
Deep Learning Approach For Objects Detection in
Underwater Pipeline Images
Boris Gašparović a,b, Jonatan Lerga a,b, Goran Mauša a,b, and Marina Ivašić-Kos b,c

aFaculty of Engineering, University of Rijeka, RIjeka, Croatia; bCenter for Artificial Intelligence and
Cybersecurity, University of Rijeka, RIjeka, Croatia; cFaculty of Informatics and Digital Technologies,
University of Rijeka, RIjeka, Croatia

ABSTRACT
In this paper, we present automatic, deep-learning methods for
pipeline detection in underwater environments. Seafloor pipe
lines are critical infrastructure for oil and gas transport. The
inspection of those pipelines is required to verify their integrity
and determine the need for maintenance. Underwater conditions
present a harsh environment that is challenging for image recog
nition due to light refraction and absorption, poor visibility, scat
tering, and attenuation, often causing poor image quality.
Modern machine-learning object detectors utilize Convolutional
Neural Network (CNN), requiring a training dataset of sufficient
quality. In the paper, six different deep-learning CNN detectors for
underwater object detection were trained and tested: five are
based on the You Only Look Once (YOLO) architectures (YOLOv4,
YOLOv4-Tiny, CSP-YOLOv4, YOLOv4@Resnet, YOLOv4@Den
seNet), and one on the Faster Region-based CNN (RCNN) archi
tecture. The models’ performances were evaluated in terms of
detection accuracy, mean average precision (mAP), and proces
sing speed measured with the Frames Per Second (FPS) on
a custom dataset containing underwater pipeline images. In the
study, the YOLOv4 outperformed other models for underwater
pipeline object detection resulting in an mAP of 94.21% with the
ability to detect objects in real-time. Based on the literature
review, this is one of the pioneering works in this field.

ARTICLE HISTORY
Received 31 August 2022
Revised 31 October 2022
Accepted 4 November 2022

Introduction

Submarine pipelines are mainly used to carry oil, gas, and water. Harsh
underwater environment conditions often change the appearance and state
of installed pipes. In order to guarantee the regular operation of the subsea
pipeline infrastructure, the detections of submarine pipeline components and
leakage are essential. Since remotely operated vehicles (ROVs) can adapt to the
harsh sea environment, they can replace human visual underwater inspec
tions. Nowadays, computer vision is used to assist the ROVs in completing
various underwater tasks, such as underwater pipeline object detection and
inspection, tracking, scene reconstruction, and other (Jacobi and Karimanzira

CONTACT Jonatan Lerga jlerga@griteh.hr Faculty of Engineering, University of Rijeka, Vukovarska 58, RIjeka
51000, Croatia

APPLIED ARTIFICIAL INTELLIGENCE
2022, VOL. 36, NO. 01, e2146853 (3716 pages)
https://doi.org/10.1080/08839514.2022.2146853

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://orcid.org/0000-0002-6052-8785
http://orcid.org/0000-0002-4058-8449
http://orcid.org/0000-0002-0643-4577
http://orcid.org/0000-0002-1940-5089
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2022.2146853&domain=pdf&date_stamp=2022-11-17

2013; Lu et al. 2017). The primary operational challenge for underwater
vehicles is that the underwater environment often significantly affects visual
sensing despite using high-quality cameras.

The performance of a vision-based inspection is severely impacted by the
quality of underwater imagery, which is often highly degraded by optical
artifacts. Those artifacts include poor visibility, light refraction, absorption,
scattering, and attenuation. Light scattering is caused by a light ray incident on
the object reflected and deflected multiple times by particles present in the
water before reaching the camera; this reflection introduces a homogeneous
background noise to the image. Attenuation causes exponential decay of light
between the image scene and the camera (Uplavikar, Wu, and Wang 2019).
The subsea environment presents a unique challenge to the perception that is
not present on the land; sea-land has a significant diversity of underwater
image distributions. The images captured in deep oceanic water look different
from those captured in muddy waters or shallow coastal waters. Color dis
tribution can be manipulated by varying degrees of attenuation encountered
by light traveling in the water with different wavelengths. As light propagation
differs underwater (compared to the air), a unique set of non-linear image
distortion occurs, propelled by various factors (such as attenuation and scat
tering). Underwater tends to have a dominating green or blue hue since red
wavelengths get absorbed in deep water (Schettini and Corchs 2010).

Object detection is a critical problem that is utilized in a wide range of
industries for sorting, inspection, monitoring, and other purposes. The tradi
tional vision-based detection method for underwater pipeline and cable detec
tion is based on the edge information in images (Narimani, Nazem, and
Loueipour 2009). Harsh underwater environments impact methods that use
edge information by reducing object detection accuracy. In order to improve
detection speed and accuracy, the generic method based on Convolutional
Neural Network (CNN) occupies a dominant position in object detection
research today. The CNN can be divided into two main categories (Zhao
et al. 2019): Region Proposal-Based Framework (two-stage) and Regression/
Classification-Based Framework (one-stage).

The region proposal-based framework is a two-step process that first gives
a coarse scan of the whole scenario and then focuses on regions of interest
(RoIs). Girshick et al. (2014) proposed R-CNN, which adopts the CNN to
produce RoIs in order to localize and segment objects and a pretrained linear
Support-Vector Machine (SVM) classifier to categorize the produced region of
interests. The R-CNN training is expensive in memory and time. Features are
extracted from different RoIs and stored on the disk. The Fast R-CNN
achieved impressive improvements in both accuracy and efficiency, but not
enough for real-time detection (Girshick 2015). The Faster R-CNN uses
a Region Proposal Network that shares full-image convolutional features
with the detection network (Ren et al. 2015). It has been used for real-time

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3697

detection, face detection (Jiang and Learned-Miller 2017), pedestrian recogni
tion (Zhao et al. 2016), seagrass detection (Moniruzzaman et al. 2019) and in
other fields where inference speed in real-time is not crucial.

