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ABSTRACT
In this paper, we present automatic, deep-learning methods for 
pipeline detection in underwater environments. Seafloor pipe
lines are critical infrastructure for oil and gas transport. The 
inspection of those pipelines is required to verify their integrity 
and determine the need for maintenance. Underwater conditions 
present a harsh environment that is challenging for image recog
nition due to light refraction and absorption, poor visibility, scat
tering, and attenuation, often causing poor image quality. 
Modern machine-learning object detectors utilize Convolutional 
Neural Network (CNN), requiring a training dataset of sufficient 
quality. In the paper, six different deep-learning CNN detectors for 
underwater object detection were trained and tested: five are 
based on the You Only Look Once (YOLO) architectures (YOLOv4, 
YOLOv4-Tiny, CSP-YOLOv4, YOLOv4@Resnet, YOLOv4@Den 
seNet), and one on the Faster Region-based CNN (RCNN) archi
tecture. The models’ performances were evaluated in terms of 
detection accuracy, mean average precision (mAP), and proces
sing speed measured with the Frames Per Second (FPS) on 
a custom dataset containing underwater pipeline images. In the 
study, the YOLOv4 outperformed other models for underwater 
pipeline object detection resulting in an mAP of 94.21% with the 
ability to detect objects in real-time. Based on the literature 
review, this is one of the pioneering works in this field.
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Introduction

Submarine pipelines are mainly used to carry oil, gas, and water. Harsh 
underwater environment conditions often change the appearance and state 
of installed pipes. In order to guarantee the regular operation of the subsea 
pipeline infrastructure, the detections of submarine pipeline components and 
leakage are essential. Since remotely operated vehicles (ROVs) can adapt to the 
harsh sea environment, they can replace human visual underwater inspec
tions. Nowadays, computer vision is used to assist the ROVs in completing 
various underwater tasks, such as underwater pipeline object detection and 
inspection, tracking, scene reconstruction, and other (Jacobi and Karimanzira  
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2013; Lu et al. 2017). The primary operational challenge for underwater 
vehicles is that the underwater environment often significantly affects visual 
sensing despite using high-quality cameras.

The performance of a vision-based inspection is severely impacted by the 
quality of underwater imagery, which is often highly degraded by optical 
artifacts. Those artifacts include poor visibility, light refraction, absorption, 
scattering, and attenuation. Light scattering is caused by a light ray incident on 
the object reflected and deflected multiple times by particles present in the 
water before reaching the camera; this reflection introduces a homogeneous 
background noise to the image. Attenuation causes exponential decay of light 
between the image scene and the camera (Uplavikar, Wu, and Wang 2019). 
The subsea environment presents a unique challenge to the perception that is 
not present on the land; sea-land has a significant diversity of underwater 
image distributions. The images captured in deep oceanic water look different 
from those captured in muddy waters or shallow coastal waters. Color dis
tribution can be manipulated by varying degrees of attenuation encountered 
by light traveling in the water with different wavelengths. As light propagation 
differs underwater (compared to the air), a unique set of non-linear image 
distortion occurs, propelled by various factors (such as attenuation and scat
tering). Underwater tends to have a dominating green or blue hue since red 
wavelengths get absorbed in deep water (Schettini and Corchs 2010).

Object detection is a critical problem that is utilized in a wide range of 
industries for sorting, inspection, monitoring, and other purposes. The tradi
tional vision-based detection method for underwater pipeline and cable detec
tion is based on the edge information in images (Narimani, Nazem, and 
Loueipour 2009). Harsh underwater environments impact methods that use 
edge information by reducing object detection accuracy. In order to improve 
detection speed and accuracy, the generic method based on Convolutional 
Neural Network (CNN) occupies a dominant position in object detection 
research today. The CNN can be divided into two main categories (Zhao 
et al. 2019): Region Proposal-Based Framework (two-stage) and Regression/ 
Classification-Based Framework (one-stage).

