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Abstract: Mapping underwater aquatic vegetation (UVeg) is crucial for understanding the dynamics
of freshwater ecosystems. The advancement of artificial intelligence (AI) techniques has shown great
potential in improving the accuracy and efficiency of UVeg mapping using remote sensing data. This
paper presents a comparative study of the performance of classical and modern AI tools, including
logistic regression, random forest, and a visual-prompt-tuned foundational model, the Segment
Anything model (SAM), for mapping UVeg by analyzing air- and space-borne images in the few-shot
learning regime, i.e., using limited annotations. The findings demonstrate the effectiveness of the
SAM foundation model in air-borne imagery (GSD = 3–6 cm) with an F1 score of 86.5% ± 4.1% when
trained with as few as 40 positive/negative pairs of pixels, compared to 54.0% ± 9.2% using the
random forest model and 42.8% ± 6.2% using logistic regression models. However, adapting SAM to
space-borne images (WorldView-2 and Sentinel-2) remains challenging, and could not outperform
classical pixel-wise random forest and logistic regression methods in our task. The findings presented
provide valuable insights into the strengths and limitations of AI models for UVeg mapping, aiding
researchers and practitioners in selecting the most suitable tools for their specific applications.

Keywords: few-shot learning; underwater aquatic vegetation; submerged vegetation; foundation
model; machine learning; Sentinel-2; VHR; WorldView-2; UAV; Segment Anything model

1. Introduction

Aquatic vegetation holds immense significance within ecosystems, as it not only
supports the food chain but also serves as the primary indicator of ecosystem quality [1].
Detailed information on the distribution, composition, and abundance of aquatic vegetation
is widely utilized to assess the environmental quality of aquatic systems, thereby playing a
crucial role in maintaining the proper functioning of lakes. In particular, submerged, or in
general, underwater aquatic vegetation (UVeg), comprising plants that primarily grow un-
derwater but may possess floating or emerged reproductive organs, plays a vital ecological
and environmental role. These plants fulfill crucial functions, including providing habitat
for various species, stabilizing sediments, regulating water flow, acting as a natural purifier,
and participating in the biogeochemical cycling process [2].

Precise identification of UVeg distribution and growth duration can provide valuable
information for effective lake management and future ecological restoration endeavors.
As a result, numerous national and international water quality frameworks, including
those employed by the European Union, integrate the assessment of submerged aquatic
vegetation extent or health as key indicators in their evaluations. Remote sensing tech-
nology, particularly satellite data, has emerged as an effective tool for mapping UVeg.
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In particular, multi-spectral data have been extensively employed for mapping the distri-
bution of large-scale aquatic vegetation and evaluating its intra-annual and inter-annual
variations [3–6].

However, accurately distinguishing between submerged aquatic vegetation and emer-
gent or floating vegetation remains a complex task through satellite data. The transitional
nature of aquatic vegetation, influenced by factors such as incomplete development, sea-
sonality, water level fluctuations, and flooding events, poses significant challenges for
accurate classification using remote sensing techniques. In light of these complexities,
our research aims to overcome these limitations by focusing on monitoring all forms of
vegetation occurring beneath the water surface. While our previous work [7] focused solely
on identifying emergent and floating aquatic vegetation, our attention in this study lies on
underwater aquatic vegetation, which encompasses all forms of vegetation occurring in
submerged or partially submerged conditions.

To provide a comprehensive overview of the existing techniques, Rowan and Kalac-
ska [2] conducted a review specifically tailored for non-specialists. Their paper discusses
the challenges associated with UVeg mapping using remote sensing, such as water at-
tenuation, spectral complexity, and spatial heterogeneity. Furthermore, they provide an
overview of different remote sensing platforms, including aerial and space-borne sensors,
commonly used for UVeg mapping and argue that understanding the capabilities and
limitations of these platforms is crucial in selecting the appropriate tools for UVeg mapping.
The authors also discuss the specific spectral characteristics of UVeg, as well as classification
methods, and finally, they highlight the importance of validation and accuracy assessment
in UVeg mapping studies. By incorporating insights from this review, our study aims to
contribute to the existing knowledge and further enhance the accuracy and efficiency of
UVeg mapping using remote sensing data.

The study of Villa et al. [8] introduces a rule-based approach for mapping macro-
phyte communities using multi-temporal aquatic vegetation indices. Their study em-
phasizes the importance of considering temporal variations in vegetation indices and
proposes a classification scheme based on rules derived from these indices. The approach
shows promising results in accurately mapping macrophyte communities, providing valu-
able insights for ecological assessments and environmental monitoring. The paper by
Husson et al. [9] highlights the use of unmanned aircraft vehicles (UAVs) for mapping
aquatic vegetation. They discuss the advantages of UAVs, such as high spatial resolution
and cost-effectiveness. Their study demonstrates the accuracy of UAV-based vegetation
mapping, including species distribution and habitat heterogeneity. UAV imagery provides
detailed information for ecological research and conservation efforts. The paper also ad-
dresses challenges and suggests future directions for optimizing UAV-based methods in
aquatic vegetation mapping. Heege et al. [10] presented the Modular Inversion Program
(MIP), a processing tool that utilizes remote sensing data to map submerged vegetation in
optically shallow waters. MIP incorporates modules for calculating the bottom reflectance
and fractionating it into specific reflectance spectra, enabling mapping of different types
of vegetation.

