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ABSTRACT
The emergence of water-proof mobile and wearable devices (e.g.,
Garmin Descent and Apple Watch Ultra) designed for underwater
activities like professional scuba diving, opens up opportunities
for underwater networking and localization capabilities on these
devices. Here, we present the first underwater acoustic positioning
system for smart devices. Unlike conventional systems that use
floating buoys as anchors at known locations, we design a system
where a dive leader can compute the relative positions of all other
divers, without any external infrastructure. Our intuition is that in
a well-connected network of devices, if we compute the pairwise
distances, we can determine the shape of the network topology. By
incorporating orientation information about a single diver who is
in the visual range of the leader device, we can then estimate the
positions of all the remaining divers, even if they are not within
sight. We address various practical problems including detecting
erroneous distance estimates, addressing rotational and flipping am-
biguities as well as designing a distributed timestamp protocol that
scales linearly with the number of devices. Our evaluations show
that our distributed system running on underwater deployments
of 4-5 commodity smart devices can perform pairwise ranging and
localization with median errors of 0.5-0.9 m and 0.9-1.6 m.
Project page with code: https://underwatergps.cs.washington.edu/
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1 INTRODUCTION
In recent years, both industry and academia have shown interest
in developing underwater capabilities for mobile and wearable
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Figure 1: Underwater 3D positioning for smart devices. Our
system computes the pair-wise distances between divers us-
ing a distributed protocol, and only requires a single diver
to be within the leader’s visible range. Sound can propagate
farther underwater than light.

devices. While the research community has been investigating the
potential of smart devices for communicating underwater [32], tech
companies [10, 12, 17, 19] are rolling out waterproof versions made
for underwater use like the Garmin Descent Watch series [18]. In
2022, among the noteworthy mobile releases was the Apple Watch
Ultra, designed for professional scuba diving at depths of 40 meters,
complete with all the dive computer functions scuba divers need.
With a depth gauge sensor, the watch provides a dive profile, water
temperature readings, and even safety alerts such as decompression
limits, fast ascents, and mandatory safety stops [10, 16, 17].

Our paper takes an important next step in this domain — we
introduce the first acoustic system that enables underwater 3D
positioning capabilities on smart devices. Just as, in-air positioning
systems (e.g., GPS) have been transformative for mobile devices,
localization can bring a vital new capability to underwater scenarios.
For example, maintaining close proximity with a dive leader is
critical to ensure that the divers can help each other in the event of
an emergency such as injury or being trapped by ropes or nets [2, 5].
This can be challenging in low visibility situations such as turbid
waters or during a silt out, which can cause some divers to become
visually separated from their dive leader [1, 3].

Ideally, a dive instructor should be able to locate all their divers,
even if they are not all within sight (Fig. 1). Because sound travels
much farther underwater, current localization techniques for under-
water sensor networks and robots [89, 91, 107] rely on acoustic an-
chor nodes like floating buoys placed at known locations [30, 92, 94].
Thesemethods involve havingmultiple anchor nodes that use acous-
tic signals to either trilaterate the location of an underwater device
or use microphone arrays to compute angle-of-arrival (AoA).
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Figure 2: Conceptual interface for our underwater system.

Deploying a dedicated underwater anchor infrastructure is chal-
lenging for two key reasons: 1) custom anchors1 with floating buoys
must be manually deployed before any underwater activities, which
can be cumbersome to power and maintain in dynamic aquatic en-
vironments, and 2) all the divers must have a clear unobstructed
path to the anchors for accurate acoustic ranging.

We present a novel system that enables underwater localiza-
tion capabilities on mobile devices without the need for any in-
frastructure support (e.g., anchor buoys). In our design, the dive
leader device computes the 3D positions of all the other divers in
their group (see Fig. 1). Achieving this is challenging since local-
ization techniques developed in our community for radios (e.g.,
Wi-Fi) [52] do not translate to mobile devices in underwater scenar-
ios. These methods either use multiple routers as anchors at fixed
locations [49] or estimate angle of arrival using multiple antennas
at each router [101]. While phones and watches have multiple mi-
crophones, their separation is an order of magnitude smaller than
the required half wavelength.

Instead, we take a distributed approach to this problem. Our
system assumes that there is a visible diver in range of the dive
leader and that the dive leader first orients themselves towards the
visible diver. The devices then run a distributed protocol to find
the pair-wise distances between divers. We leverage an important
result in graph embeddings [41, 62, 83]: even in a network where the
number of links is linear in the number of nodes (versus quadratic
in a fully-connected network), the pair-wise distances can uniquely
determine the shape of the network topology, as long as the links
are well-distributed across the nodes (see §2.1.2). Combining this
with the depth sensor data, allows us to calculate the relative diver
positions in the 3D space.