The region proposal-based framework is a two-step process that first gives 
a coarse scan of the whole scenario and then focuses on regions of interest 
(RoIs). Girshick et al. (2014) proposed R-CNN, which adopts the CNN to 
produce RoIs in order to localize and segment objects and a pretrained linear 
Support-Vector Machine (SVM) classifier to categorize the produced region of 
interests. The R-CNN training is expensive in memory and time. Features are 
extracted from different RoIs and stored on the disk. The Fast R-CNN 
achieved impressive improvements in both accuracy and efficiency, but not 
enough for real-time detection (Girshick 2015). The Faster R-CNN uses 
a Region Proposal Network that shares full-image convolutional features 
with the detection network (Ren et al. 2015). It has been used for real-time 
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detection, face detection (Jiang and Learned-Miller 2017), pedestrian recogni
tion (Zhao et al. 2016), seagrass detection (Moniruzzaman et al. 2019) and in 
other fields where inference speed in real-time is not crucial.

A regression-based framework, also called the single-stage detector based 
on global regression, performs mapping straight from the image pixels to 
bounding box coordinates and class probabilities, which can reduce computa
tional cost. To overcome the problem of the poor real-time performance of the 
target detection in R-CNN, Redmon et al. (2016) proposed a novel real-time 
object detector called YOLO. It makes use of the whole topmost feature map to 
classify and locate objects in one step. Based on YOLO, Redmon et al. pro
posed YOLOv2 (2017) and YOLOv3 (2018). YOLOv2 adopts a max-pooling 
layer and batch normalization, which improves detection accuracy and speed. 
YOLOv3 uses RESNET and faster R-CNN RPN, which improves spatial 
representation. Bochkovskiyet et al. (Bochkovskiy, Wang, and Liao 2020) 
proposed YOLOv4 based on a combination of new features, which improve 
detection accuracy.

The rest of the paper is structured as follows. Section 2 provides an overview 
of the related work in the field of object detection. The methodology of our 
study and elaboration on trained deep-learning models are provided in section 
3, followed by the description of the experiment setup given in section 4. 
A detailed assessment of the obtained results is provided in section 5. The 
paper conclusion and future work directions are given in section 6.

Related Work

Object detection is one of the tasks of computer vision systems, where its goal 
is to recognize objects and locate them in an image. Deep learning models are 
shown to be capable of recognizing and extracting information from images in 
difficult environments while simultaneously working with a vast amount of 
data. Underwater object detection is generally achieved by sonar, laser, and 
cameras. Compared to sonar and laser, the cameras are low-cost, and they can 
capture more types of visual information with high temporal and spatial 
resolution.

YOLO has been adopted by various researchers for the purpose of under
water object detection because of its high detection efficiency. As an example, 
Xu and Matzner (2018) utilized YOLOv3 for underwater fish detection for 
waterpower application. With high turbidity, rapid velocity, and murky water, 
the datasets utilized to train and test the model were challenging. The testing 
of the model yields a mean average precision (mAP) value of 54.92%. Another 
version of YOLO was used for fish detection in research by Sung, Yu, and 
Girdhar (2017). They trained the YOLOv1 detector on a custom dataset 
consisting of 929 fish images with annotation having no negative class images. 
Testing of the model achieved 65.3% mAP. Raza and Hong (2020) improved 
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the YOLOv3 method for detecting fish in demand for monitoring the marine 
ecosystem. The improved version of YOLOv3 uses k-means clustering to 
increase the anchor boxes, transfer learning technique, improved loss func
tion, and increased detection scale. The results show it outperforms the 
original YOLOv3 on the task of fish detection by 4% in terms of the mAP. 
Asyraf et al. (2021) investigated four versions of the YOLOv3 detector (they 
trained the original YOLOv3, Tiny-YOLOv3, YOLOv3-SPP, and Tiny- 
YOLOv3-PRN) on two open-source datasets to determine the efficiency of 
the model’s ability to detect underwater life. Results showed significant evi
dence that YOLOv3 can detect underwater objects with a ranging mAP score 
from 74.88% to 97.56%. Application of the newer version of the YOLO 
detector, YOLOv4, was demonstrated in research performed by Rosli et al. 
(2021) for underwater animal detection. The dataset used to train and test the 
model was challenging due to the varying visibility. The training results show 
the mAP score of 97.86%.