Machine learning (ML) approaches in remote sensing offer efficient and accurate
methods for analyzing vast amounts of satellite data and extracting valuable insights about
the Earth’s surface and environment. However, previous studies on classifying wetland
vegetation have often focused on single sites and lacked rigorous testing of the generaliza-
tion capabilities. To fill this gap, Piaser et al. [11] compiled an extensive reference dataset
of about 400,000 samples covering nine different sites and multiple seasons to represent
temperate wetland vegetation communities at a continental scale. They compared the
performance of eight ML classifiers, including support vector machine (SVM), random
forest (RF), and XGBoost, using multi-temporal Sentinel-2 data as input features. According
to their findings, the top choices for mapping macrophyte community types in temperate
areas, as explored in this study, are SVM, RF, and XGBoost. Reducing the number of input
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features led to accuracy degradation, emphasizing the effectiveness of multi-temporal
spectral indices for aquatic vegetation mapping.

The debate between classical ML techniques and deep learning (DL) revolves around
computational resources and the available annotated datasets. Classical ML can achieve
high discriminative performance with moderate processing speed, making it suitable for
scenarios with limited computational resources [12]. In contrast, DL’s undeniable success in
computer vision tasks, particularly in remote sensing imagery [13,14], comes at the expense
of requiring substantial computational resources. Additionally, DL models are data-hungry
during training, posing challenges for the few-shot learning tasks commonly encountered
in remote sensing applications. Despite this, techniques like pre-training on other datasets,
data augmentation, and, most importantly, self-supervised learning (SSL) exist to mitigate
this issue.

Based on SSL, foundation models came recently to the forefront of machine learning
research, offering a unified, versatile approach that learns across various tasks and domains.
As illustrated by Bommasani et al. [15], a key advantage of foundation models lies in their
ability to perform with limited annotations, utilizing pre-existing knowledge to make sense
of sparse or partially labeled data. The Segment Anything model (SAM) [16] epitomizes
this advantage with its ability to effectively segment any class in an image, making it
especially suitable for the analysis of complex and often poorly annotated environments.

In this study, we harness the capabilities of SAM in mapping and analyzing the un-
derwater aquatic vegetation in Polyphytos Lake, Greece. Our approach combines a range
of remote sensing data, including multi-spectral satellite images from WorldView-2 and
Sentinel-2, UAV-acquired data, and expert annotations from marine biologists, in collabora-
tion with local water service authorities.

Given the often-scarce annotations in aquatic ecosystem studies, the application of
foundation models, such as SAM, offers a powerful tool to gain insights into aquatic vege-
tation, water quality, and potential pollution sources. The subsequent sections of this paper
will detail our methodology, challenges, results, and their implications, demonstrating
the significant potential of foundation models in data-scarce, complex environments like
aquatic ecosystems.

2. Materials and Methods
2.1. Study Area

Our study took place at the Polyphytos reservoir, as shown in Figure 1 an artificial
lake on the Aliakmon River, located in West Macedonia, Northern Greece, specifically in
Kozani province. The reservoir’s surface area is 75 km2. The reservoir was formed in 1975
when a dam was built on the Aliakmon River close to the Polyphytos village. The longest
dimension of the lake is 31 km and the widest is 2.5 km. It is the biggest of five reservoirs
built along the river, with a drainage area of 5630 square kilometers, and it collects water
from surface runoff and several torrents.

The reservoir is used to produce hydroelectric power and supply irrigation water,
and since 2003, it has been the main source of drinking water for Thessaloniki, the second-
largest city in Greece, with a population of 1.05 million people. Every day, around
145,000 cubic meters of surface water is taken from the Polyphytos Reservoir to Thes-
saloniki’s Drinking Water Treatment Plant (TDWTP).

The Polyphytos region has a continental climate with cold winters and mild summers.
The region’s rainfall is not very high, but previous studies [17] have shown that rainfall
does not drop much during summer. However, the months from June to September are
seen as dry because of the relatively low average rainfall.

Over the years, Polyphytos Lake has transformed into a significant sanctuary for birds
and a thriving environment for many fish species. Regarding vegetation, the vicinity of the
reservoir boasts a considerable expanse of wetlands, marshlands, and muddy ecosystems.
Additionally, a range of aquatic plant life resides within the Polyphytos Reservoir, e.g., as
show in Figure 2, contributing to the area’s rich ecological diversity.
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Figure 1. Three regions of interest within the Polyphytos Lake study area in Greece.

Figure 2. Aquatic vegetation (submerged and emergent vegetation) near the Kozani nautical club
(field trip on 17 June 2022).

2.2. Data Sources

We obtained multi-spectral satellite images from two sources: WorldView-2 and
Sentinel-2. The WorldView-2 images provided high-resolution data with a ground sampling
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distance (GSD) of 1.8 m, enabling detailed observation of the lake and its surrounding areas.
The Sentinel-2 images complemented the WorldView-2 data by offering additional spectral
information for our analysis, although with the lowest GSD of 10 m. In order to acquire
more granular and comprehensive data, we executed a UAV survey over Polyphytos Lake.
We deployed the DJI Mini 3 Pro UAV, maintaining a flight altitude between 50 and 70 m.
The UAV came equipped with a high-resolution camera, enabling us to gather detailed and
current data on the lake’s attributes. A description of the data sources used in the study is
given in Table 1.

Table 1. Summary of data sources, specifications, and sensing dates.

