246
capable of reliability assessment of MDOF systems, with247
practically unlimited NDOF (Number of Degrees Of248
Freedom), see integral in Eq. (2), as hence it cannot be249
straightforwardly compared to classic reliability methods,250
typically covering only dynamic systems with NDOF≤ 2.251

252

253
Figure 5MDOF Jacket structural reliability approach254

255
Figure 5 schematically illustrates suggested MDOF256

Jacket’s structural reliability approach, basically consisting257
of 3 distinct steps: in-situ environmental input; structural258
dynamic analysis, including key hot-spot stress locations;259
application of the Gaidai multi-dimensional structural260
reliability method.261

3 Environmental, structural, material262

models263

Using ANSYS FEM (Finite Element Method) software,264
version 2022 R2 (22.2), Offshore Jacket platform has been265
modeled as a MDOF 4D structure, [34]. To create an266
accurate wave scatter map for the Bohai Bay region,267
satellite-based worldwide wave statistics has been employed.268
Global Wave Statistics Online, [43] dataset has been269
utilized. With the use of an in-place star,270
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Figure 1 illustrates the geographical PDF of wave heights271
and wave periods for the Bohai Bay Jacket in situ zone.272

273
Table 1 Bohai bay wind-waves in situ directional274
probabilities, [43].275
Direction Annual (%)
Northeast 14.9
East 11.1
Southeast 10.0
South 13.2
Southwest 7.7
West 8.2
Northwest 14.2
North 20.8

276
Table 1 presents presumed in situ directional probabilities277

of wind-waves in Bohai bay, averaged over 1 year. For each278
ambient sea condition, 3-hour stationary storm MC279
simulations have been performed. Sea/ocean state scatter280
diagram for the Bohai bay area was taken from [43],281
averaged for the whole year and per all directions. For each282
sea/ocean state ��, �� , zero crossing period �� was283
assumed to be approximately linearly related with the284
spectral peak wave period �� , see DNV’s rule [3]. One-285
sided wave elevation PSD (Power Spectral Density),286
provided by JONSWAP (Joint North Sea Wave Project)287
wave spectrum, has been used to specify stationary288
sea/ocean condition ( )t , with PSD denoted here by289

( )S  , 0 290
291

2
4 2

5 2

5 1( ) exp{ ( ) ln exp[ ( 1) ]}
4 2

p

p

gS
  

   
     292

(9)293
with 981g   m/s 2 , p is the peak frequency in rad/s;294
 ,  and  are parameters related to the spectral shape;295

0 0 7   when p  , 0 0 9   when p  .296
For Bohai bay in situ parameter  has been chosen to be297
equal 3.3, [2]. Parameter  has been determined from298

equation 2
25 06( ) (1 0 287ln )s

p

H
T

     ; with sH299

being the significant wave height, and 2p pT    being300
spectral peak wave period. The Jacket platform has been301
modelled using ANSYS FEM (Finite Element Method)302
software, as nonlinear MDOF structure. Figure 6 depicts303
investigated Jacket platform, operating in Bohai Continental304
Shelf. Jacket’s VM (von Mises) stresses have been utilized305
in this investigation, and the structural material has been306
steel with stresses below the yield level (i.e., no307
plastic/irreversible deformations). A convergence check was308
done, in order to determine proper timestep. Response time309
histories are simulated using the ANSYS FEM software,310
[24]. Jacket dynamic model presumes discrete nodes311
placement from the Jacket deck MDOF structure down to312
the seafloor, distributing lumped hydrodynamic forces,313
acting on the Jacket platform. Lumped parameter model can314
be expressed in the following dynamic vector form315

in d    MX CX KX F F  (10)316
with �, �, and � are constant matrices (geometric non-317
linearity is not modelled). Response vector � =318
(�1, …, ��)� consisting of components �� = �� � , � =319
1…, �, being the �-th DOF (Degree Of Freedom); � being320
the number DOFs in FEM model. �in and �� being inertia,321
drag force components respectively. Dynamic equation to322
be solved through full integral method, geometrical non-323
linearities have been accounted. Jacket platform structural324
MDOF model has been focused on accurate description on325
Jacket legs deformation characteristics, especially critical326
tubular support elements, those have been modelled by327
equivalent beam/tubular/shell structural elements.328