A regression-based framework, also called the single-stage detector based
on global regression, performs mapping straight from the image pixels to
bounding box coordinates and class probabilities, which can reduce computa
tional cost. To overcome the problem of the poor real-time performance of the
target detection in R-CNN, Redmon et al. (2016) proposed a novel real-time
object detector called YOLO. It makes use of the whole topmost feature map to
classify and locate objects in one step. Based on YOLO, Redmon et al. pro
posed YOLOv2 (2017) and YOLOv3 (2018). YOLOv2 adopts a max-pooling
layer and batch normalization, which improves detection accuracy and speed.
YOLOv3 uses RESNET and faster R-CNN RPN, which improves spatial
representation. Bochkovskiyet et al. (Bochkovskiy, Wang, and Liao 2020)
proposed YOLOv4 based on a combination of new features, which improve
detection accuracy.

The rest of the paper is structured as follows. Section 2 provides an overview
of the related work in the field of object detection. The methodology of our
study and elaboration on trained deep-learning models are provided in section
3, followed by the description of the experiment setup given in section 4.
A detailed assessment of the obtained results is provided in section 5. The
paper conclusion and future work directions are given in section 6.

Related Work

Object detection is one of the tasks of computer vision systems, where its goal
is to recognize objects and locate them in an image. Deep learning models are
shown to be capable of recognizing and extracting information from images in
difficult environments while simultaneously working with a vast amount of
data. Underwater object detection is generally achieved by sonar, laser, and
cameras. Compared to sonar and laser, the cameras are low-cost, and they can
capture more types of visual information with high temporal and spatial
resolution.

YOLO has been adopted by various researchers for the purpose of under
water object detection because of its high detection efficiency. As an example,
Xu and Matzner (2018) utilized YOLOv3 for underwater fish detection for
waterpower application. With high turbidity, rapid velocity, and murky water,
the datasets utilized to train and test the model were challenging. The testing
of the model yields a mean average precision (mAP) value of 54.92%. Another
version of YOLO was used for fish detection in research by Sung, Yu, and
Girdhar (2017). They trained the YOLOv1 detector on a custom dataset
consisting of 929 fish images with annotation having no negative class images.
Testing of the model achieved 65.3% mAP. Raza and Hong (2020) improved

e2146853-3698 B. GAŠPAROVIĆ ET AL.

the YOLOv3 method for detecting fish in demand for monitoring the marine
ecosystem. The improved version of YOLOv3 uses k-means clustering to
increase the anchor boxes, transfer learning technique, improved loss func
tion, and increased detection scale. The results show it outperforms the
original YOLOv3 on the task of fish detection by 4% in terms of the mAP.
Asyraf et al. (2021) investigated four versions of the YOLOv3 detector (they
trained the original YOLOv3, Tiny-YOLOv3, YOLOv3-SPP, and Tiny-
YOLOv3-PRN) on two open-source datasets to determine the efficiency of
the model’s ability to detect underwater life. Results showed significant evi
dence that YOLOv3 can detect underwater objects with a ranging mAP score
from 74.88% to 97.56%. Application of the newer version of the YOLO
detector, YOLOv4, was demonstrated in research performed by Rosli et al.
(2021) for underwater animal detection. The dataset used to train and test the
model was challenging due to the varying visibility. The training results show
the mAP score of 97.86%.

Aside from fish detection, computer vision has been employed for a variety
of other underwater applications. Chen et al. (2021) utilized YOLOv4 for
underwater target recognition on a dataset named Underwater Robot
Picking Contest (URPC). The URPC dataset contains 4757 images of four
target categories: echinus, starfish, holothurian, and scallop. The detection
results show 73.48% mAP. Training and testing of the YOLOv4 on the same
URPC dataset were conducted by Zhang et al. (2021) achieving testing results
of 81.01% mAP. In order to protect the underwater biodiversity, Tian et al.
(2021) tackle the problem of aquatic environment pollution. They developed
a computer-vision-based autonomous underwater garbage cleaning robot
utilizing a modified YOLOv4 detection network. The detection with the
trained model achieved results of 90.3% mAP. Lei et al. (2022) utilized the
YOLOv4 method for detecting swimming and drowning behavior patterns.
Their study resulted in the mAP value of 89.23% for drowning and 93.86% for
swimming behavior, respectively.

Underwater object detection is also used in aquaculture for formulating
scientific feeding strategies that can effectively reduce feed waste and water
pollution, which is a win–win scenario in terms of economic and ecological
benefits. The detection of uneaten feed pellets provides rich information for
formulating scientific feeding strategies. Hu et al. (2021) utilized improved
YOLOv4 to detect uneaten feed pellets in underwater images. The custom
dataset consists of blurred and high-density images captured from a net cage
located in the cold-water mass area of the Yellow Sea of China. The original
YOLOv4 method was improved by changing the PANet network structure,
adding the DenseNet shortcut connection, and reducing the number of net
work layers. The training and testing results of the improved YOLOv4 method
achieved the mAP score of 92.61% on the test dataset.

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3699

Another use of underwater computer vision is pipeline detection, which is
also the focus of this paper. Underwater pipeline detection was done in
research by Zhao, Wang, and Du (2020). The researchers used the YOLOv3
algorithm to locate the oil spill point of the underwater pipeline. In a training
network, there are two types of detection targets: pipeline and leakage point.
The trained model was able to achieve 77.5% of leakage point detection
accuracy with 36 frames per second of processing time. Detection accuracy
for the pipeline was 93.67%. Based on the literature review, we found just this
one paper applying the deep CNN for underwater pipeline object detections
(limited to distinguishing just two object classes); hence, to the best of our
knowledge, our study may be considered one of the pioneer researches in the
field. Next, we present deep-learning models utilized for this purpose in our
study.

Methodology

This section, presenting the methodology set up and elaboration on trained
deep-learning models, is divided into two subsections. The first subsection
explains the architectures of each version of the utilized YOLO object detector;
the second describes Faster RCNN, an object detection method whose detec
tion results are later compared to YOLO results.