A network topology-based approach to underwater positioning
is attractive for two reasons: 1) it does not require all the devices
to be in range of each other and can work with some missing
links in the network (Fig. 3a), and 2) it has the ability to handle
some erroneous distance measurements between devices caused
by severe multipath (Fig. 3b).

Our design has four key components.
• Pairwise distance estimation. Underwater channels are chal-
lenging due to multipath and noise from signal reflections between
the waterbed and surface, as well as from aquatic creatures and
plants, and from scattered particles in the water. The speed of

1By anchors, we mean devices whose absolute positions are apriori known.

Figure 3: Device localization using a network topology-based
approach. Our system can localize (a) evenwithmissing links
in the network and (b) some links have severe multipath
resulting in wrong distance estimates.

sound also spreads these reflections across time causing a large
delay spread [40]. Mobile devices have a limited 3-4 kHz under-
water bandwidth and a low sampling rate of 44.1 kHz compared
to commodity hydrophones [32]. To improve distance estimation,
we use multiple microphones, such as the 2-3 microphones on
smartphones or the three-microphone array on the Apple Watch
Ultra [10]. Since the time difference of arrival for the direct path be-
tween the microphones is upper bounded by the physical distance
between them, the sample offset between the direct path in the
two microphone channels should be lower than the acoustic prop-
agation time between them. Additionally, each microphone may
have a different hardware-based noise profile. Thus, our approach
identifies the direct path as the earliest non-negligible peaks across
microphones whose sample offset satisfies the physical distance
constraint between the microphones on the device (see §2.2).
• Underwater topology estimation with outlier detection.
Given the pairwise distances, we need to estimate the diver posi-
tions. This is challenging for two reasons. First, we might not have
a fully-connected network and as a result we only have a subset
of pairwise distances. Second, some of the pairwise distance esti-
mates might be erroneous and outliers due to severe underwater
multipath, which might significantly change the estimated network
topology. To address these challenges, we start with multidimen-
sional scaling algorithms [27] to estimate the topology. However
even a small number of erroneous pair-wise distance estimates
can significantly change the network topology output by these
algorithms. To address this, we design an iterative outlier detection
algorithm that drops different subsets of links and re-runs the multi-
dimensional scaling algorithm to identify the outlier measurements
and compute a uniquely realizable network topology (§2.1.3).
• Resolving rotational and flipping ambiguities. While the
above method can output the network topology, we still need to
address rotational and flipping ambiguities. Specifically, the whole
network can rotate along the vertical axis going through the leader
device, while still maintaining the depth measurements at each
device. As a result, we have an infinite number of possibilities for
locations for the devices in the network. We show in §2.1.4 that
by imposing the condition that the dive leader first points towards
a visible diver, we can resolve rotational ambiguities. This leaves
us with flipping ambiguity where we have to pick between two
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networks that are mirror images across the line joining the leader
and the device that the leader is pointing towards (Fig. 5). While
the multiple microphones on smart devices do not have good AoA
resolution underwater, we design a novel technique that uses them
to formulate a binary classification problem that addresses flipping
ambiguity and uniquely determine 3D positions.
• Distributed timestamp protocol. The challenge is that the
protocol should scale linearly with the number of devices, even
when not all devices are in range of each other and the network
topology is unknown. At a high level, in our protocol, the leader
device broadcasts an acoustic query to initiate the protocol. All
other devices broadcast back a response after a fixed delay in their
allocated time slots. The time slots are determined by the device ID
and set with respect to when the transmission from the leader is
initiated. Each device records the timestamp at which it received
messages from other devices in its range. This data is then sent
back to the leader device, which uses the timestamps to compute
the pair-wise distances between devices. Further our protocol can
achieve global synchronization and correct for clock drifts even
when not all devices are in range of each other.

We implemented our software system and tested it in differ-
ent network topologies using old Android smartphones placed in
water-proof cases, which we use for cost-effective proof-of-concept
demonstration. Since Android phones do not have an underwater
depth sensor, we estimate depth using the pressure sensors com-
mon on smartphones (see §3.1). We evaluated our system in four
different underwater environments. Our key findings are as follows:
• The median errors for pairwise 1D distance estimation were
0.48, 0.80 and 0.86 m at 10, 20 and 35 m respectively. The median
2D localization errors were 0.8 m and 0.9 m for a 4- and 5-device
network deployment, with a protocol latency of 1.56 s and 1.88 s.
• In the presence of device mobility at 15-56 cm/s, the median
localization error for the mobile device was 0.8 m. Further, the
flipping disambiguation algorithm could detect the correct positions
with 90.1% and 100% accuracy, using signals from 1 and 3 devices
with unknown positions.
• With missing links, the system achieved a median localization
error of 1.0 m. The median error with occlusions resulting in outlier
distance estimates was 1.4 m.