Aside from fish detection, computer vision has been employed for a variety 
of other underwater applications. Chen et al. (2021) utilized YOLOv4 for 
underwater target recognition on a dataset named Underwater Robot 
Picking Contest (URPC). The URPC dataset contains 4757 images of four 
target categories: echinus, starfish, holothurian, and scallop. The detection 
results show 73.48% mAP. Training and testing of the YOLOv4 on the same 
URPC dataset were conducted by Zhang et al. (2021) achieving testing results 
of 81.01% mAP. In order to protect the underwater biodiversity, Tian et al. 
(2021) tackle the problem of aquatic environment pollution. They developed 
a computer-vision-based autonomous underwater garbage cleaning robot 
utilizing a modified YOLOv4 detection network. The detection with the 
trained model achieved results of 90.3% mAP. Lei et al. (2022) utilized the 
YOLOv4 method for detecting swimming and drowning behavior patterns. 
Their study resulted in the mAP value of 89.23% for drowning and 93.86% for 
swimming behavior, respectively.

Underwater object detection is also used in aquaculture for formulating 
scientific feeding strategies that can effectively reduce feed waste and water 
pollution, which is a win–win scenario in terms of economic and ecological 
benefits. The detection of uneaten feed pellets provides rich information for 
formulating scientific feeding strategies. Hu et al. (2021) utilized improved 
YOLOv4 to detect uneaten feed pellets in underwater images. The custom 
dataset consists of blurred and high-density images captured from a net cage 
located in the cold-water mass area of the Yellow Sea of China. The original 
YOLOv4 method was improved by changing the PANet network structure, 
adding the DenseNet shortcut connection, and reducing the number of net
work layers. The training and testing results of the improved YOLOv4 method 
achieved the mAP score of 92.61% on the test dataset.
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Another use of underwater computer vision is pipeline detection, which is 
also the focus of this paper. Underwater pipeline detection was done in 
research by Zhao, Wang, and Du (2020). The researchers used the YOLOv3 
algorithm to locate the oil spill point of the underwater pipeline. In a training 
network, there are two types of detection targets: pipeline and leakage point. 
The trained model was able to achieve 77.5% of leakage point detection 
accuracy with 36 frames per second of processing time. Detection accuracy 
for the pipeline was 93.67%. Based on the literature review, we found just this 
one paper applying the deep CNN for underwater pipeline object detections 
(limited to distinguishing just two object classes); hence, to the best of our 
knowledge, our study may be considered one of the pioneer researches in the 
field. Next, we present deep-learning models utilized for this purpose in our 
study.

Methodology

This section, presenting the methodology set up and elaboration on trained 
deep-learning models, is divided into two subsections. The first subsection 
explains the architectures of each version of the utilized YOLO object detector; 
the second describes Faster RCNN, an object detection method whose detec
tion results are later compared to YOLO results.

Introduction to the YOLO Architectures

For our case study, we chose the YOLO method because it achieves near-state- 
of-the-art performance for object detection tasks in a variety of applications. 
The original YOLO paper (Redmon et al. 2016) describes the proposed algo
rithm that is based on regression; instead of selecting the interesting part of an 
image, and predicts class probabilities and bounding boxes for the whole 
image in one run of the algorithm.

The network architecture of the original YOLO model is based on the 
CNN, as shown in Figure 1. It is the first implementation of the single- 
stage detector concept and uses reduction layers of dimension 1 × 1 

Figure 1. Yolov1 architecture.
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followed by a convolutional layer of dimension 3 × 3 and batch normal
ization and leaky ReLU activation function. The YOLOv1 network has 24 
convolutional layers and two fully connected layers. Its detection pipeline 
is shown in Figure 2. The convolutional layers perform feature extraction, 
while fully connected layers predict bounding box location and class 
probabilities. YOLO splits the input image into cells, typically a S� S 
grid. Each cell is then responsible for predicting two bounding boxes with 
correspondent probabilities. YOLO determines the probability that the cell 
contains a particular class during the one pass of the forward propagation. 
The bounding box around an object has a confidence value corresponding 
to the IoU score of the bounding box and the ground truth box. Versions 
YOLOv2 (Redmon and Farhadi 2017) and YOLOv3 (Redmon and Farhadi  
2018) use max-pooling layers and different way of generating bounding 
box proposals with network depths of 19 and 53 layers. Additionally, 
YOLOv3 can perform multilabel classification achieved by replacing the 
softmax with logistic regression to calculate the possibility that an input 
belongs to a specific tag.