Data Source Area GSD Dates

WorldView-2 AOI 1 1.8 m 31 August 2020

Sentinel-2 AOI 1 10–60 m
16, 21, 26 and 31 August 2020
5, 10 and 15 September 2020

DJI Mini 3 Pro UAV AOI 1–3 3–6 cm 6 March 2023

2.3. Dataset Annotation

Through information exchange with local water service authorities and in situ visits
by the authors, detailed annotations could be retrieved, specifically focusing on the UVeg
present in Polyphytos Lake. The meticulous identification and labeling of underwater veg-
etation formations at various scales and depths using multiple uncertainty classes ensure
the accuracy and reliability of these annotations. The availability of such comprehensive
annotations allows us to assess the performance and effectiveness of our AI tools in accu-
rately mapping and monitoring UVeg in Polyphytos Lake, providing valuable insights into
the distribution, health, and ecological significance of underwater vegetation in the lake.

Manual annotation was performed separately for the WorldView-2 and UAV imagery,
while the annotations of the Sentinel-2 data were extracted based on the WorldView-2
annotations. Due to the proximity of dates, we assume no modification in vegetation
extent (UVeg extent). Therefore, only adaptation of the spatial resolution was performed by
transforming the binary values of the pixels in the lower ground sampling distance (GSD)
of WorldView-2 to percentage values of the higher-GSD pixels of Sentinel-2m, as shown in
Figure 3.

Figure 3. Adapted UVeg annotation matching Sentinel-2 GSD of 10 m. Each pixel represents the
percentage of UVeg based on the binary values of WV-2 GSD of 1.8 m.

2.4. Comparison of ML Techniques

In this work, we compare two different AI methodologies for segmenting UVeg in
Polyphytos Lake:

• Pixel-based Logistic Regression or Random Forest:

The first approach utilizes classical machine learning techniques such as logistic
regression and random forest. In this method, we extract various spectral and textural
features from the multi-spectral satellite images and UAV data. These features are then
used to train pixel-based classification models, which can classify each pixel as either UVeg
or non-UVeg. Logistic regression and random forest algorithms are employed for the
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classification task, leveraging their ability to learn complex relationships between the input
features and the UVeg class labels. We recognize random forest, which is a bagging model,
together with boosting models as powerful and widely-used ML techniques based on
ensembling [11,12]. Additionally, we included logistic regression as a baseline ML method,
as it represents traditional thresholding techniques commonly found in remote sensing
studies when combining linear combinations of bands.

Apart from the multi-spectral bands, we utilized the QAA-RGB algorithm [18], a mod-
ified version of the quasi-analytical algorithm (QAA), to detect underwater vegetation in
Polyphytos Lake using only the red, green, and blue bands. The algorithm was specifically
designed for high-resolution satellite sensors, and it retrieves various parameters, including
the total absorption, particle backscattering, diffuse attenuation coefficient, and Secchi
disk depth, which have been used as additional features in our comparative analysis.
By using remote sensing reflectance data from three specific bands (red, green, and blue),
the algorithm ensures robustness and applicability across different water types. The imple-
mentation of QAA-RGB was carried out within the ACOLITE processor, which provides a
comprehensive and accessible platform for the scientific community.

• Foundation Model for Semantic Segmentation with Prompt-tuning:

The second approach utilizes a foundation model called SAM (Segment Anything) [16].
SAM is a state-of-the-art deep learning model designed specifically for semantic segmen-
tation tasks. It is pretrained on a large-scale dataset, enabling it to learn general patterns
and features related to segmentation. However, what sets SAM apart is its prompt-tuning
approach. During fine-tuning, SAM is provided with a small set of positive and negative
UVeg pixels as prompts. These prompts guide the model to learn the specific characteristics
and boundaries of UVeg in Polyphytos Lake. By adaptively adjusting the prompts, SAM
refines its segmentation capabilities and improves its accuracy in detecting and delineating
UVeg regions.

In our model evaluation, we employed three key metrics computed from the number of
pixels as true positive (TP), true negative (TN), false positive (FP), and false negative (FN):

PA, the producer’s accuracy (recall), quantifies the percentage of correctly classified
pixels in relation to the ground truth, thus representing the model’s ability to accurately
identify and classify true positive instances:

PA =
TP

TP + FN
UA, the user’s accuracy (precision), measures the percentage of correctly classified

pixels based on the model’s predictions, reflecting the precision of the model in accurately
identifying and classifying true positive instances:

UA =
TP

TP + FP
Additionally, we computed the F1 score, a commonly used metric for evaluating such

models. The F1 score can be interpreted as a weighted average of the precision (UA) and
recall (PA), where an F1 score reaches its best value at 1 (perfect precision and recall) and
worst at 0. It is defined as:

F1 = 2 ∗ UA ∗ PA
UA + PA

The F1 score tries to balance these two measures. A good F1 score indicates low false
positives and low false negatives, which are especially important when false positives and
false negatives have different costs, often the case in imbalanced datasets.

We established baselines for all three modalities—UAV RGB images, multi-spectral
images from WorldView-2, and Sentinel-2 sensors—using logistic regression. To mitigate
the effects of the imbalanced dataset in all three modalities, we employed resampling
methods during the training phase. These involve artificially augmenting the dataset by
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repeating uniformly selected samples to ensure an equal representation of samples from
different classes. This approach not only enhances the performance of logistic regression,
but also provides an unbiased analysis for feature importance [19].