Contributions. Our key contributions are in the distributed sys-
tem design and the methods to address practical problems like
outlier detection, rotational and flipping ambiguities as well as a
low-latency distributed timestamp protocol. Together this enables
us to build the first underwater acoustic positioning system for
smart devices. Our software system does not require any anchor
infrastructure. We evaluate our system in various underwater con-
ditions and demonstrate its practical feasibility. We believe that
our proof-of-concept system brings 3D localization capabilities on
smart devices to the next frontier, i.e., underwater settings.

2 SYSTEM DESIGN
At a high level, our distributed 3D localization system measures
the pairwise distances. Since RF signals attenuate quickly underwa-
ter [65] and light is susceptible to turbid water and high-ambient
light [55], we use acoustics. The distance 𝑑 between two devices is,

𝑐Δ𝑡 , where 𝑐 is the speed of sound and Δ𝑡 is the time-of-flight. The
underwater sound speed can be approximated using Wilson’s equa-
tion [99]: 𝑐 = 1449+4.6𝑇 −0.055𝑇 2+0.0003𝑇 3+1.39(𝑆−35)+0.017𝐷 .
Here, 𝑇, 𝑆, 𝐷 are the temperature, salinity, and depth. The depth
limit for recreational divers is 40 m [7, 8]. Prior work [54] shows
that at these depths, the maximum change in the speed of sound
is 30𝑚/𝑠 , which is only a 2% relative error at 1500𝑚/𝑠 . One can
improve accuracy by using depth sensors and configuring the tem-
perature and salinity for different water bodies.

If we know the timestamps at which the sender and receiver sent
and received the acoustic signals, we can compute Δ𝑡 . Our system
has three key components: a topology-based localization technique,
a method to estimate pairwise distances for challenging underwa-
ter multipath channels and a distributed timestamp protocol that
operates in unknown network topologies.

2.1 Topology-based localization
At a high level, given a large number of nodes in the 3D space
and the exact pairwise distances between all the nodes, one can
uniquely determine the shape and network topology [62, 83]. There
are four key challenges in using this underwater.
• Pairwise distance estimates. Instead of outputting the extra pair-
wise distances, our system has median errors of 0.5-0.9 m.
• Occlusions. Links blocked by rocks, marine life or humans, or
with severe multipath lead to large distance estimate errors.
• Missing links. Some divers may be out of range of each other.
• Ambiguity. In addition to network shape, for 3D positions, we
need to address rotation and flipping ambiguities.

Say, there are 𝑁 devices, including the leader and we have the
matrix 𝐷 ∈ R𝑁×𝑁 , where 𝐷𝑖, 𝑗 represents the pairwise distances
between device 𝑖 and 𝑗 . The depth of each device is also known from
onboard sensors as ℎ𝑖 . Our objective is to estimate 3D positions,
𝑃𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ],∀𝑖 ∈ [0, 𝑁 − 1], to minimize a stress function 𝑆 (·).

min
𝑃𝑖

𝑆 (𝑃0, . . . , 𝑃𝑁−1) =
∑︁

0≤𝑖< 𝑗<𝑁

𝑤𝑖, 𝑗 (𝐷𝑖, 𝑗 − ∥𝑃𝑖 − 𝑃 𝑗 ∥)2

Where 𝑧𝑖 = ℎ𝑖 and 𝑃0 is the leader position. 𝑤𝑖, 𝑗 is the element
of a symmetric and non-negative weight matrix. When the link
between 𝑖 and 𝑗 exists,𝑤𝑖, 𝑗 is 1 but is 0 for missing links. We break
the problem down into three separate steps: (1) project onto the 2D
space, (2) estimate the topology in that 2D space, and (3) resolve
any ambiguity regarding rotation and flipping.

2.1.1 Projection to 2D space. Given that we get the depth measure-
ments from the on-device sensors, the 3D localization problem can
be simplified to a 2D localization problem using projection [90]. We
can compute the pairwise distances between devices 𝑖 and 𝑗 in the
projected 2D space as, 𝐷2𝐷

𝑖,𝑗
=
√︃
𝐷2
𝑖, 𝑗
− (ℎ𝑖 − ℎ 𝑗 )2. After projection,

the problem now is to optimize the 2D locations, 𝑃2𝐷
𝑖

= [𝑥𝑖 , 𝑦𝑖 ]:

min
𝑃2𝐷
𝑖

𝑆 (𝑃2𝐷0 , . . . , 𝑃2𝐷𝑁−1) =
∑︁

0≤𝑖< 𝑗<𝑁

𝑤𝑖, 𝑗 (𝐷2𝐷
𝑖,𝑗 − ∥𝑃

2𝐷
𝑖 − 𝑃2𝐷𝑗 ∥)

2

2.1.2 Handling link loss. Link losses can be caused by being out
of range, packet drops, and blocking. When a link loss happens,
the pairwise distance measurement for this link is missing. In this
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Figure 4: (a) Non-rigid graph. (b) Partial reflection.