YOLOV4
The YOLOv4 (Bochkovskiy, Wang, and Liao 2020) network is composed of 
four distinct sections: input, backbone, neck, and dense prediction. The 
structure is shown in Figure 3. The backbone of YOLOv4 is defined as the 
essential feature-extraction architecture. The backbone is Darknet53, which 
was used in the original YOLOv3, but it has been enhanced with Cross-Stage- 

Figure 2. The detection pipeline of YOLO.
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Partial (CSP) connections (Wang et al. 2020). As a result, the backbone was 
named CSPDarknet53. This backbone can improve CNN’s learning potential 
by assisting in the development of a robust object detection model, especially 
in our case of underwater computer vision. CSPDarknet53 consists of 53 layers 
of 3 × 3 and 1 × 1 filters, 725 × 725 receptive fields, and 27.6 M parameters. 
This architecture has proven superior to its competitor architecture, 
CSPResNet50 (Bochkovskiy, Wang, and Liao 2020). The authors of YOLOv4 
chose a modified version of Path Aggregation Network (PANet) (Liu et al.  
2018) as the architecture’s neck. For the prediction step, each feature needs to 
be flattened first, which is accomplished with Spatial Pyramid Pooling (SPP) 
(He et al. 2015). The SPP significantly increases receptive field performance by 
bringing out contextual features. The head section consists of dense predic
tion, which plays an important role in producing the final prediction and 
locating bounding boxes. This same head section can be found in the YOLOv3 
implementation, which detects the bounding box coordinates and confidence 
score for a specific class. In short, the YOLO head works in three steps. First, it 
divides the entire image into N � N grids. Each grid has five parameters (x, y, 
h, w; and c; confidence score), where ðx; yÞ is the offset value between the 
prediction box and the respective grid cell-bound. Parameters ðh;wÞ are the 
height and width from the prediction box to the entire image; confidence score 
c is the probability of the class object. Second, CNN extracts the feature and 
predicts classes with class probability scores. Finally, non-maximum suppres
sion is used to eliminate repetitive bounding boxes. Improvements created to 
help enrich the YOLOv4 capability for underwater usage are Mosaic and 
Cutmix data augmentation process (Yun et al. 2019).

The data augmentation method, named Mosaic, was introduced by the 
original YOLOv4 authors. It mixes four training images, resulting in 
mixing four different contexts. This allows the detection of objects outside 
their normal context. In addition, batch normalization calculates activa
tion statistics from four different images on each layer, significantly 
reducing the need for a large mini-batch size. Regional dropout strategies 
were used as data augmentation steps to enhance the performance of the 
CNNs. These augmentations remove informative pixels in training images 

Figure 3. Yolov4 structure.
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by overlaying them with a patch of either black pixels or random noise. It 
makes the model focus on non-discriminative parts of the object but 
causes information loss. The CutMix augmentation helps the model clas
sify two objects from their partial views in the same images by taking two 
images and labeling pairs. Its strategy is to cut out and paste patches 
among training images where the ground truth labels are also mixed 
proportionally to the area of the patches. The Cutmix augmentation 
increases localization ability by making the model focus on less discrimi
native parts of the classified object.

YOLOv4 Tiny
YOLOv4 Tiny (Wang, Bochkovskiy, and Liao 2021) is a simplified and 
lightweight version of YOLOv4 that may be used to design applications 
for mobile and embedded devices. It works on the same idea as the 
original model, but with a different set of parameters that minimize the 
convolutional layer’s depth. YOLOv4 Tiny has only two YOLO heads as 
opposed to three in YOLOv4, and it has been trained from 29 pretrained 
convolutional layers as opposed to YOLOv4 which has been trained from 
137 pretrained convolutional layers. Supposing that the size of the input 
figure is 416� 416 and feature classification is 80, the YOLOv4 Tiny 
network structure is shown in Figure 4. Those changes helped the net
work achieve faster detections. The YOLOv4 Tiny method uses a feature 
pyramid network to extract feature maps with different scales and increase 
object detection speed without using the spatial pyramid pooling and path 
aggregation network used in the YOLOv4 method. At the same time, the 
YOLOv4 Tiny uses two different scale feature maps that are 13� 13 and 
26 � 26 to predict the detection results. However, the accuracy for 
YOLOv4 Tiny is approximately two-thirds that of the YOLOv4 when 
tested on the MS COCO dataset (Lin et al. 2014).