We further conducted a comparative analysis of three data sources using k-fold cross-
validation. To account for the significant differences in dataset size among the modalities,
we utilized different numbers of folds for each modality. This approach ensured that
the training sets were sufficiently large for modalities with a smaller total number of
pixels. To evaluate the performance of our models, we computed metrics based on the
concatenated confusion matrices obtained from each fold. Instead of calculating the average
values of metrics separately for each fold, this approach provides a more robust assessment.
Specifically, for the Sentinel-2 modality, where the number of available pixels from the
positive class is limited, averaging the metrics across folds can introduce bias into the
estimate [20]. For the SAM method, resampling with replacement of a fixed number of
pixel pairs was performed with 500 repetitions.

In addition, we carried out ablation studies on single-, double-, and triple-feature
classifiers. The objective was to investigate the influence of feature selection on the predic-
tive accuracy of our per-pixel classification model. By systematically excluding features
from the model, we were able to quantify the contribution of each individual feature or
combination of features. The evaluation of these ablation studies was based on the F1
metric. Through this ablation study, we obtained valuable insights into how different bands,
or their combinations, affect the accuracy of the model in classifying UVeg pixels. This,
consequently, directed our optimization of the band-selection process to apply the SAM,
a foundation model that utilizes only three bands. A more sophisticated feature-importance
analysis of WorldView-2 data was performed, focusing on pixel proximity to the shore.
Specifically, apart from the analysis in the total WorldView-2 image, the analysis was also
conducted on a manually selected subset of the image near the shore with a higher density
of visually apparent UVeg regions, referred to as “shallow pixels”. The areas of the lake
farther from the shore did not exhibit visually apparent UVeg, likely due to the lake’s depth.

Moreover, we conducted an extensive analysis of the two SAM variants, “huge”
and “base”, utilizing the ViT-B and ViT-H encoders developed by Meta AI Research and
FAIR (https://github.com/facebookresearch/segment-anything, accessed on 10 July 2023).
SAM has two encoder options: ViT-B (91M parameters) and ViT-H (636M parameters).
The primary objective of this analysis is to gain insights into the performance disparities
between the two variants under the few-shot learning task of segmenting UVeg.

In the context of the Sentinel-2 data source, we investigated the use of multi-class
classification by comparing the performance of models with 2–4 classes instead of using
a regression-based approach. Here, the number of classes refers to distinct categories or
groups into which the satellite data can be classified. In a 2-class model, the data would be
divided into two distinct categories, which might correspond to the “presence” or “absence”
of a certain feature in the satellite imagery, for example. For the 3-class model, the data
would be divided into three categories, possibly representing low, medium, and high
levels of a certain feature. In the 4-class model, there would be four different categories,
potentially providing an even finer granularity of the measured feature. Since the task
was not binary classification but multi-class, we used the metric of balanced accuracy to
evaluate the performance. Balanced accuracy is the average of the recall (the proportion of
actual positives that are correctly identified) obtained for each class, which ensures that
every class is equally weighted regardless of how often it appears in the data. This was
particularly relevant because of the multi-class nature of our models. By comparing the 2-,
3-, and 4-class models, we were able to rigorously evaluate how different levels of class
granularity impacted the accuracy of our Sentinel-2 data classifications.

Finally, to assess the transferability of the models in different areas of interest (AOIs)
within the lake, a logistic regression model and a random forest model were trained on
AOI1 near the Rymnio bridge and evaluated on AOI2 and AOI3 (described in Table 1).

https://github.com/facebookresearch/segment-anything
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The random forest model underwent hyperparameter tuning using a validation set from
AOI1, while testing was conducted separately on the different lake AOIs [21].

3. Results

The primary findings from the comparative study on segmenting underwater aquatic
vegetation data based on very limited annotations are illustrated in Figures 4–6. This
study provides an exhaustive comparison of three machine learning techniques, namely a
logistic regression model, a random forest model, and a foundational model referred to
as the Segment Anything Model (SAM). The SAM model, which is based on the Vision
Transformer architecture, is pretrained for the task of semantic segmentation and is specifi-
cally tailored for visual prompting. The comparative analysis is carried out across three
distinct data sources: UAV, WorldView-2, and Sentinel-2. Baseline measures for each metric,
represented as red dashed lines, are computed based on the training error of the logistic
regression model.

Figure 4. Comparison of machine learning techniques for segmenting underwater aquatic vegetation
using UAV data with limited annotation. The SAM model yields an F1 score of 86.5% ± 4.1% when
trained with as few as 40 positive/negative pairs of pixels, compared to 54.0% ± 9.2% using the
random forest model and 42.8% ± 6.2% using logistic regression models.

Figure 5. Comparison of machine learning techniques for segmenting underwater aquatic vegetation
using WorldView-2 data with limited annotation.
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Figure 6. Comparison of machine learning techniques for segmenting underwater aquatic vegetation
using Sentinel-2 data with limited annotation.

Figure 4 showcases a comparison of these methods over an area of 0.07 km2, captured
on a UAV mission. The GSD in this area varies from 3 to 6 cm, contingent on the drone’s
flight altitude.

Figure 5 depicts the comparison of the three machine learning techniques over a total
area of approximately 1.4 km2, captured using the WorldView-2 satellite. The pixel size in
this area is 1.8 m. The data incorporate eight multi-spectral bands, one panchromatic band,
and a synthetic band that estimates the Secchi disk depth based on the QAA-RGB algorithm.

Figure 6 demonstrates the comparison of the two machine learning techniques over an
area of 1.4 km2, as captured with the Sentinel-2 satellite. The pixel size in this region varies
between 10 m and 60 m. The data utilized for this comparison include all bands from the
Level-2A (L2A) products.