setting, we set the weights𝑤𝑖, 𝑗 to 0 for missing links. We then solve
the above problem as a multi-dimensional scaling optimization [27].
Specifically, we use the weighted SMACOF (Scaling by MAjorizing
a COmplicated Function) algorithm [36, 51]. Different from the
steepest descent approach which directly applies iterative mini-
mization on the stress function, SMACOF finds a convex function
T (·) that majorizes the stress function 𝑆 (·), i.e., T (·) ≥ 𝑆 (·) [36]
and iteratively minimizes T (·) at each step. Compared to other
approaches [35], SMACOF performs better in terms of accuracy
and rate of convergence.
Requirements. The topology of a fully connected network with
𝑁 nodes can be uniquely determined since the

(𝑛
2
)
links constrain

its shape. However, we do not need a quadratic number of links to
determine the shape. At a high level,𝑁 nodes in a 2D space have 2𝑁
degrees of freedom. Since the 3 degrees of freedom from rotation
and translation cannot be determined by pairwise distances, we
have 2𝑁 − 3 degrees of freedom [41], which is linear in the number
of nodes. In fact, a graph is defined as rigid if it does not admit a
continuous deformation other than global rotation, translation, and
reflection. Fig. 4(a) shows an example graph that is not rigid and
can be continuous deformed. Laman’s theorem [56] provides the
necessary and sufficient conditions: A graph with 𝑛 nodes and 2𝑛−3
links is rigid in two dimensions if and only if no subgraph with 𝑛′

nodes has more than 2𝑛′ − 3 links.
However, rigid graphs are still susceptible to discontinuous non-

uniqueness, such as partial reflections. Fig. 4(b) shows an example
where one node has two possible configurations corresponding to
a reflection across a set of mirror nodes. For 𝑁 = 3, three links that
satisfy the triangle inequality, uniquely determine a triangle. For
𝑁 > 3 nodes, localizability is used in graph theory to describe if the
graph can be uniquely realized given the distance information. [41]
provides the necessary and sufficient condition: A graph is uniquely
realizable in two dimensions iff it is redundantly rigid and deleting
any two nodes results in a connected graph.

A graph is redundantly rigid if it can remain rigid upon removal
of any single link. If the graph satisfies the above condition, then
it can be uniquely determined. In practice, however, the pairwise
distances are estimated and not exact. As a result, we have errors in
the 2D localization results. In §2.1.5, we simulate different network
topologies and present analytical results.

2.1.3 Handling outlier measurements. Outlier measurements can
occur when the direct path is blocked or severely attenuated, and
multi-path is mistaken for the direct path. Even a small number
of outliers can significantly change the topology since our opti-
mization function gives equal weight to every pairwise distance.
While [25] uses the triangle inequality to detect outliers, in our
deployments, the outlier errors are often not large enough to break
the triangle inequality. [39] uses regularization to jointly optimize

Algorithm 1: Outlier Detection
Input: Set of nodes 0, 1, . . . 𝑁 − 1
Pairwise 1d ranging matrix 𝐷 = [𝑑𝑖, 𝑗 ]𝑀×𝑀
Maximum dropping outlier number 𝑂𝑚𝑎𝑥

Output: 2D location of the nodes 𝑃 = [𝑝𝑖 ]𝑁×1
𝑊0 ← 𝑂𝑛𝑒𝑠 (𝑀,𝑀); // Init the weight matrix with all ones
𝐸0, 𝑃0 ← 𝑆𝑀𝐴𝐶𝑂𝐹 (𝐷,𝑊0); // 𝐸0 is normalized stress
function, 𝑃0 is output of 2D positions
if 𝐸0 < 1.5𝑚 then

𝑃 ← 𝑃0;
return 𝑃

for 𝑛𝑑𝑟𝑜𝑝 ← 1 to 𝑂𝑚𝑎𝑥 do
𝐸𝑚𝑖𝑛 ← 𝐸0
𝑃𝑚𝑖𝑛 ← 𝑃0
for 𝑠𝑑𝑟𝑜𝑝 ← 𝑆𝑢𝑏𝑠𝑒𝑡𝑠 (𝑀,𝑛𝑑𝑟𝑜𝑝 ) do
// Subsets() outputs all possible drop subsets of𝑀
links with the size 𝑛𝑑𝑟𝑜𝑝

𝑊 ←𝑊0;
𝑊 (𝑠𝑑𝑟𝑜𝑝 ) ← 0;
𝐸′, 𝑃 ′ ← 𝑆𝑀𝐴𝐶𝑂𝐹 (𝐷,𝑊0);
if 𝐸0 − 𝐸′ > 0.9 ∗ 𝐸0 and 𝐸′ < 𝐸𝑚𝑖𝑛 then

𝐸𝑚𝑖𝑛 ← 𝐸′;
𝑃𝑚𝑖𝑛 ← 𝑃 ′;

if 𝐸𝑚𝑖𝑛 < 1.5𝑚 then
𝑃 ← 𝑃𝑚𝑖𝑛 ;
return 𝑃

𝐸0 ← 𝐸𝑚𝑖𝑛

𝑃0 ← 𝑃𝑚𝑖𝑛
return 𝑃0

the topology and outlier detection. However, this is known to be
very sensitive to the selection of regularization parameters [25].