Introduction to the YOLO Architectures

For our case study, we chose the YOLO method because it achieves near-state-
of-the-art performance for object detection tasks in a variety of applications.
The original YOLO paper (Redmon et al. 2016) describes the proposed algo
rithm that is based on regression; instead of selecting the interesting part of an
image, and predicts class probabilities and bounding boxes for the whole
image in one run of the algorithm.

The network architecture of the original YOLO model is based on the
CNN, as shown in Figure 1. It is the first implementation of the single-
stage detector concept and uses reduction layers of dimension 1 × 1

Figure 1. Yolov1 architecture.

e2146853-3700 B. GAŠPAROVIĆ ET AL.

followed by a convolutional layer of dimension 3 × 3 and batch normal
ization and leaky ReLU activation function. The YOLOv1 network has 24
convolutional layers and two fully connected layers. Its detection pipeline
is shown in Figure 2. The convolutional layers perform feature extraction,
while fully connected layers predict bounding box location and class
probabilities. YOLO splits the input image into cells, typically a S� S
grid. Each cell is then responsible for predicting two bounding boxes with
correspondent probabilities. YOLO determines the probability that the cell
contains a particular class during the one pass of the forward propagation.
The bounding box around an object has a confidence value corresponding
to the IoU score of the bounding box and the ground truth box. Versions
YOLOv2 (Redmon and Farhadi 2017) and YOLOv3 (Redmon and Farhadi
2018) use max-pooling layers and different way of generating bounding
box proposals with network depths of 19 and 53 layers. Additionally,
YOLOv3 can perform multilabel classification achieved by replacing the
softmax with logistic regression to calculate the possibility that an input
belongs to a specific tag.

YOLOV4
The YOLOv4 (Bochkovskiy, Wang, and Liao 2020) network is composed of
four distinct sections: input, backbone, neck, and dense prediction. The
structure is shown in Figure 3. The backbone of YOLOv4 is defined as the
essential feature-extraction architecture. The backbone is Darknet53, which
was used in the original YOLOv3, but it has been enhanced with Cross-Stage-

Figure 2. The detection pipeline of YOLO.

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3701

Partial (CSP) connections (Wang et al. 2020). As a result, the backbone was
named CSPDarknet53. This backbone can improve CNN’s learning potential
by assisting in the development of a robust object detection model, especially
in our case of underwater computer vision. CSPDarknet53 consists of 53 layers
of 3 × 3 and 1 × 1 filters, 725 × 725 receptive fields, and 27.6 M parameters.
This architecture has proven superior to its competitor architecture,
CSPResNet50 (Bochkovskiy, Wang, and Liao 2020). The authors of YOLOv4
chose a modified version of Path Aggregation Network (PANet) (Liu et al.
2018) as the architecture’s neck. For the prediction step, each feature needs to
be flattened first, which is accomplished with Spatial Pyramid Pooling (SPP)
(He et al. 2015). The SPP significantly increases receptive field performance by
bringing out contextual features. The head section consists of dense predic
tion, which plays an important role in producing the final prediction and
locating bounding boxes. This same head section can be found in the YOLOv3
implementation, which detects the bounding box coordinates and confidence
score for a specific class. In short, the YOLO head works in three steps. First, it
divides the entire image into N � N grids. Each grid has five parameters (x, y,
h, w; and c; confidence score), where ðx; yÞ is the offset value between the
prediction box and the respective grid cell-bound. Parameters ðh;wÞ are the
height and width from the prediction box to the entire image; confidence score
c is the probability of the class object. Second, CNN extracts the feature and
predicts classes with class probability scores. Finally, non-maximum suppres
sion is used to eliminate repetitive bounding boxes. Improvements created to
help enrich the YOLOv4 capability for underwater usage are Mosaic and
Cutmix data augmentation process (Yun et al. 2019).

The data augmentation method, named Mosaic, was introduced by the
original YOLOv4 authors. It mixes four training images, resulting in
mixing four different contexts. This allows the detection of objects outside
their normal context. In addition, batch normalization calculates activa
tion statistics from four different images on each layer, significantly
reducing the need for a large mini-batch size. Regional dropout strategies
were used as data augmentation steps to enhance the performance of the
CNNs. These augmentations remove informative pixels in training images

Figure 3. Yolov4 structure.

e2146853-3702 B. GAŠPAROVIĆ ET AL.

by overlaying them with a patch of either black pixels or random noise. It
makes the model focus on non-discriminative parts of the object but
causes information loss. The CutMix augmentation helps the model clas
sify two objects from their partial views in the same images by taking two
images and labeling pairs. Its strategy is to cut out and paste patches
among training images where the ground truth labels are also mixed
proportionally to the area of the patches. The Cutmix augmentation
increases localization ability by making the model focus on less discrimi
native parts of the classified object.

YOLOv4 Tiny
YOLOv4 Tiny (Wang, Bochkovskiy, and Liao 2021) is a simplified and
lightweight version of YOLOv4 that may be used to design applications
for mobile and embedded devices. It works on the same idea as the
original model, but with a different set of parameters that minimize the
convolutional layer’s depth. YOLOv4 Tiny has only two YOLO heads as
opposed to three in YOLOv4, and it has been trained from 29 pretrained
convolutional layers as opposed to YOLOv4 which has been trained from
137 pretrained convolutional layers. Supposing that the size of the input
figure is 416� 416 and feature classification is 80, the YOLOv4 Tiny
network structure is shown in Figure 4. Those changes helped the net
work achieve faster detections. The YOLOv4 Tiny method uses a feature
pyramid network to extract feature maps with different scales and increase
object detection speed without using the spatial pyramid pooling and path
aggregation network used in the YOLOv4 method. At the same time, the
YOLOv4 Tiny uses two different scale feature maps that are 13� 13 and
26 � 26 to predict the detection results. However, the accuracy for
YOLOv4 Tiny is approximately two-thirds that of the YOLOv4 when
tested on the MS COCO dataset (Lin et al. 2014).