All evaluations are based on a bootstrap simulation, which involves the random
sampling of positive/negative pairs with replacement. This simulation is conducted
500 times, providing a robust statistical analysis of the performance differences among the
machine learning models.

Examples of the UVeg masks generated with the foundational model, SAM, can be
seen in Figures 7 and 8. Figure 7 showcases masks created from a UAV mission scene, while
Figure 8 presents masks derived from a WorldView-2 satellite scene.

The inter-modality comparison results are given in Table 2. For each method and
modality, the performance from a sufficiently large training dataset size is demonstrated to
facilitate the assessment of UVeg segmentation using the different data sources. Notably, the
performance results for the Sentinel-2 data source using the foundational model SAM are
not calculated due to its significantly poor performance, rendering any results meaningless
or trivial.

Figure 7. UVeg masks estimated with SAM with point-prompting in UAV data (RGB). In both
examples 8 positive/negative prompt-point pairs are given. The estimated mask is shown with
opacity on top of the RGB bands. Positive training points are shown in green and negative training
points in red.
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Figure 8. UVeg masks estimated with SAM with point-prompting in WV2 data (bands Green–
RedEdge–NearInfrared1). On the left, a better UVeg mask is estimated based on 8 positive/negative
pairs of points. On the right, there is an example of the artifacts using more (20) prompt-point pairs.
The computed mask is shown with opacity on top of the selected WV2 bands. Positive training points
are shown in green and negative training points in red.

Table 2. Comparison results of the different ML methods for the three data sources based on
sufficiently large training datasets (different for each data source). Methods with highest F1 score are
in bold.

Modality ML Method Size of
Training Set

Dataset Size F1 U A PA

UAV

Log Regr 10-fold CV ∼8M px 0.350 0.219 0.861
RF 10-fold CV ∼8M px 0.576 0.415 0.941

SAM 20 px pairs ∼8M px 0.842 * 0.957 0.751

World View 2

Log Regr 20-fold CV ∼400k px 0.340 0.207 0.956
RF 20-fold CV ∼400k px 0.472 0.328 0.845

SAM 8 px pairs ∼400k px 0.264 0.157 0.834

Sentinel-2
Log Regr 40-fold CV ∼14k px 0.184 0.103 0.890

RF 40-fold CV ∼14k px 0.331 0.231 0.581
* The highest F1 score of 86.5% ± 4.0%, with corresponding UA of 89.6% ± 5.8% and PA of 83.9% ± 4.8%, is
achieved for UAV images using 40 positive/negative pairs of pixels for prompting the SAM model.

Table 2 provides the comparative analysis of the three data sources using k-fold cross-
validation. The table showcases the performance metrics obtained from the concatenated
confusion matrices, which offer a robust evaluation of the models. Notably, different
numbers of folds were utilized for each modality to address the variation in dataset sizes.
The SAM method is assessed by resampling a fixed number of pixel pairs with replacement,
and this process is repeated 500 times.

3.1. Feature-Importance Analysis

We further conducted a feature-importance analysis through an ablation study. By sys-
tematically removing specific bands and observing the resulting impact on model perfor-
mance, we determined the significance of individual features in the context of single-feature,
two-feature, and three-feature classifiers.

Figures 9–11 present the outcomes of the feature importance analysis conducted on the
three distinct data sources. The analysis evaluates the performance of single-feature, two-
feature, and three-feature classifiers. The horizontal axis represents the feature importance
score (F1 score), while the vertical axis displays the various features and representative
feature combinations considered. These figures offer valuable insights into the diverse
significance of features and their influence on model performance across different classifier
configurations. The red dashed line denotes the baseline F1 score, computed based on all
the features from each data source.

Figure 9 demonstrates the comparison results for the RGB bands of the UAV imagery.
Figure 10 displays the comparison results for the eight bands of the WorldView-2 imagery,
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along with a separate panchromatic channel and a synthetic channel estimating the Secchi
disk depth, as calculated from the QAA-RGB algorithm [18]. Figure 11 exhibits the compar-
ison results for the 12 bands of the Sentinel-2 L2A products. Finally, a closer investigation
into the Secchi disk depth synthetic feature based on the RGB bands of the WorldView-2
imagery for separating UVeg pixels is shown in Figure 12.

Figure 9. UAV ablation study: Comparison of feature importance in UAV RGB imagery based on
single-feature, two-feature, and three-feature classifiers. UVeg segmentation baseline F1 score using
logistic regression is shown in red dashed line.

Figure 10. WorldView-2 ablation study: Comparison of band importance in WorldView-2 multi-
spectral imagery based on single-feature, two-feature, and three-feature classifiers. A representative
subset of band combinations (uniformly selected) is demonstrated. Apart from analyzing all image
pixels, a separate study is presented based on shallow-water pixels only, close to the shore with a
higher density of apparent UVeg. UVeg segmentation baseline F1 scores using logistic regression
with all bands for both groups (all pixels/shallow water only) are shown in red dashed lines.
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Figure 11. Sentinel-2 ablation study: Comparison of band importance in Sentinel-2 multi-spectral
imagery based on single-feature, two-feature, and three-feature classifiers. A representative subset
of band combinations is demonstrated from the available options for analysis. UVeg segmentation
baseline F1 score using logistic regression with all bands is shown in red dashed line.