Our intuition instead is that in scenarios without outliers, the
pairwise distance errors as well as the output of the stress function
in the SMACOF algorithm are both within certain ranges. So we
normalize the output of the stress function 𝑆 (·) with the number of
links in the network. If this normalized value surpasses a threshold
(1.5 in our implementation), we assume that there are outliers. To
detect the outliers, we iteratively drop different subsets of links
by setting their corresponding weights 𝑤𝑖, 𝑗 to 0 and re-run the
SMACOF algorithm. If the new normalized stress function have
significantly decreasing, the dropped links may be the outliers. We
repeat this process with more outlier links until the stress function
does not see a significant reduction (we set this threshold to 90%).
Since dropping too many links may lead to the unstable output [39],
we set a maximum number of outliers to 3. Further, we cannot
drop all subsets of links since dropping some subsets may make
the graph not uniquely realizable. Thus we only run the SMACOF
algorithm when the resulting graph is still uniquely realizable.

2.1.4 Rotation and Flipping ambiguity. The estimated network
topology from the above optimization still has rotation and flipping
ambiguities. A rotation ambiguity occurs since as shown in Fig. 5a
the topology can rotate while still satisfying the height require-
ments. This rotational ambiguity can be addressed by rotating the
edge between leader and the pointed device along the arrow in the
figure, since we require the leader is oriented themselves towards
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Figure 5: (a) Rotational and (b) flipping ambiguity.

the device. This leaves us with flipping ambiguity where we have
to pick between two networks that are mirror images across the
line joining the leader and the device that the leader is pointing
towards. To resolve this, we leverage the dual microphones in the
leader’s device. At a high level, while the physical separation of the
two microphones on mobile devices is not large enough to provide
a good AOA resolution in underwater scenarios, we can still them
to perform a simple binary classification task by determining at
which microphone the diver’s signal arrives first. For nodes that
are to the left (right) side of the line in Fig. 5b, the left (right) mi-
crophone receives the signal before the right (left). We can use this
information to resolve flipping ambiguity. Specifically, when the
signal from diver 𝑖 arrives, we use the dual-microphone channel
estimation algorithm in §2.2 to estimate and compare the direct
paths (we denote the direct path indexes in dual microphones are
𝑚𝑖 and 𝑛𝑖 ). However, in the real-world, this might be incorrect due
to multipath. To boost flipping disambiguation accuracy, we use a
voting mechanism to jointly estimate the flipping from all the diver
signals (user 2, 3, . . . 𝑁 − 1) (excluding the leader 0 and the pointed
user 1). Since flipping gives two options: {𝑃𝑖 } = {[𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ]} or
{𝑃 ′

𝑖
} = {[𝑥 ′

𝑖
, 𝑦′

𝑖
, 𝑧′
𝑖
]}, we compute the function,

𝑉 ({𝑃𝑖 }) =
∑︁

𝑖∈[2,𝑁−1]
𝑠𝑔𝑛(𝑚𝑖−𝑛𝑖 )𝑠𝑔𝑛

(
(𝑥𝑖−𝑥0) (𝑦1−𝑦0)−(𝑦𝑖−𝑦0) (𝑥1−𝑥0)

)
.

If 𝑉 ({𝑃𝑖 }) > 𝑉 ({𝑃 ′
𝑖
}) we output {𝑃𝑖 }, otherwise we output {𝑃 ′𝑖 }.

Note that the leader only needs to point the device to the nearby
diver and does not need to rotate to a different position or angle.

2.1.5 Analytical evaluation. To understand our topology-based al-
gorithm, we analyze it in simulation. We randomly generate N
devices in a 60 × 60 × 10𝑚 3D space. We place the leader at the
center of the 3D space and randomly generate its height. User
1 is generated with the distance between leader and user 1 ran-
domly selected between 4 and 9 m. We then randomly generate
the positions for the remaining divers in the 3D space. We add
uniformly-distributed errors to the ground-truth as our measure-
ments: [−𝜖1𝑑 , 𝜖1𝑑 ] for pairwise distances, [−𝜖ℎ, 𝜖ℎ] for height, and
[−𝜖𝜃 , 𝜖𝜃 ] for pointing angle. For each test, we randomly generate
200 samples and report the mean 2D localization error across all
divers, excluding the leader. Fig. 6a plots 2D localization error as a
function of the error in pairwise distances. We set 𝑁 = 6, 𝜖ℎ = 0.4𝑚,
and 𝜖𝜃 = 0. As expected, errors in pairwise distances translate to
larger 2D localization errors. Fig. 6b shows that as the number of
devices 𝑁 increases, the 2D localization error decreases. Here, we
set 𝜖ℎ = 0.4𝑚, 𝜖𝜃 = 0, and 𝜖1𝑑 = 0.8𝑚. Fig. 6c sees a trend with the