CSP-YOLOv4
Wang, Bochkovskiy, and Liao (2021) proposed a network scaling 
approach that modifies not only the depth, width, and resolution but 
also the structure of the network. CSP-YOLOv4 was introduced to get 
a better speed/accuracy trade-off by converting the first CSP stage in the 
backbone into the original DarkNet residual layer. The PAN architecture 
is CSP-ized in order to reduce the amount of computation effectively.

Modified backbone of YOLOv4
The YOLOv4 has CSPDarknet53 as its backbone. The model backbone can be 
modified in order to have different detection results. Our paper uses a modified 
version of the YOLOv4 backbone to compare results obtained with the original 
backbone CSPDarknet53. Models ResNet50-YOLO and DenseNet201-YOLO 
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were used to train and test the detection and recognition of underwater targets. 
ResNet50 is a deep convolutional neural network that is 50 layers deep. He et al. 
(2016) proposed an innovative neural network that won the top position at the 
ILSVRC competition. The strength of this model lies in skip connections that 
connect blocks of the network which enables the same performance for higher 
layers. The residual network (ResNet) improves the efficiency of deep neural 
networks by adding outputs from previous layers to the outputs of stacked 
layers, making it possible to train much deeper networks. In a DenseNet archi
tecture, each layer is connected to every other layer, hence the name Densely 
Connected Convolutional Network. DenseNet requires fewer parameters, as 
there is no need to learn redundant feature maps. DenseNet concatenates the 
output feature maps of the layer with the incoming feature maps.

Faster RCNN

We compared results in underwater object detection achieved by the YOLO- 
based models described above to Faster R-CNN. In the field of object 

Figure 4. Yolov4 tiny network structure.
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detection, the Faster R-CNN is a classic two-stage method. Ren et al. improved 
the R-CNN method for object detection by adding region proposal networks 
(RPN) that share CNN layers with the same network for object detection (Ren 
et al. 2015). Overview of object detection with Faster R-CNN is shown in 
Figure 5. A Faster R-CNN object detection network consists of a feature 
proposal network for extracting the useful features of the target, an RPN 
whose task is to propose regions of interest, and a Fast R-CNN detector to 
classify the regions (Girshick 2015). The whole structure of the feature pro
posal network consists of 13 convolutional layers. Each convolutional layer is 
followed by a maximum pooling layer. In practical application, the more 
convolutional layers used, the more image features extracted, and the better 
the recognition effect of the network on unknown images. The features are 
used as input to the box regression and classification layer. The RPN outputs 
the proposed regions and their region score. The core idea of Faster R-CNN is 
to avoid the two-stage detection technique. The RPN network is created with 
extra CNN layers, which perform regression simultaneously to produce the 
region proposal and the region score. The spatial window sliding technique is 
used to generate region proposals from the convolutional feature map. For 
every sliding window location, RPN predicts more than one region proposal. 
Fast R-CNN is responsible for classifying the region of interest and fine-tuning 
the location border, judging whether the region of interest identified by RPN 
contains the target and the target category. In this work, Detectron2 Faster 

Figure 5. An overview of object detection with faster R-CNN.
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RCNN implementation was used (Detectron2 is a PyTorch-based modular 
object detection library) (Wu et al. 2019).

Experiment Setup

This section, presenting the experimental results, is divided into three subsec
tions. The first subsection discusses the preparation of the underwater dataset 
for YOLOv4 models. The second describes the training process and require
ments, and the last subsection lists evaluation measures for trained object 
detectors.

Data Preparations

The data for the experiment were collected by a remotely operated vehicle 
(ROV) recording underwater pipelines and from different camera angles. 
After recording the videos, two frames per video second were extracted to 
create the dataset for analysis. Namely, the dataset consists of 3021 images 
taken from three main camera shooting directions (above, left, and right 
angles), with every shooting angle having the same number of representing 
images. Extracted frames are then labeled using a labeling tool YOLO-Label 
(2019), as shown in Figure 6. The dataset distribution is shown in Table 1. The 
dataset was split up into 80:10:10 ratio, training part of dataset consisted of 
2415 different images, testing and validation part of dataset comprised of 303 
images taken from three camera angles. Each part of the dataset contains the 
same number of different camera angle images. An annotation of each image is 

Figure 6. Snapshot of labelling tool.