For reasons of practical interest, the feature importance analysis of WorldView-2
was also performed, apart from the total amount of pixels, on a subset of the image that
exhibited a higher density of visually apparent UVeg regions and was close to the shore,
which we thus consider “shallow pixels”. In Figure 10, the feature importance analysis of
the complete image is shown in a light blue color, similarly to the analyses of UAV and
Sentinel-2 imagery, while the analysis of the “shallow pixels” only is presented in gray.
The UVeg segmentation baseline F1 scores using logistic regression with all bands for both
groups (all pixels/shallow water only) are shown in red dashed lines.

Figure 12. Histogram of Secchi disk depth values derived from the RGB bands of the WV2 image [18].
The right side displays an estimated Secchi disk depth map. UVeg regions are present within the red
circles near the shoreline.

3.2. Segment Anything Model Variants

Figure 13 provides a comparative analysis of two variants of the Segment Anything
Model (SAM)—the “huge” and “base” versions. The comparison is conducted under a “few
annotations” regime, where the number of positive/negative pair annotations is limited.
The X-axis represents the number of annotated pairs, while the Y-axis denotes the F1 score.
The mean values of the F1 score are accompanied by the standard deviation, indicating the



Remote Sens. 2023, 15, 4001 13 of 19

variability in the model’s performance across multiple runs. This comparison is based on
a bootstrap simulation conducted 500 times, providing a robust statistical analysis of the
performance difference between the two SAM model variants.

Figure 13. SAM performance with point-prompting in UAV data. The number of prompt-points on
the horizontal axis represents pairs of randomly selected positive and negative points.

3.3. Different Quantization in Sentinel-2 Pixels (Two to Four Classes)

In the context of applying multi-class classification to the Sentinel-2 data source, we
present two significant figures. Figure 14 illustrates the class distribution of the quan-
tized annotation at a GSD of 10 m, showcasing the complexity and possible class imbal-
ance in the dataset. Figure 15 further explores the impact of different class granularities
(two to four classes) on the data representation at the same GSD. These figures collectively
offer insights into the challenges and implications of multi-class classification tasks within
the Sentinel-2 data source.

Figure 14. Descriptive statistics of the quantized annotation in GSD = 10 m.
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Figure 15. Impact of different class granularities on data representation in Sentinel-2: Investigation of
2–4-class models’ performance at a ground sampling distance of 10 m for different sensing dates.

3.4. Transferring UAV Models in Different Lake Areas

Table 3 presents the results of model transferability across different lake locations.
The logistic regression model and random forest model were trained on AOI1 and evaluated
on AOI2 and AOI3. The random forest model underwent hyperparameter tuning using
Bayesian optimization with a validation set from AOI1.

Table 3. Transferability of models in different lake locations using UAV data source. This table
presents the results of evaluating the transferability of models across different locations within the
lake. The logistic regression and random forest models were trained on AOI1 and tested on AOI2
and AOI3.

Data Source Test Area Test Area
Size ML Method F1 U A PA

UAV
trained on AOI1

AOI 1 *
(10-fold CV) ∼8 M px

LogReg 0.350 0.219 0.861
RF 0.576 0.415 0.941

AOI 2 ∼8 M px
LogReg 0.312 0.228 0.493

RF 0.291 0.291 0.292

AOI 3 ∼17 M px
LogReg 0.384 0.256 0.764

RF 0.342 0.279 0.442
* Baseline results from Table 2.

4. Discussion

The results in Figure 4 demonstrate the superiority of the pre-trained foundation
model, SAM, in the few-shot learning regime, i.e., limited annotations of positive and
negative pixel-pairs for segmenting UVeg from UAV imagery. The highest F1 score of
86.5% ± 4.0%, with a corresponding UA of 89.6% ± 5.8% and PA of 83.9% ± 4.8%, is
achieved for UAV images using 40 positive/negative pairs of pixels for prompting the
SAM model. The corresponding assessment metrics are much lower for the RF and logistic
regression models, i.e., 54.0% ± 9.2% using RF models and 42.8% ± 6.2% using logistic
regression models. The baseline F1 score for the UAV images is 42.3% (red dashed line),
which is the best linear separator of the UVeg/no UVeg classes based on the three bands R,
G, and B of the UAV images.
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In general, the baselines marked with red dashed lines in Figures 4–6 serve as effective
linear separators for all bands within each data source, considering the limited size of the
available dataset. Consequently, we consider these baselines as valuable indicators of the
information contributed by each modality in segmenting underwater aquatic vegetation.

A more comprehensive comparison of the three data sources based on different ML
methods and sufficiently large training datasets (specific to each data source) is presented
in Table 2. The methods with the highest F1 scores are highlighted in bold. Notably,
the SAM method performs best for the highest-resolution UAV imagery, while the random
forest pixel-wise method remains the state of the art for the WorldView-2 and Sentinel-2
data sources.

We believe that the inability to adapt SAM to lower-resolution remote sensing images
can be attributed to the specific characteristics of the training data used for the foundation
model. To support this argument, we attempted simple methods like upsampling and patch
splitting for WorldView-2 and Sentinel-2 images to generate synthetic higher-resolution
images, but without success. However, we firmly believe that future research efforts should
focus on properly training and adapting foundational models for coarser-resolution remote
imagery, such as Sentinel-2 and WorldView-2, given the available resources in terms of
training data and computational power.

The choice of using RF as a comparison with the SAM foundation model was based
on the well-established understanding that ensembling techniques tend to outperform
more basic methods in machine learning. Random forest, being a bagging model, along
with boosting models, has demonstrated superior performance compared to other ML
approaches [11,12]. While deep learning has been successful in computer vision and remote
sensing, we could not utilize such methods due to the limited annotated data for our
task, making the foundation model the most suitable option. Additionally, we included
logistic regression as a baseline ML method since it represents traditional thresholding
techniques commonly used in remote sensing studies, where linear combinations of bands
are designed.