CSP-YOLOv4
Wang, Bochkovskiy, and Liao (2021) proposed a network scaling
approach that modifies not only the depth, width, and resolution but
also the structure of the network. CSP-YOLOv4 was introduced to get
a better speed/accuracy trade-off by converting the first CSP stage in the
backbone into the original DarkNet residual layer. The PAN architecture
is CSP-ized in order to reduce the amount of computation effectively.

Modified backbone of YOLOv4
The YOLOv4 has CSPDarknet53 as its backbone. The model backbone can be
modified in order to have different detection results. Our paper uses a modified
version of the YOLOv4 backbone to compare results obtained with the original
backbone CSPDarknet53. Models ResNet50-YOLO and DenseNet201-YOLO

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3703

were used to train and test the detection and recognition of underwater targets.
ResNet50 is a deep convolutional neural network that is 50 layers deep. He et al.
(2016) proposed an innovative neural network that won the top position at the
ILSVRC competition. The strength of this model lies in skip connections that
connect blocks of the network which enables the same performance for higher
layers. The residual network (ResNet) improves the efficiency of deep neural
networks by adding outputs from previous layers to the outputs of stacked
layers, making it possible to train much deeper networks. In a DenseNet archi
tecture, each layer is connected to every other layer, hence the name Densely
Connected Convolutional Network. DenseNet requires fewer parameters, as
there is no need to learn redundant feature maps. DenseNet concatenates the
output feature maps of the layer with the incoming feature maps.

Faster RCNN

We compared results in underwater object detection achieved by the YOLO-
based models described above to Faster R-CNN. In the field of object

Figure 4. Yolov4 tiny network structure.

e2146853-3704 B. GAŠPAROVIĆ ET AL.

detection, the Faster R-CNN is a classic two-stage method. Ren et al. improved
the R-CNN method for object detection by adding region proposal networks
(RPN) that share CNN layers with the same network for object detection (Ren
et al. 2015). Overview of object detection with Faster R-CNN is shown in
Figure 5. A Faster R-CNN object detection network consists of a feature
proposal network for extracting the useful features of the target, an RPN
whose task is to propose regions of interest, and a Fast R-CNN detector to
classify the regions (Girshick 2015). The whole structure of the feature pro
posal network consists of 13 convolutional layers. Each convolutional layer is
followed by a maximum pooling layer. In practical application, the more
convolutional layers used, the more image features extracted, and the better
the recognition effect of the network on unknown images. The features are
used as input to the box regression and classification layer. The RPN outputs
the proposed regions and their region score. The core idea of Faster R-CNN is
to avoid the two-stage detection technique. The RPN network is created with
extra CNN layers, which perform regression simultaneously to produce the
region proposal and the region score. The spatial window sliding technique is
used to generate region proposals from the convolutional feature map. For
every sliding window location, RPN predicts more than one region proposal.
Fast R-CNN is responsible for classifying the region of interest and fine-tuning
the location border, judging whether the region of interest identified by RPN
contains the target and the target category. In this work, Detectron2 Faster

Figure 5. An overview of object detection with faster R-CNN.

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3705

RCNN implementation was used (Detectron2 is a PyTorch-based modular
object detection library) (Wu et al. 2019).

Experiment Setup

This section, presenting the experimental results, is divided into three subsec
tions. The first subsection discusses the preparation of the underwater dataset
for YOLOv4 models. The second describes the training process and require
ments, and the last subsection lists evaluation measures for trained object
detectors.

Data Preparations

The data for the experiment were collected by a remotely operated vehicle
(ROV) recording underwater pipelines and from different camera angles.
After recording the videos, two frames per video second were extracted to
create the dataset for analysis. Namely, the dataset consists of 3021 images
taken from three main camera shooting directions (above, left, and right
angles), with every shooting angle having the same number of representing
images. Extracted frames are then labeled using a labeling tool YOLO-Label
(2019), as shown in Figure 6. The dataset distribution is shown in Table 1. The
dataset was split up into 80:10:10 ratio, training part of dataset consisted of
2415 different images, testing and validation part of dataset comprised of 303
images taken from three camera angles. Each part of the dataset contains the
same number of different camera angle images. An annotation of each image is

Figure 6. Snapshot of labelling tool.

Table 1. Dataset description.
Dataset Description

Annotated Image: 3021 annotations
Number of Classes 5
Training 2415 images
Validation 303 images
Testing 303 images

e2146853-3706 B. GAŠPAROVIĆ ET AL.

given in the text file. Images were labeled in YOLO format containing details
on object class, bounding box coordinates, and the height and width of the
bounding box (with the most bottom-left point as the origin). Bounding box
coordinates consist of center x and center y, which represent the coordinates of
the center points of the bounding box. The distance of center from x-axis is
represented as center x, and center y is the distance of the center from the y-
axis. The coordinates are normalized to lie within the range [0, 1] which makes
them easier to work with even after scaling or stretching images.

Training

Neural network framework (in particular, open-source framework Darknet
(Redmon 2013–2016)) is used to provide flexible APIs and configuration
options for performance optimization since it is designed to facilitate and
fasten the training of deep learning models (Shatnawi et al. 2018). Darknet is
written in C and CUDA, allowing for the execution of the training and
detection in the Graphical Processing Unit (GPU). The training was per
formed on the workstation with the following hardware: Intel(R) Xeon(R)
CPU E5–2620 v4 @2.10 GHz, NVIDIA GeForce RTX 2080 Ti (11GB of
graphic memory), and 128GB RAM.

The training setup has five types of detection targets: pipeline, leakage point,
concrete weight, concrete mat, and pipe coupling. Thus, the configuration files
were modified in order to define parameters used during training. In parti
cular, the number of full connection layers output of the YOLOv4 is set to 5
because we have five classes, and the number of filters is obtained by
ðclassesþ 5Þx3. The number of filters for YOLOv4@ResNet50 is set to 50
due ðclassesþ 5Þx5. The YOLOv4 uses 30 filters and can detect up to three
objects per grid cell, while YOLOv4@Resnet50 uses 50 filters with the ability to
detect five objects per grid cell. The subdivision number for training YOLOv4-
Tiny was 64, as for YOLOv4, and 16 which takes more of an image into
account during processing. Here, we were able to use a smaller number of
subdivisions for YOLOv4-Tiny since its network is shallower compared to
other models. Transfer learning is utilized for all YOLO models. Models were
pretrained on the public COCO dataset. All training parameters are given in
Table 2.