Table 1. Dataset description.
Dataset Description

Annotated Image: 3021 annotations
Number of Classes 5
Training 2415 images
Validation 303 images
Testing 303 images
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given in the text file. Images were labeled in YOLO format containing details 
on object class, bounding box coordinates, and the height and width of the 
bounding box (with the most bottom-left point as the origin). Bounding box 
coordinates consist of center x and center y, which represent the coordinates of 
the center points of the bounding box. The distance of center from x-axis is 
represented as center x, and center y is the distance of the center from the y- 
axis. The coordinates are normalized to lie within the range [0, 1] which makes 
them easier to work with even after scaling or stretching images.

Training

Neural network framework (in particular, open-source framework Darknet 
(Redmon 2013–2016)) is used to provide flexible APIs and configuration 
options for performance optimization since it is designed to facilitate and 
fasten the training of deep learning models (Shatnawi et al. 2018). Darknet is 
written in C and CUDA, allowing for the execution of the training and 
detection in the Graphical Processing Unit (GPU). The training was per
formed on the workstation with the following hardware: Intel(R) Xeon(R) 
CPU E5–2620 v4 @2.10 GHz, NVIDIA GeForce RTX 2080 Ti (11GB of 
graphic memory), and 128GB RAM.

The training setup has five types of detection targets: pipeline, leakage point, 
concrete weight, concrete mat, and pipe coupling. Thus, the configuration files 
were modified in order to define parameters used during training. In parti
cular, the number of full connection layers output of the YOLOv4 is set to 5 
because we have five classes, and the number of filters is obtained by 
ðclassesþ 5Þx3. The number of filters for YOLOv4@ResNet50 is set to 50 
due ðclassesþ 5Þx5. The YOLOv4 uses 30 filters and can detect up to three 
objects per grid cell, while YOLOv4@Resnet50 uses 50 filters with the ability to 
detect five objects per grid cell. The subdivision number for training YOLOv4- 
Tiny was 64, as for YOLOv4, and 16 which takes more of an image into 
account during processing. Here, we were able to use a smaller number of 
subdivisions for YOLOv4-Tiny since its network is shallower compared to 
other models. Transfer learning is utilized for all YOLO models. Models were 
pretrained on the public COCO dataset. All training parameters are given in 
Table 2.

Table 2. Training parameters configuration.
Model Batch size Subdivision Width x Height Momentum Decay Learning rate Activation

YOLO1 64 64 416x416 0.949 0.00005 0.0013 Mish
Tiny2 64 64,16 416x416 0.9 0.0005 0.00261 Leaky
CSP3 64 64 416x416 0.949 0.0005 0.001 Mish
Mod4 64 32 416x416 0.9 0.0005 0.0001 Leaky
Mod5 64 8 416x416 0.9 0.0005 0.0001 Leaky
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When the confidence of output is less than the threshold value of 0.5, it was 
interpreted as there is no target class. The output of the corresponding full 
connection layer is interpreted as the target class when maximum confidence 
taken is greater than a threshold value. The detection results are compared to 
the ground truth in order to determine whether the detection is a true positive. 
The detected bounding box’s intersection over union (IoU) score should be at 
least 50%. Figure 7 shows an example of positive and negative object detection 
for intersection over union (IoU) score in the case of pipeline detection. In the 
case of multiple detections of the same object, only one detection is counted as 
a true positive. Non-maximal suppression is used to choose the correct detec
tion result.

The network’s input should be an image, so the video is processed by 
extracting frames, which are then forwarded to the YOLO algorithm for object 
detection. The YOLO output provides the confidence score and the class ID of 
the object class in the bounding box. After the training, the detection model 
was tested on the test dataset, which was not included in the training and 
validation process.

Performance Evaluation

As evaluation metrics, detection accuracy, mean average precision (mAP), and 
frames per second (FPS) are used. The detection accuracy, as in Equation 1, 

Figure 7. Visual representation of IoU criterion.
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refers to the ratio of the number of prediction boxes to the total number of 
prediction boxes when the intersection ratio of prediction boxes and annota
tion boxes is greater than 0.5: 

Accuracy ¼
prediction boxes

total number of prediction boxes
(1) 

The mean average precision (mAP) is calculated by taking the mean Average 
Precision (AP) over all classes for the selected IoU threshold, denoted in 
Equation 2. The mean AP represents the area under the precision-recall 
curve, while k stands for number of classes. 

mAP ¼
Pk

iþ1 APi

k
(2) 

The Frames Per Second (FPS) metric, as in Equation 3, is used to express how 
fast the model can process the input in one second. The Number of Frames 
represents the number of processed images, while Total detection time is a time 
frame of usually 1 second. 