329

330
Figure 6 Jacket structural loadings [8]331
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332
For the whole Jacket MDOF structure (Figure 6),333

especially its area above the sea floor mudline, proper FEM334
models to be utilized (Figure 8). Jacket legs extend 90335
meters below the seabed mudline, and the average depth of336
the water is 17 meters. The airgap between the lowest deck337
and mean water level (MWL), has been about 12 m.338

339
(a) Geometric sketch of typical Y- and T-joints340

341

342
(b) K-joint deformation by ANSIS343

Figure 7 Examples of welded tubular joints.344
345

T, Y, K - joints being typical for Jacket offshore346
platforms, see Figure 7.347
The soil has been modeled following p-y curve method,348

[25]. For sand, equation was349

tanhU
U

KHP AP Y
AP

 
  

 
(11)350

with 0 .9A  representing cyclic loading, �� being the351
soil resistance level limit of the pile side for the unit area,352
K being subgrade reaction’s initial modulus, H being353
depth below the surface of the Jacket pile in the mud, Y354
being lateral deformation of the pile. In ANSYS FEM355
analysis, Jacket leg’s tubes, weld joints have been made of356
steel, for material properties see Table 2.357

358
Table 2 Carbon steel material characteristics359
Young’s modulus, E (GPa) 200

Poisson’s ratio, μ 0.3
Yield limit, σs (MPa) 205

Density, ρ (kg/m3) 7.8∙ 103

4 Results360

Statistical findings for chosen Jacket tubular support361
member’s von Mises stresses to be presented in this section.362
Figure 8 presents Jacket illustration having 4 critical (i.e.,363
hot-spot) stress locations being selected.364

365
Figure 8 Slightly deformed Jacket’s part illustration with 4366
critical VM stress monitoring location hot-spots, stresses367
indicated with colours.368

369
Figure 8 presents Jacket part illustration with 4 stress370

monitoring location spots, stresses due to external (wave)371
loadings have been computed, using ANSYS FEM software,372
VM stresses highlighted with colours. Failure/hazard/risk373
limits all equal to 1. 4 measured/simulated timeseries with374
system’s key component’s local maxima have been kept in375
temporally non-decreasing order, combined into 1 synthetic376
Jacket system’s synthetic vector R, [55]-[61].377

378

379
(a) Nondimensional assembled synthetic vector R380
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381
(b) Extrapolation of � � towards critical level (star)382

Empirical data (*), extrapolation (solid line), extrapolated empirical 95% CI,383
marked with 2 dotted lines384
Figure 9 Assembled vector ��� and corresponding385
extrapolation.386

387
Empirical data (*), extrapolation (solid line), extrapolated empirical388

95% CI, marked with 2 dotted lines389
Figure 9(a) presents an example of non-dimensional390

assembled vector ��� , consisting of assembled local Jacket391
stresses at 4 critical/hot-spot locations, see Figure 8;392
�cut−on = 0.6 cut-on limit has been selected as an example393
since lower values � < �cut−on are clearly irrelevant for the394
desired failure/hazard PDF tail’s extrapolation. � = 1, [62]-395
[73]. Note that system vector ��� does not have physical396
meaning on its own, as it is being purely synthetic. Index �397
being a running index of system’s key components local398
maxima, sorted in temporally non-decreasing order, [45].399
Empirical data (*), extrapolation (solid line), extrapolated empirical400
95% CI, marked with 2 dotted lines401
Figure 9 b) presents extrapolation following Eq. (9)402