In Figure 7, two masks were produced for the same scene captured during the UAV
mission using three RGB bands. These masks were based on different random selections of
eight prompt-input points, where the red stars denote negative class input points and the
green stars indicate positive class input points. We observe the impact of the point-pair
selection on the segmentation accuracy, with the segmentation mask on the left being
more accurate than the one on the right, which can also be seen quantitatively in the
model’s variance in Figure 4, with eight point-pairs. The number of point-pairs for this
demonstration was selected because with eight pairs of positive/negative points the SAM
model results in generally accurate masks; however, in some cases the model fails and
results in masks like the one on the right of Figure 7. Investigating the impact of the
input-point selection strategy in an active learning regime (interactively), e.g., selecting the
most prominent errors of the current predicted mask, is an ongoing focus of our research
group with significant practical applications.

In Figure 8, two additional masks were produced for a scene recorded by the WorldView-
2 satellite. The three most informative bands (Green–RedEdge–NearInfrared1) were selected
for this operation, as per the feature importance analysis discussed in Section 2. The left panel
shows a mask created using eight pairs of positive/negative input points, which yielded
the highest F1 score according to the results presented in Figure 5. Conversely, the right
panel exhibits a mask that contains notable artifacts. These artifacts were more prominent
when using a greater number of positive/negative point pairs, resulting in a reduction in
performance, as evident in the findings displayed in Figure 5.

The feature importance analysis of the three data sources, as depicted in Figures 9–11,
was conducted through an ablation study. The analysis of the UAV bands using a single-
feature classifier revealed that the blue band provides the most informative data, while the
combination of green and blue bands, as a two-feature classifier, performed nearly as well
as the baseline linear separation using all bands together. Regarding Sentinel-2 in Figure 11,
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the most informative bands for UVeg segmentation were found to be B07, B08, B01, and B09
when employing single-feature classifiers. Additionally, the combinations of B01-B07-B12
and B01-B07-B11 were demonstrated to encompass the complete information required for
linearly separating pixels with UVeg presence.

In consideration of practical applications, due to the high cost of UAV imagery and
the large GSD of the Sentinel-2 imagery, the WorldView-2 modality is considered a feasible
choice for UVeg detection. Consequently, a more sophisticated feature importance analysis
of WorldView-2 data was conducted that investigates the effect of pixels’ proximity to the
shore in feature importance. Specifically, apart from the total amount of pixels, a feature
importance analysis in Figure 10 was conducted on a subset of the image that exhibited
a higher density of visually apparent UVeg regions and is close to the shore, which we
thus considered “shallow pixels”. The areas of the lake further from the shore did not
have visually apparent UVeg, probably because of the lake’s depth. In “shallow waters”,
both the blue (B) and green bands (G) demonstrated high informativeness, whereas their
significance diminished when considering the total amount of pixels due to the presence of
deeper-water pixels. Despite B and G individually achieving the highest F1 scores in the
single-feature classifier, the combination B-G did not result in further enhancement in the
two-feature classifier. This can likely be attributed to the similarity in information content
between both bands concerning UVeg segmentation, indicating that their combination does
not yield better results. Moreover, the combination of green, red, and near-infrared1 bands
encompassed almost the entire information content of all bands. Similar conclusions were
drawn for the two- and three-feature classifiers, both for the “shallow water” subset and
the complete image encompassing deeper waters. However, when examining the Secchi
disk depth (Zsd) as a single-feature classifier, it exhibited poor discriminative power as
a synthetic index computed by the QAA-RGB algorithm [18]. The lack of separability is
further illustrated in Figure 12, where the histograms of the two classes are visually and
quantitatively indistinguishable.

Figure 13 provides interesting insights into the performance of two SAM variants,
“huge” and “base”. The SAM model has two encoder options: ViT-B (91M parameters) and
ViT-H (636M parameters). While ViT-H is expected to show significant improvement over
ViT-B, we noticed a surprising change in the F1 score and precision for around 100 posi-
tive/negative pixel pairs. These findings are intriguing and will guide our future research.

Based on our analysis of the Sentinel-2 data source in Section 3.3, it appears that increas-
ing the granularity of the class structure from binary to multi-class models, namely, two-
to four-class models, inversely impacts the accuracy of the classifications. As evidenced
in Figure 15, the performance, when measured in terms of balanced accuracy, diminishes
as we progress from binary to multi-class classification. Furthermore, the class distribu-
tion depicted in Figure 14 underscores the significant data imbalance at a GSD of 10 m.
This class imbalance might contribute to the decrease in model performance as the class
granularity increases, as the models may struggle to learn from under-represented classes.
Interestingly, this pattern holds consistently across different time periods, underscoring
the robustness of these observations and contributing insights to the optimal approach to
classifying complex, multi-dimensional datasets like those derived from Sentinel-2.

The results in Table 3 show comparable metrics for the different AOIs, thus clearly
demonstrating the ability of the logistic regression models to be successfully transferred
to different locations within the lake. The results based on the random forest pixel-wise
classifier show a reduction in all metrics compared to the cross-validation baseline, which
is attributed to the limited dataset size of the cross-validation study in AOI1. Although all
AOIs were captured on the same date in a single UAV mission (as shown in Table 1), these
findings provide valuable insights into the practical usage of such models. For example,
during a UAV mission covering the entire lake, it would be feasible to segment all UVeg
regions by training or fine-tuning a model on a smaller subarea and then transferring the
trained model to the rest of the lake. No results are provided for the Segment Anything
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model due to insufficient data for fine-tuning; however, recent studies propose methods for
adapting prompts with one shot [22].