FPS ¼
Number of Frames
Total detection time

(3) 

Next, we present numerical results for tested object detector models on our 
dataset.

Results and Discussions

Next, we present underwater object detection results for different implemen
tations of YOLOv4 and Faster RCNN models. Namely, we compare the 
obtained results for YOLOv4, YOLOv4 Tiny, CSP-YOLOv4, 
YOLOv4@ResNet50, and YOLOv4@DenseNet201, as well as for the Faster 
RCNN object detection. The training and testing of the model were conducted 
on the same custom dataset.

First, we will discuss the training process and loss charts. The losses in each 
batch were calculated from the log file generated during the training phase, 
where Figure 8(a) shows the loss and mAP plotted against iteration for the 
YOLOv4 model. The loss decreases, and mAP increases with iterations. The 
network can be further trained until the average loss decreases below 0.2, and 
the final loss expectation is 0. The YOLOv4 model started to converge with 
a good performance at about the 7500th iteration and having a stagnant 
performance at about the 10000th iteration. It took 23.7 hours to complete 
the training. Figure 8(b) presents the loss and mAP graph for the YOLOv4- 
Tiny@16 model, which shows impressive results of average loss below 0.8. 
Training of the YOLOv4-Tiny@16 method lasted 3.2 hours. The model started 
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to converge after some 8000 iterations. Figure 8(c) shows the loss and mAP 
graph for the YOLOv4-Tiny@64 model with a great average loss below 0.7 and 
poor mAP metrics. Poor results for the YOLOv4-Tiny@64 show that the larger 
minibatch sent to the GPU processor is better for 416 × 416 image size. With 
subdivision set to 16, a better generalization of the problem is obtained. 
Training of the YOLOv4-Tiny@64 model lasted 6.4 hours, while it started to 
converge at about the 8500th iteration. Finally, Figure 8(d) shows the loss and 
mAP graph for YOLO@DenseNet201. A deep network with numerous train
ing epochs of 50,000 resulted in a long training time that lasted some 65.1  
hours. The same number of training epochs were used for the 
YOLOv4@Resnet50, with training lasting 58.8 hours. Those two deep models 
started to converge at about the 37500th iteration.

Figure 8. Loss function and mAP performance.
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The object detection results obtained by the trained models on our custom 
underwater pipeline image dataset are as follows. In general, excellent results 
had been achieved for YOLO object detectors, as shown in Table 3. Table 3 
presents results achieved by each trained object detecting method in terms of 
mean average precision (mAP) and accuracy for each target class. The mAP is 
an often-used metric that calculates average precision for each class across 
varied Intersection over Union (IoU). In this study, the threshold was set to 
0.5, and it was shown that the YOLOv4 delivered the best mAP result of 
94.21% on the tested dataset. This mAP result proves the superiority of the 
CSPDarknet53 backbone compared to other competitive methods. It should 
also be noted that the YOLOv4-Tiny@16 model showed high classification 
efficiency, achieving the mAP of 92.43%, accomplished for a short training 
time of only some 3.2 hours. As expected, the obtained results show that the 
deeper model architectures deliver higher mAP.

The underwater object detection was tested on both images and videos. The 
trained neural networks detect targets in given images and display bounding 
boxes around the detected object. Different implementations of the YOLOv4 
prove its ability to be trained and detect objects in underwater environments. 
This can be seen in Figure 9 showing detecting performances of all tested 
models. Deeper models, such as YOLOv4, CSP YOLOv4, and 
YOLOv4@DenseNet201, reveal the benefits of the architecture and prove 
that better generalization of the problem is ensured by a larger minibatch 
sent to the GPU processor.