Table 2. Training parameters configuration.
Model Batch size Subdivision Width x Height Momentum Decay Learning rate Activation

YOLO1 64 64 416x416 0.949 0.00005 0.0013 Mish
Tiny2 64 64,16 416x416 0.9 0.0005 0.00261 Leaky
CSP3 64 64 416x416 0.949 0.0005 0.001 Mish
Mod4 64 32 416x416 0.9 0.0005 0.0001 Leaky
Mod5 64 8 416x416 0.9 0.0005 0.0001 Leaky

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3707

When the confidence of output is less than the threshold value of 0.5, it was
interpreted as there is no target class. The output of the corresponding full
connection layer is interpreted as the target class when maximum confidence
taken is greater than a threshold value. The detection results are compared to
the ground truth in order to determine whether the detection is a true positive.
The detected bounding box’s intersection over union (IoU) score should be at
least 50%. Figure 7 shows an example of positive and negative object detection
for intersection over union (IoU) score in the case of pipeline detection. In the
case of multiple detections of the same object, only one detection is counted as
a true positive. Non-maximal suppression is used to choose the correct detec
tion result.

The network’s input should be an image, so the video is processed by
extracting frames, which are then forwarded to the YOLO algorithm for object
detection. The YOLO output provides the confidence score and the class ID of
the object class in the bounding box. After the training, the detection model
was tested on the test dataset, which was not included in the training and
validation process.

Performance Evaluation

As evaluation metrics, detection accuracy, mean average precision (mAP), and
frames per second (FPS) are used. The detection accuracy, as in Equation 1,

Figure 7. Visual representation of IoU criterion.

e2146853-3708 B. GAŠPAROVIĆ ET AL.

refers to the ratio of the number of prediction boxes to the total number of
prediction boxes when the intersection ratio of prediction boxes and annota
tion boxes is greater than 0.5:

Accuracy ¼
prediction boxes

total number of prediction boxes
(1)

The mean average precision (mAP) is calculated by taking the mean Average
Precision (AP) over all classes for the selected IoU threshold, denoted in
Equation 2. The mean AP represents the area under the precision-recall
curve, while k stands for number of classes.

mAP ¼
Pk

iþ1 APi

k
(2)

The Frames Per Second (FPS) metric, as in Equation 3, is used to express how
fast the model can process the input in one second. The Number of Frames
represents the number of processed images, while Total detection time is a time
frame of usually 1 second.

FPS ¼
Number of Frames
Total detection time

(3)

Next, we present numerical results for tested object detector models on our
dataset.

Results and Discussions

Next, we present underwater object detection results for different implemen
tations of YOLOv4 and Faster RCNN models. Namely, we compare the
obtained results for YOLOv4, YOLOv4 Tiny, CSP-YOLOv4,
YOLOv4@ResNet50, and YOLOv4@DenseNet201, as well as for the Faster
RCNN object detection. The training and testing of the model were conducted
on the same custom dataset.

First, we will discuss the training process and loss charts. The losses in each
batch were calculated from the log file generated during the training phase,
where Figure 8(a) shows the loss and mAP plotted against iteration for the
YOLOv4 model. The loss decreases, and mAP increases with iterations. The
network can be further trained until the average loss decreases below 0.2, and
the final loss expectation is 0. The YOLOv4 model started to converge with
a good performance at about the 7500th iteration and having a stagnant
performance at about the 10000th iteration. It took 23.7 hours to complete
the training. Figure 8(b) presents the loss and mAP graph for the YOLOv4-
Tiny@16 model, which shows impressive results of average loss below 0.8.
Training of the YOLOv4-Tiny@16 method lasted 3.2 hours. The model started

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3709

to converge after some 8000 iterations. Figure 8(c) shows the loss and mAP
graph for the YOLOv4-Tiny@64 model with a great average loss below 0.7 and
poor mAP metrics. Poor results for the YOLOv4-Tiny@64 show that the larger
minibatch sent to the GPU processor is better for 416 × 416 image size. With
subdivision set to 16, a better generalization of the problem is obtained.
Training of the YOLOv4-Tiny@64 model lasted 6.4 hours, while it started to
converge at about the 8500th iteration. Finally, Figure 8(d) shows the loss and
mAP graph for YOLO@DenseNet201. A deep network with numerous train
ing epochs of 50,000 resulted in a long training time that lasted some 65.1
hours. The same number of training epochs were used for the
YOLOv4@Resnet50, with training lasting 58.8 hours. Those two deep models
started to converge at about the 37500th iteration.

Figure 8. Loss function and mAP performance.

e2146853-3710 B. GAŠPAROVIĆ ET AL.

The object detection results obtained by the trained models on our custom
underwater pipeline image dataset are as follows. In general, excellent results
had been achieved for YOLO object detectors, as shown in Table 3. Table 3
presents results achieved by each trained object detecting method in terms of
mean average precision (mAP) and accuracy for each target class. The mAP is
an often-used metric that calculates average precision for each class across
varied Intersection over Union (IoU). In this study, the threshold was set to
0.5, and it was shown that the YOLOv4 delivered the best mAP result of
94.21% on the tested dataset. This mAP result proves the superiority of the
CSPDarknet53 backbone compared to other competitive methods. It should
also be noted that the YOLOv4-Tiny@16 model showed high classification
efficiency, achieving the mAP of 92.43%, accomplished for a short training
time of only some 3.2 hours. As expected, the obtained results show that the
deeper model architectures deliver higher mAP.

The underwater object detection was tested on both images and videos. The
trained neural networks detect targets in given images and display bounding
boxes around the detected object. Different implementations of the YOLOv4
prove its ability to be trained and detect objects in underwater environments.
This can be seen in Figure 9 showing detecting performances of all tested
models. Deeper models, such as YOLOv4, CSP YOLOv4, and
YOLOv4@DenseNet201, reveal the benefits of the architecture and prove
that better generalization of the problem is ensured by a larger minibatch
sent to the GPU processor.