pointing error with the other parameters set to: 𝑁 = 6, 𝜖ℎ = 0.4𝑚,
and 𝜖1𝑑 = 0.8𝑚. Fig. 6d shows the results with different number of
link drops where 𝑁 = 6, 𝜖ℎ = 0.4𝑚, 𝜖1𝑑 = 0.8𝑚, and 𝜖𝜃 = 0.

2.2 Pairwise distance estimation
To compute these distances, we estimate the exact timestamp when
the acoustic signal arrives. This is challenging since the direct path
can be severely attenuated underwater and thus, we can not rely
on the assumption that the highest peak or the first non-negligible
peak in the multipath profile is the direct path. Fig. 7 shows that
there can be some peaks before the direct path with amplitude
greater than the average noise level ("Wrong peak" in Fig. 7).

To reduce the probability of picking these wrong peaks, we use
the two microphones on the mobile devices. The basic idea of our
joint synchronization algorithm is that the time difference of arrival
at the microphones (e.g., bottom and top microphones on phones)
is physically constrained by the distance between them. Thus, the
sample offset between the direct path at the topmicrophone channel
and the direct path at the bottom microphone should be lower than
the acoustic propagation time between the two microphones (two
black cross symbols in Fig. 7). Furthermore, the multipath created
by the water-proof case is different at the two microphones. Finally,
the two microphones may have a different noise profile.

Thus, our algorithm identifies the direct path as the earliest non-
negligible peaks in both channels whose sample offset satisfies the
physical distance constrain between the two microphones. Specif-
ically, we denote the estimated channel for the first microphone
as ℎ1 (𝑛) and the second microphone as ℎ2 (𝑚), where 𝑛 and𝑚 are
the channel tap numbers. Then, we normalized ℎ1 and ℎ2 to be
between 0 and 1. We then check whether the sample 𝑛 in channel
ℎ1 is a peak. Next, we estimate the channel noise level for the two
microphone channels by calculating the average power in the last
100 channel taps, respectively denoted as𝑤1 and𝑤2.

min
𝜏𝐿𝑂𝑆

𝜏𝐿𝑂𝑆 = (𝑛 +𝑚)/2, ∀𝑚,𝑛 ∈ [0, 𝐿/𝑓 𝑠)

𝑠 .𝑡 . ℎ1 (𝑛) > 𝑤1 + 𝜆, ℎ2 (𝑚) > 𝑤2 + 𝜆,
𝐼𝑠𝑃𝑒𝑎𝑘 (𝑛,ℎ1) ∩ 𝐼𝑠𝑃𝑒𝑎𝑘 (𝑚,ℎ2), |𝑛 −𝑚 | ≤ 𝑑/𝑐

Here 𝜏𝐿𝑂𝑆 is the delay of the direct path, 𝑛 and 𝑚 are the tap
numbers in the channels ℎ1 and ℎ2. 𝑤1 and 𝑤2 are the estimated
noise levels in these two channels. 𝜆 is a conservative parameter
(we set it empirically to 0.2). 𝑑 is the physical distance between the
two microphone (𝑑 = 16𝑐𝑚 in our implementation), 𝑐 is the speed
of sound and 𝐿 is the entire length of the channel (1920 samples).

2.2.1 Signal processing pipeline. We use OFDM symbols between
1-5 kHz as the preamble. We use this frequency band given the
underwater response of mobile devices [32]. We fill the OFDM bins
with a ZC sequence [98] which is phase-modulated and orthogonal
to its delayed version [105]. ZC-modulated OFDM symbols can
achieve much better performance than their well-known counter-
part, chirps [28, 81]. We then concatenate 4 such identical OFDM
symbols and multiply each with a PN sequence with different signs
([1, 1, -1, 1]), to increase robustness to noise [72]. Between each
OFDM symbol, we insert a cyclic prefix to avoid inter-symbol in-
terference. The length of each OFDM symbol is 1920 samples and
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Figure 6: Analytical evaluation of mean error versus different parameters in a 60 × 60 × 10𝑚 3D space.

Figure 7: The yellow and blue curves correspond to the chan-
nel estimates at two microphones.

the length of the cyclic prefix is 540 samples. Our preamble syn-
chronization algorithm at the receiver is composed of three steps.