The processing speed should also be highlighted in addition to classification 
and detection performances. Table 4 shows the processing speed performance 
of each tested model required to classify the input images in the test dataset 
correctly. The obtained result confirmed that the networks, especially YOLOv4 
and YOLOv4-Tiny, could simultaneously detect target classes in real-time 
while the video is playing. Here, we should emphasize the difference in FPS 
performance for YOLOv4-Tiny compared to other implementations. Namely, 
the tiny model could achieve high FPS due to the model’s small size (shallow 
network), resulting in faster inference speed. The detection rate of Faster 
RCNN was not taken into account since it is a two-stage object detector, and 
thus, it is not intended for real-time object detection.

Table 3. Performance evaluation result.

Architecture

Accuracy

mAP(%)pipeline leakage point concrete weight concrete mat pipe coupling

YOLOv4 98.53 81.83 94.62 96.00 96.40 94.21
YOLOv4-Tiny@64 54.03 66.78 76.07 83.09 79.39 72.97
YOLOv4-Tiny@16 86.84 81.27 96.05 98.78 97.46 92.43
CSP-YOLOv4 91.04 84.37 97.85 98.80 85.03 93.97
YOLOv4 @ResNet50 78.05 34.92 84.70 95.48 89.38 79.50
YOLOv4 @DenseNet201 91.26 63.83 90.69 97.92 95.65 88.40
Faster RCNN 65.48 45.99 72.37 80.45 76.10 70.49
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Comparing our obtained results in underwater pipeline object detection to 
other underwater object detection studies found in literature (such as Chen 
et al. 2021; Hu et al. 2021; Rosli et al. 2021; Tian et al. 2021; Zhang et al. 2021), 
we can conclude that our obtained result of mAP 94.21% is quite remarkable. 
Please note that the underwater environment is rather challenging, and the 
above-referred papers detect different underwater objects (like, for example, 
fish and not the underwater pipeline objects), often achieving a smaller mAP. 
A similar problem of underwater pipeline detection and its component is done 
by Zhao, Wang, and Du (2020), distinguishing only between two target classes 
(while our research dealt with five underwater target classes). Comparison of 
detection results from different research is not possible due to a lack of public 

Figure 9. Detection performance of YOLO models.

Table 4. Processing speed inference.
Architecture Frame Per Second(FPS)

YOLOv4 25
YOLOv4-Tiny 38
CSP YOLOv4 15
YOLOv4@ResNet50 17
YOLOv4@DenseNet201 16
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datasets. We could compare results obtained from the trained model on the 
custom dataset with the YOLOv4 model trained only on the COCO dataset. 
The YOLOv4 trained only on the COCO dataset without fine-tuning on our 
dataset cannot detect any target class. We can conclude that the transfer done 
in this research learning were successful. As proof, results were compared with 
the YOLOv4 model trained from scratch. That model achieved a smaller mAP 
of 90.98%.

To conclude, our study investigates the performances of seven deep- 
learning architectures for pipeline component detection from images in chal
lenging underwater environments, achieving remarkable mAP of up to 94.21% 
on a custom dataset. As a suggestion for future work, a more challenging 
dataset should be obtained, containing different underwater conditions. 
Another applicable aim of the project could be detection of pipeline failures. 
Also, the study can be extended to inside pipeline detections if a dataset is 
acquired.

Conclusion

In this paper, different implementations of the YOLOv4 were trained and 
tested on a same custom underwater image dataset to investigate the 
model’s robustness in detecting pipeline objects in demanding underwater 
scenarios. Detection results of YOLOv4, YOLOv4-Tiny, CSP-YOLOv4, 
YOLOv4@ResNet, and YOLOv4@DenseNet were compared on test dataset. 
Further, achieved detection results were compared to the two-stage object 
detector Faster RCNN. The study was focused on detecting five object 
classes in the different subsea environments from different camera angles. 
The YOLOv4 method outperformed other competitive methods in terms of 
mAP (achieving mAP of 94.21%), with YOLOv4-Tiny achieving the high
est FPS and high mAP of 92.43%. In comparison to other similar methods, 
our method gives promising results dealing with the problem of under
water pipeline detection. This research could be used in the future by 
autonomous underwater vehicles (AUVs) and remotely operated vehicles 
(ROVs) to inspect underwater pipelines. In order to achieve additionally 
improved performance metrics, it is possible to use various image 
enhancement methods for improving the quality of the underwater ima
gery dataset.
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