towards target failure/hazard level � = 1 . 2 dotted lines403
indicate 95% extrapolated CI (Confidence Interval).404
According to Eq. (6), function � � being directly related to405
target system’s failure/hazard risk/probability 1 − � from406
Eq. (1). Following Eq. (5), Jacket platform dynamic407
system’s failure/hazard probability/risk 1 − � ≈ 1 − �� 1408
may be now estimated. Note that in Eq. (4) parameter �409
corresponds to a total number of system components local410
maxima within synthetic system’s vector ��� , [74]-[77].411
Empirical data (*), extrapolation (solid line), extrapolated empirical412
95% CI, marked with 2 dotted lines413
Figure 9 b) exhibits reasonably narrow 95% CI, even the414

underlying dataset was limited. Empirical data (*),415
extrapolation (solid line), extrapolated empirical 95% CI, marked with 2416
dotted lines417
Figure 9(b) shows extrapolation about 5 decimal orders418

of magnitude down, means 105 efficiency compared to MC419
simulation, what regards extrapolation. For complex MDOF420
system to be MC simulated, number of system’s key421
dimensions/components may become computationally422
prohibitive, [78], [79].423
In order to cross-validate Gaidai multivariate reliability424

method without performing extensive direct MC425
simulations, one has to deploy alternative multivariate426

reliability method. To the authors knowledge, there are no427
currently available reliability method able to treat systems428
with dimensions NDOF > 2 , while Gaidai multivariate429
reliability method is basically NDOF = ∞ . Hence cross-430
validation to be done for NDOF = 2 , thus taking into431
account only 2 most critical hot-spot stresses. For cross-432
validation of Gaidai multivariate reliability method, given433
2D Jacket system (i.e., only 2 stresses selected) and the434
modified 4-parameter Weibull bivariate method, see recent435
study [73].436
Advocated Gaidai reliability methodology delivering437

practical engineering benefits of being able to effectively438
utilize raw/unfiltered measured/simulated datasets, due to439
its ability to handle dynamic system’s multidimensionality,440
using accurate extrapolation tools, when analysis being441
based even on a relatively limited dataset. Empirical data (*),442
extrapolation (solid line), extrapolated empirical 95% CI, marked with 2443
dotted lines444
Figure 9 b) demonstrates extrapolation depth, i.e., how445

many decimal orders of magnitude, has been covered by446
extrapolation, in other words how much CPU (Central447
Processing Unit) time can be spared.448

5 Concluding remarks449

Traditional reliability methods are not easily applicable to450
complex systems with large number of key cross-correlated451
components. Ability of Gaidai multivariate reliability452
method to assess reliability of high-dimensional nonlinear453
dynamic systems being its main practical benefit. This study454
evaluated dynamic hot spot stresses at several offshore455
Jacket platform support structure locations. Jacket support456
structure has been modelled as multi-dimensional457
engineering dynamic system. Theoretical rationale of Gaidai458
multivariate reliability method has been briefly presented.459
While it may be appealing to analyze Jacket structural460
reliability through direct measurement or extensive MC461
simulations, complexity and high dimensionality of462
dynamic systems require development of novel, accurate,463
yet robust techniques that can handle even limited464
underlying datasets, making optimal use of them.465
Methodology employed in this study has demonstrated466
efficacy across a range of intricate nonlinear engineering467
systems, [80]-[86]. The main goal of this research has been468
to propose an all-purpose, trustworthy, and user-friendly469
multi-dimensional reliability strategy for offshore engineers.470
The suggested method produced reasonably narrow CIs. As471
a result, the proposed method might be used at design stage472
for a wide range of nonlinear dynamic systems. Validation473
of Gaidai multivariate reliability method versus well474
established bivariate Weibull method has been carried out.475
Gaidai multivariate reliability method may be used for a476
variety of offshore engineering structures, not limited to477
offshore Jacket platforms.478
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