First, we perform cross-correlation between the microphone
stream and the sending preamble. In the presence of a preamble,
this results in a correlation peak. However, the height of this peak
could vary a lot as the SNR decreases at long distances. Meanwhile,
some underwater spiky noise like bubbles would also cause high
peaks in the cross-correlation, leading to plenty of false positives.

To address this we use auto-correlation. Since our preamble has
4 OFDM symbols that are encoded with a 4-bit sequence, we split
the received signal into 4 segments corresponding to the 4 OFDM
symbols, multiply each segment by the 4-bit sequence, and apply
correlation among them [72]. Auto-correlation is helpful because
the spiky noise rarely has such a complex encoded pattern (PN
sequence) and since the 4 received OFDM symbols suffer from
nearly the same multi-path, the correlation value between two
received OFDM symbols would be much higher than the correlation
value between the received and transmitted symbols. We set a
threshold of 0.35 in our design for valid preamble detection.

Due to the severe underwater multi path profiles, the side-lobe
height in the correlation curve is usually higher than the direct
path. Hence, coarse synchronization error based on only correla-
tion is usually hundreds of samples, corresponding to over 6 m
error. To achieve more fine-grained synchronization, we apply
channel estimation, where we leverage the channel profiles to
identify the direct path. While MUSIC-like estimators [28] could
achieve super-resolution channel profiles, the signal space decom-
position is difficult due to the extremely dense underwater channel
and it has a high computational complexity. Therefore, we use an
LS channel estimator [50]. Specifically, based on the coarse syn-
chronization of cross-correlation and auto-correlation, we segment

out 4 received OFDM symbols 𝑦1, 𝑦2, 𝑦3, 𝑦4 from the microphone
stream. Then we apply FFTs on these 4 symbols to get 𝑌1, 𝑌2, 𝑌3, 𝑌4.
We denote the FFT of the original OFDM symbol before multipli-
cation with PN sequence by 𝑋 and denote the PN sequence by
𝑃𝑁1, 𝑃𝑁2, 𝑃𝑁3, 𝑃𝑁4. The channel model can be written as 𝑌𝑖 (𝑘) =
𝐻 (𝑘) (𝑃𝑁𝑖 · 𝑋 (𝑘)) + 𝑁𝑖 (𝑘), where 𝑘 represents the 𝑘𝑡ℎ frequency
bin. The estimated channel is �̂� (𝑘) = 1

4
∑4
𝑖=1

1
𝑃𝑁𝑖
· 𝑋 (𝑘)−1𝑌𝑖 (𝑘).

2.2.2 Low-level audio timing. Our distributed timestamp protocol
in §2.3 requires each of the responding devices to transmit at a
fixed time after it receives the message from the leader or other
devices. A key challenge in achieving this is that we need to address
the buffer delays. Specifically, at each device, the microphone and
speaker buffers are not synced with each other [6]. These buffers
are filled in independently by the OS. Thus, we do not know the
timestamps corresponding to the samples in the two buffers. At a
high level, we use the low-level audio timing in the OS to achieve
self-synchronization between the microphone and speaker buffers
on each device. During initialization, when the microphone and
speaker data streams are open, an initial calibration signal is sent
from the speaker to its own microphone (green signal in Fig. 8).
Then the offset between the speaker and microphone buffers, Δ𝑛,
is estimated by subtracting the microphone buffer index when the
calibration signal is detected and the speaker buffer index when
the calibration signal is written (as shown in Fig. 8). Once we open
the microphone and speaker data streams, we do not close them so
as to keep this offset constant. When the microphone detects the
leader at index m, the device write the response message at index 𝑛
in speaker buffer where 𝑛 =𝑚 −Δ𝑛 + 𝑓 𝑠 · 𝑡𝑟𝑒𝑝𝑙𝑦 (𝑓 𝑠 is the sampling
rate). Thus, the device can reply at a desired interval 𝑡𝑟𝑒𝑝𝑙𝑦 after
receiving the message at the microphone (see Appendix).

2.3 Distributed timestamp protocol
An approach is for each pair of devices to independently measure
their pairwise distances. This scales quadratically with the number
of devices. Our protocol should satisfy four key requirements.
• Efficiency. Since divers move, it is critical for the protocol to
compute pairwise distances across the network in 1-2 s.
• Collisions.While there is no global clock underwater, the protocol
should avoid packet collisions between devices.
• Unknown topology. Since our goal is to find the topology shape,
we can not assume a known topology. Further, the protocol has to
work in networks that are not fully-connected.
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Figure 8: Synchronization of microphone & speaker buffers.

• Not all devices are connected to leader. The protocol should work
even when not all devices can hear the leader, making time syn-
chronization with the leader challenging.