The processing speed should also be highlighted in addition to classification
and detection performances. Table 4 shows the processing speed performance
of each tested model required to classify the input images in the test dataset
correctly. The obtained result confirmed that the networks, especially YOLOv4
and YOLOv4-Tiny, could simultaneously detect target classes in real-time
while the video is playing. Here, we should emphasize the difference in FPS
performance for YOLOv4-Tiny compared to other implementations. Namely,
the tiny model could achieve high FPS due to the model’s small size (shallow
network), resulting in faster inference speed. The detection rate of Faster
RCNN was not taken into account since it is a two-stage object detector, and
thus, it is not intended for real-time object detection.

Table 3. Performance evaluation result.

Architecture

Accuracy

mAP(%)pipeline leakage point concrete weight concrete mat pipe coupling

YOLOv4 98.53 81.83 94.62 96.00 96.40 94.21
YOLOv4-Tiny@64 54.03 66.78 76.07 83.09 79.39 72.97
YOLOv4-Tiny@16 86.84 81.27 96.05 98.78 97.46 92.43
CSP-YOLOv4 91.04 84.37 97.85 98.80 85.03 93.97
YOLOv4 @ResNet50 78.05 34.92 84.70 95.48 89.38 79.50
YOLOv4 @DenseNet201 91.26 63.83 90.69 97.92 95.65 88.40
Faster RCNN 65.48 45.99 72.37 80.45 76.10 70.49

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3711

Comparing our obtained results in underwater pipeline object detection to
other underwater object detection studies found in literature (such as Chen
et al. 2021; Hu et al. 2021; Rosli et al. 2021; Tian et al. 2021; Zhang et al. 2021),
we can conclude that our obtained result of mAP 94.21% is quite remarkable.
Please note that the underwater environment is rather challenging, and the
above-referred papers detect different underwater objects (like, for example,
fish and not the underwater pipeline objects), often achieving a smaller mAP.
A similar problem of underwater pipeline detection and its component is done
by Zhao, Wang, and Du (2020), distinguishing only between two target classes
(while our research dealt with five underwater target classes). Comparison of
detection results from different research is not possible due to a lack of public

Figure 9. Detection performance of YOLO models.

Table 4. Processing speed inference.
Architecture Frame Per Second(FPS)

YOLOv4 25
YOLOv4-Tiny 38
CSP YOLOv4 15
YOLOv4@ResNet50 17
YOLOv4@DenseNet201 16

e2146853-3712 B. GAŠPAROVIĆ ET AL.

datasets. We could compare results obtained from the trained model on the
custom dataset with the YOLOv4 model trained only on the COCO dataset.
The YOLOv4 trained only on the COCO dataset without fine-tuning on our
dataset cannot detect any target class. We can conclude that the transfer done
in this research learning were successful. As proof, results were compared with
the YOLOv4 model trained from scratch. That model achieved a smaller mAP
of 90.98%.

To conclude, our study investigates the performances of seven deep-
learning architectures for pipeline component detection from images in chal
lenging underwater environments, achieving remarkable mAP of up to 94.21%
on a custom dataset. As a suggestion for future work, a more challenging
dataset should be obtained, containing different underwater conditions.
Another applicable aim of the project could be detection of pipeline failures.
Also, the study can be extended to inside pipeline detections if a dataset is
acquired.

Conclusion

In this paper, different implementations of the YOLOv4 were trained and
tested on a same custom underwater image dataset to investigate the
model’s robustness in detecting pipeline objects in demanding underwater
scenarios. Detection results of YOLOv4, YOLOv4-Tiny, CSP-YOLOv4,
YOLOv4@ResNet, and YOLOv4@DenseNet were compared on test dataset.
Further, achieved detection results were compared to the two-stage object
detector Faster RCNN. The study was focused on detecting five object
classes in the different subsea environments from different camera angles.
The YOLOv4 method outperformed other competitive methods in terms of
mAP (achieving mAP of 94.21%), with YOLOv4-Tiny achieving the high
est FPS and high mAP of 92.43%. In comparison to other similar methods,
our method gives promising results dealing with the problem of under
water pipeline detection. This research could be used in the future by
autonomous underwater vehicles (AUVs) and remotely operated vehicles
(ROVs) to inspect underwater pipelines. In order to achieve additionally
improved performance metrics, it is possible to use various image
enhancement methods for improving the quality of the underwater ima
gery dataset.

Acknowledgment

Author would like to thank the company Vectrino d.o.o. (Boze Milanovica 2b, 51000 Rijeka,
Croatia, www.vectrino.hr) for providing us dataset used in the paper. This research was fully
supported by the Croatian Science Foundation under the project IP-2018-01-3739, EU
Horizon project ”INNO2MARE: Strengthening the Capacity for Excellence of Slovenian and

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3713

http://www.vectrino.hr

Croatian Innovation Ecosystems to Support the Digital and Green Transitions of Maritime
Regions” (101087348), EU Horizon 2020 project ”National Competence Centres in the
Framework of EuroHPC (EUROCC)”, IRI2 project”ABsistemDCiCloud”
(KK.01.2.1.02.0179), University of Rijeka projects uniri-tehnic-18-17 and uniri-tehnic-18-15,
and Croatian–Slovenian bilateral project BI-HR/20-21-043.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Boris Gašparović http://orcid.org/0000-0002-6052-8785
Jonatan Lerga http://orcid.org/0000-0002-4058-8449
Goran Mauša http://orcid.org/0000-0002-0643-4577
Marina Ivašić-Kos http://orcid.org/0000-0002-1940-5089

References

Asyraf, M. S., I. S. Isa, M. I. F. Marzuki, S. N. Sulaiman, and C. C. Hung. 2021. CNN-based
YOLOv3 comparison for underwater object detection. Journal of Electrical and Electronic
Systems Research (JEESR) 18 (APR2021):30–37. doi:10.24191/jeesr.v18i1.005.