Considering the successful transferability observed with the logistic regression model
in Section 3.4, a potential direction for future research would be to explore adapting the
Segment Anything model to new lake areas. Building upon the insights gained, incor-
porating the one-shot prompt adaptation methods proposed by Zhang et al. [22] may
enable the transfer of the Segment Anything model’s capabilities. This could facilitate the
efficient segmentation of UVeg regions across larger areas of the lake, even on different
dates, by leveraging a fine-tuned model from a smaller subarea.

5. Conclusions

In summary, this work demonstrates the effectiveness of the SAM foundation model
for segmenting underwater vegetation in high-resolution UAV imagery in the few-shot
learning regime. However, adapting SAM to lower-resolution images (WorldView-2 and
Sentinel-2) remains challenging, and traditional pixel-wise methods remain the state of
the art in our task. The specific characteristics of the foundation model training data are
believed to be the reason for this inability to adapt SAM, despite attempts with techniques
like patch splitting and upsampling.

The feature importance analysis and comparison of ML methods across the three data
sources reveal important insights. The analysis of single-feature classifiers highlights the
significance of specific bands in each data source and the limitations of synthetic indices
like the Secchi disk depth. These findings provide valuable guidance for future research
and practical applications in underwater vegetation segmentation.

Additionally, the study explores SAM variants and the impact of class granularity
on Sentinel-2 classification. Logistic regression models demonstrate successful transfer-
ability across different areas within the lake, offering a practical approach to segmenting
UVeg regions in larger areas using models trained on smaller subareas. Future research
can focus on adapting the Segment Anything model to new lake areas using one-shot
prompt-adaptation methods, facilitating efficient segmentation across larger areas and
different dates.
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Abbreviations
The following abbreviations are used in this manuscript:

UVeg Underwater Aquatic Vegetation
SAM Segment Anything Model
UAV Unmanned Aerial Vehicle
LogReg Logistic Regression
RF Random Forest
AI Artificial Intelligence
TDWTP Thessaloniki’s Drinking Water Treatment Plant
QAA-RGB Quasi-Analytical Algorithm—Red Green Blue
TP, TN, FP, FN True Positive, True Negative, False Positive, False Negative
UA, PA User’s Accuracy, Producer’s Accuracy
AOI Area of Interest
ML Machine Learning
DL Deep Learning
SSL Self-Supervised Learning

References
1. Haroon, A.M.; Abd Ellah, R.G. Variability response of aquatic macrophytes in inland lakes: A case study of Lake Nasser. Egypt. J.

Aquat. Res. 2021, 47, 245–252. [CrossRef]
2. Rowan, G.S.; Kalacska, M. A review of remote sensing of submerged aquatic vegetation for non-specialists. Remote Sens. 2021,

13, 623. [CrossRef]
3. Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W.; Qin, B.; Huang, W. Applying remote sensing techniques to monitoring seasonal

and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [CrossRef]
4. Liang, S.; Gong, Z.; Wang, Y.; Zhao, J.; Zhao, W. Accurate monitoring of submerged aquatic vegetation in a macrophytic lake

using time-series Sentinel-2 images. Remote Sens. 2022, 14, 640. [CrossRef]
5. Chen, Q.; Yu, R.; Hao, Y.; Wu, L.; Zhang, W.; Zhang, Q.; Bu, X. A new method for mapping aquatic vegetation especially

underwater vegetation in Lake Ulansuhai using GF-1 satellite data. Remote Sens. 2018, 10, 1279. [CrossRef]
6. Fritz, C.; Dörnhöfer, K.; Schneider, T.; Geist, J.; Oppelt, N. Mapping submerged aquatic vegetation using RapidEye satellite data:

the example of Lake Kummerow (Germany). Water 2017, 9, 510. [CrossRef]
7. Manakos, I.; Katsikis, E.; Medinets, S.; Gazyetov, Y.; Alagialoglou, L.; Medinets, V. Identification of Emergent and Floating Aquatic

Vegetation Using an Unsupervised Thresholding Approach: A Case Study of the Dniester Delta in Ukraine. 2023. Available
online: http://eos.iti.gr/files/floating_paper.pdf (accessed on 12 June 2023).

8. Villa, P.; Bresciani, M.; Bolpagni, R.; Pinardi, M.; Giardino, C. A rule-based approach for mapping macrophyte communities
using multi-temporal aquatic vegetation indices. Remote Sens. Environ. 2015, 171, 218–233. [CrossRef]

9. Husson, E.; Hagner, O.; Ecke, F. Unmanned aircraft systems help to map aquatic vegetation. Appl. Veg. Sci. 2014, 17, 567–577.
[CrossRef]

10. Heege, T.; Bogner, A.; Pinnel, N. Mapping of submerged aquatic vegetation with a physically based process chain. In Proceedings
of the Remote Sensing of the Ocean and Sea Ice 2003, Barcelona, Spain, 2004; Volume 5233, pp. 43–50.

11. Piaser, E.; Villa, P. Evaluating capabilities of machine learning algorithms for aquatic vegetation classification in temperate
wetlands using multi-temporal Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103202. [CrossRef]

12. Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land
cover classification using Sentinel-2 imagery. Sensors 2017, 18, 18. [CrossRef]

13. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
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