Eddy Current Inspection Application

Material Thickness Measurement

By Restu Putra & Ahmad Irsyad

Why measuring thickness?

- Defective coating lead to rust
- Determine coating thickness
- Measuring corrosion thinning in aircraft
- Measurement of Thin Conductive Sheet, Strip and Foil
- Cross-sectional Dimensions of Cylindrical Tubes and Rods

Example of flaw on the surface of aircraft's wing

Measuring Material Thickness

- 1. Selection of the probe (surface probes, pencil probes, sliding probes) depends on type of material inspect
- 2. Switch on instrument and select suitable frequencies
- 3. **Reference calibration standard** which composition and geometry are the same with material inspect
- 4. Place the inspection probe at the surface of specimen to be inspected and scan the probe over the surface of specimen
- 5. Monitor the signal to detect the amount of impedance changes
- 6. Material thickness determined by the impedance change in the form of digital reading.

Select probe

Select frequency

Record the result

Place the probe at the surface of specimen

Application in Corrosion Thinning of Aircraft Skins

- Used to do spot check
- Scanner used to inspect small areas
- Determine if corrosion thinning is present in buried layers for multi-layered areas
- Determine thickness changes down to about three percent of the skin thickness

Image Courtesy of Cessna Aircraft Company

Thickness Measurement of Thin Conductive Sheet, Strip and Foil.

- To measure thickness of hot sheet, strip and foil in rolling mills
- To measure the amount of metal thinning due to corrosion on fuselage skins of aircraft
- Thickness variations exhibit the same type of current signal response as a subsurface defects
- Depth of penetration of the eddy current must cover the entire range of thickness
- Measuring thickness of very thin protective coatings of ferromagnetic metals on ferromagnetic metal bases
- Measurement can be made using a single-coil probe, transformer probe or preferable reflection type

Measurement of Cross-sectional Dimensions of Cylindrical Tubes and Rods

- Measure with OD coils or internal axial coils
- Measuring eccentricities of the diameters of tubes and rods and thickness of tube walls
- Detection and assessment of corrosion for external and internal

Cylindrical Tubes and Rods Video

Type Of Material

- Conducting Material
- Non–Conducting Material

Conducting Material

- The coil wounded on an insulated core excited by an alternating current supply
- The alternating field produced as a results generates eddy current in the test piece
- The opposition created by the magnetic field of eddy current against the magnetic field of coil, reduces the inductance of the coil
- So, higher the thickness of the test piece, higher will be the eddy current, lower would be the inductance of the coil.

Non Conducting Material

- Thickness measurement is done by depositing it on a metal backing
- If the thickness of the test piece is large, the eddy current transducer head and the metal backing are separated by a larger distance and therefore the eddy currents are small and consequently the inductance of the coil is large

Video