Bochkovskiy, A., C.-Y. Wang, and H.-Y.M Liao. 2020. “Yolov4: Optimal speed and accuracy of
object detection.” arXiv preprint arXiv:2004.10934.

Chen, L., M. Zheng, S. Duan, W. Luo, and L. Yao. 2021. Underwater target recognition based
on improved YOLOv4 neural network. Electronics 10 (14):1634. doi:10.3390/
electronics10141634.

Girshick, R. 2015. “Fast r-cnn.” In Proceedings of the IEEE international conference on computer
vision, Santiago, Chile, 1440–48. https://arxiv.org/abs/1504.08083

Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2014. “Rich feature hierarchies for accurate
object detection and semantic segmentation.” In Proceedings of the IEEE conference on
computer vision and pattern recognition, Columbus, USA, 580–87 https://arxiv.org/abs/
1311.2524

He, K., X. Zhang, S. Ren, and J. Sun. 2015. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 37 (9):1904–16.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep residual learning for image recognition.” In
Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas,
USA, 770–78. https://arxiv.org/abs/1512.03385

Hu, X., Y. Liu, Z. Zhao, J. Liu, X. Yang, C. Sun, S. Chen, B. Li, and C. Zhou. 2021. Real-time
detection of uneaten feed pellets in underwater images for aquaculture using an improved
YOLO-V4 network. Computers and Electronics in Agriculture 185:106135. doi:10.1016/j.
compag.2021.106135.

Jacobi, M., and D. Karimanzira. 2013. “Underwater pipeline and cable inspection using
autonomous underwater vehicles.” In 2013 MTS/IEEE OCEANS- Bergen: Bergen, Norway,
IEEE, 1–6. https://doi.org/10.1109/OCEANS-Bergen.2013.6608089

e2146853-3714 B. GAŠPAROVIĆ ET AL.

https://doi.org/10.24191/jeesr.v18i1.005
https://doi.org/10.3390/electronics10141634
https://doi.org/10.3390/electronics10141634
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1512.03385
https://doi.org/10.1016/j.compag.2021.106135
https://doi.org/10.1016/j.compag.2021.106135
https://doi.org/10.1109/OCEANS-Bergen.2013.6608089

Jiang, H., and E. Learned-Miller. 2017. “Face detection with the faster R-CNN.” In 2017 12th
IEEE international conference on automatic face & gesture recognition (FG 2017),
Washington, USA: IEEE, 650–57. https://arxiv.org/abs/5201606.03473

Lei, F., H. Zhu, F. Tang, and X. Wang. 2022. Drowning behavior detection in swimming pool
based on deep learning. Signal, Image and Video Processing 16 (6):1–8. doi:10.1007/s11760-
021-02124-9.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dolla´r, and C. L. Zitnick.
2014. “Microsoft coco: Common objects in context.” In European conference on computer
vision: Zurich, Switzerland, Springer, 740–55. https://arxiv.org/abs/1405.0312

Liu, S., L. Qi, H. Qin, J. Shi, and J. Jia. 2018. “Path aggregation network for instance
segmentation.” In Proceedings of the IEEE conference on computer vision and pattern
recognition, Salt Lake City, USA, 8759–68. https://arxiv.org/abs/1803.01534

Lu, H., Y. Li, Y. Zhang, M. Chen, S. Serikawa, and H. Kim. 2017. Underwater optical image
processing: A comprehensive review. Mobile Networks and Applications 22 (6):1204–11.
doi:10.1007/s11036-017-0863-4.

Moniruzzaman, M., S. M. S. Islam, P. Lavery, and M. Bennamoun. 2019. “Faster r-cnn based
deep learning for seagrass detection from underwater digital images.” In 2019 Digital Image
Computing: Techniques and Applications (DICTA), Perth, Australia: IEEE, 1–7. https://doi.
org/10.1109/DICTA47822.2019.8946048

Narimani, M., S. Nazem, and M. Loueipour. 2009. “Robotics vision-based system for an
underwater pipeline and cable tracker.” In Oceans 2009-Europe, Bremen, Germany: IEEE,
1–6. https://doi.org/10.1109/OCEANSE.2009.5278327

Raza, K., and S. Hong. 2020. Fast and accurate fish detection design with improved YOLO-v3
model and transfer learning. International Journal of Advanced Computer Science and
Applications 11 (2):7–16. doi:10.14569/IJACSA.2020.0110202.

Redmon, J. 2013–2016. Darknet: Open Source Neural Networks in C. http://pjreddie.com/
darknet/ .

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. 2016. “You only look once: Unified,
real-time object detection.” In Proceedings of the IEEE conference on computer vision and
pattern recognition, Las Vegas, USA, 779–88. https://arxiv.org/abs/1506.02640

Redmon, J., and A. Farhadi. 2017. “YOLO9000: Better, faster, stronger.” In Proceedings of the
IEEE conference on computer vision and pattern recognition, Honolulu, USA, 7263–71.
https://arxiv.org/abs/1612.0824

Redmon, J., and A. Farhadi. 2018. “Yolov3: An incremental improvement.” arXiv preprint
arXiv:1804.02767.

Ren, S., K. He, R. Girshick, and J. Sun. 2015. Faster r-cnn: Towards realtime object detection
with region proposal networks. Advances in Neural Information Processing Systems
28:91–99.

Rosli, M. S. A. B., I. S. Isa, M. I. F. Maruzuki, S. N. Sulaiman, and I. Ahmad. 2021. “Underwater
animal detection using YOLOV4.” In 2021 11th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE), Penang, Malaysia, IEEE, 158–63. https://doi.
org/10.1109/ICCSCE52189.2021.5609530877

Schettini, R., and S. Corchs. 2010. Underwater image processing: State of the art of restoration
and image enhancement methods. EURASIP Journal on Advances in Signal Processing
2010 (1):1–14. doi:10.1155/2010/746052.

Shatnawi, A., G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub. 2018. “A comparative study of
open source deep learning frameworks.” In 2018 9th international conference on information
and communication systems (ICICS), Irbid, Jordan, IEEE, 72–77. https://doi.org/10.1109/
IACS.2018.8355444

APPLIED ARTIFICIAL INTELLIGENCE e2146853-3715

https://arxiv.org/abs/5201606.03473
https://doi.org/10.1007/s11760-021-02124-9
https://doi.org/10.1007/s11760-021-02124-9
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1803.01534
https://doi.org/10.1007/s11036-017-0863-4
https://doi.org/10.1109/DICTA47822.2019.8946048
https://doi.org/10.1109/DICTA47822.2019.8946048
https://doi.org/10.1109/OCEANSE.2009.5278327
https://doi.org/10.14569/IJACSA.2020.0110202
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.0824
https://doi.org/10.1109/ICCSCE52189.2021.5609530877
https://doi.org/10.1109/ICCSCE52189.2021.5609530877
https://doi.org/10.1155/2010/746052
https://doi.org/10.1109/IACS.2018.8355444
https://doi.org/10.1109/IACS.2018.8355444

Sung, M., S.-C. Yu, and Y. Girdhar. 2017. “Vision based real-time fish detection using
convolutional neural network.” In OCEANS 2017-Aberdeen, IEEE, 1–6. https://doi.org/10.
1109/OCEANSE.2017.8084889

Tian, M., X. Li, S. Kong, J. Yu, et al. 2021. “Pruning-Based YOLOv4 algorithm for underwater
gabage detection.” In 2021 40th Chinese Control Conference (CCC), Shanghai, China, IEEE,
4008–13. https://doi.org/10.23919/CCC52363.2021.9550592

Uplavikar, P. M., Z. Wu, and Z. Wang. 2019. “All-in-One underwater image enhancement
using domain-adversarial learning.” In CVPR Workshops, Long Beach, USA, 1–8. https://
doi.org/10.48550/580ARXIV.1905.13342

Wang, C.-Y., A. Bochkovskiy, and H.-Y.M Liao. 2021. “Scaled-yolov4: Scaling cross stage
partial network.” In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Nashville, USA, 13029–38. https://doi.org/10.48550/ARXIV.2011.
08036

Wang, C.-Y., H.-Y.M Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh. 2020. “Cspnet:
A new backbone that can enhance learning capability of CNN.” In Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition workshops, Seattle, USA., 390–91.
https://doi.org/10.48550/ARXIV.1911.11929

Wu, Y., A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. 2019. Detectron2. https://github.com/
facebookresearch/detectron2 .

Xu, W., and S. Matzner. 2018. “Underwater fish detection using deep learning for water power
applications.” In 2018 International conference on computational science and computational
intelligence (CSCI). Las Vegas, USA: IEEE, 313–18. https://doi.org/10.48550/ARXIV.1811.
01494

”YOLO-Label”. 2019. developer0hye.github.io. Last accessed 11 January. 2022. https://github.
com/developer0hye/YoloLabel .

Yun, S., D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. 2019. “Cutmix: Regularization strategy
to train strong classifiers with localizable features.” In Proceedings of the IEEE/CVF
International Conference on Computer Vision. Seoul, South Korea, 6023–32. https://doi.
org/10.48550/ARXIV.1905.04899

Zhang, M., S. Xu, W. Song, Q. He, and Q. Wei. 2021. Lightweight underwater object detection
based on YOLO v4 and multi-scale attentional feature fusion. Remote Sensing 13 (22):4706.
doi:10.3390/rs13224706.

Zhao, X., W. Li, Y. Zhang, T. A. Gulliver, S. Chang, and Z. Feng. 2016. “A faster RCNN-based
pedestrian detection system.” In 2016 IEEE 84th Vehicular Technology Conference (VTC-
Fall). Montreal, Canada:IEEE, 1–5. https://doi.org/10.1109/VTCFall.2016.7880852

Zhao, X., X. Wang, and Z. Du. 2020. “Research on detection method for the leakage of
underwater pipeline by YOLOv3.” In 2020 IEEE International Conference on Mechatronics
and Automation (ICMA). Beijing, China: IEEE, 637–42. https://doi.org/10.1109/
ICMA49215.2020.9233693

Zhao, Z.-Q., P. Zheng, S.-T. Xu, and X. Wu. 2019. Object detection with deep learning: A
review. IEEE Transactions on Neural Networks and Learning Systems 30 (11):3212–32.
doi:10.1109/TNNLS.2018.2876865.

e2146853-3716 B. GAŠPAROVIĆ ET AL.

https://doi.org/10.1109/OCEANSE.2017.8084889
https://doi.org/10.1109/OCEANSE.2017.8084889
https://doi.org/10.23919/CCC52363.2021.9550592
https://doi.org/10.48550/580ARXIV.1905.13342
https://doi.org/10.48550/580ARXIV.1905.13342
https://doi.org/10.48550/ARXIV.2011.08036
https://doi.org/10.48550/ARXIV.2011.08036
https://doi.org/10.48550/ARXIV.1911.11929
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.48550/ARXIV.1811.01494
https://doi.org/10.48550/ARXIV.1811.01494
https://github.com/developer0hye/YoloLabel
https://github.com/developer0hye/YoloLabel
https://doi.org/10.48550/ARXIV.1905.04899
https://doi.org/10.48550/ARXIV.1905.04899
https://doi.org/10.3390/rs13224706
https://doi.org/10.1109/VTCFall.2016.7880852
https://doi.org/10.1109/ICMA49215.2020.9233693
https://doi.org/10.1109/ICMA49215.2020.9233693
https://doi.org/10.1109/TNNLS.2018.2876865

	Abstract
	Introduction
	Related Work
	Methodology
	Introduction to the YOLO Architectures
	YOLOV4
	YOLOv4 Tiny
	CSP-YOLOv4
	Modified backbone of YOLOv4

	Faster RCNN

	Experiment Setup
	Data Preparations
	Training
	Performance Evaluation

	Results and Discussions
	Conclusion
	Acknowledgment
	Disclosure statement
	ORCID
	References