In our design, the dive leader initiates the protocol by trans-
mitting a short message with a preamble and its ID and the other
devices respond to it using time-division multiplexing (TDM). Each
device is pre-assigned a unique ID, where the leader device is as-
signed the ID 0, and other user IDs are from 1 to N-1. After all
devices respond, the timestamp from each user can be used to
compute the pairwise propagation time and distances. We define
the propagation time between device 𝑖 and 𝑗 as 𝜏𝑖 𝑗 . The distance
between them can be computed as 𝐷𝑖, 𝑗 = 𝑐𝜏𝑖 𝑗 . Since no global
synchronization clock exists underwater, device 𝑖 records its local
time 𝑇 𝑖 . We define 𝑇 𝑖

𝑗
as the time when the message from device 𝑗

arrived at the microphone buffer of device 𝑖 .
All devices are in leader’s range. All devices use the leader’s
message to synchronize and respond in a TDM fashion. When
device 𝑖 receives the leader’s message, it sets its local time to 0
i.e., 𝑇 𝑖

0 = 0. Then each device divides its local time into slots and
responds in the slot ordered by their ID. Specifically, device 𝑖 will
send its message containing a preamble and its ID at 𝑇 𝑖

𝑖
= Δ0 +

(𝑖 − 1)Δ1 based on its local clock. Δ0 is the maximum time it takes
to process the message from the leader in real-time as well as
the smartphone audio input and output latency. Δ1 = 𝑇𝑝𝑎𝑐𝑘𝑒𝑡 +
𝑇𝑔𝑢𝑎𝑟𝑑 , where 𝑇𝑝𝑎𝑐𝑘𝑒𝑡 is the duration of the message and 𝑇𝑔𝑢𝑎𝑟𝑑 is
the guard interval which accounts for the maximum propagation
delay to avoid packet collisions. When all devices are in leader’s
range, 𝑡𝑔𝑢𝑎𝑟𝑑 should be larger than twice the maximum possible
propagation time within the diver group 𝜏𝑚𝑎𝑥 (i.e.𝑇𝑔𝑢𝑎𝑟𝑑 > 2𝜏𝑚𝑎𝑥 )
to guarantee no packet collisions.

The protocol stops after 𝑁 slots which is the number of devices
in the network. At the end of this protocol, each device records the
timestamps at which they received messages from all devices in
their range and transmit this timestamp information to the leader, as
described in §2.4. Given these timestamps, the leader can compute
the pairwise distances between all devices. Specifically, the distance
between device 𝑖 and 𝑗 (𝑖 < 𝑗 ) can be computed as follow: 𝐷𝑖 𝑗 =
𝑐
2 [(𝑇

𝑖
𝑗
− 𝑇 𝑖

𝑖
) − (𝑇 𝑗

𝑗
− 𝑇 𝑗

𝑖
)] . Here, we ignore the propagation time

from the device’s speaker to its own microphone, because it is small
compared to underwater distances.

Figure 9: Distributed timestamp protocol.

Not all devices are in leader’s range. As before, the subset of
devices that receive the leader’s message respond in their assigned
TDM slots. Say device 𝑖 did not receive the leader’s message but
received a message from other devices. In this case, device 𝑖 uses the
first message it received to synchronize its local time and compute
its assigned transmission time slot (Fig. 9). Here, we have two
cases. First, say device 𝑖 received a message from device 𝑗 (where
(𝑖 − 𝑗)Δ1 > Δ0) at time 𝑇 𝑖

𝑗
. It estimates its transmission timeslot

as 𝑇 𝑖
𝑖
= 𝑇 𝑖

𝑗
+ (𝑖 − 𝑗)Δ1. In its slot, device 𝑖 transmits its ID and the

ID for device 𝑗 to ensure that other devices know that its transmit
time was set with respect to device 𝑗 . Next, say the first message
received by device 𝑖 is from a device with an ID 𝑗 (where (𝑖− 𝑗)Δ1 <

Δ0). In this case, it will miss its slot and will have to wait for all
remaining devices to transmit before it has a chance to respond in
the 𝑇 𝑖

𝑖
= 𝑇 𝑖

𝑗
+ (𝑁 − 𝑗 + 𝑖)Δ1 time slot. We note three points.

• Packet losses. If there is some device 𝑘 such that both device 𝑖 and
𝑗 received its message, then we can compute the distance between
𝑖 and 𝑗 even if one of the messages from either 𝑖 to 𝑗 or 𝑗 to 𝑖 is lost.
• ID encoding. We use MFSK to encode the ID. We divide the 1-
5 kHz frequency band into 𝑁 bins (𝑁 is the dive group size). For
user 𝑖 , we set all bins of 𝑖𝑡ℎ bin to 1 and all other bins to 0. We use
a maximum-likelihood estimator to decode the user ID.
• Latency analysis.We set Δ0 = 600𝑚𝑠 ,𝑇𝑝𝑎𝑐𝑘𝑒𝑡 = 278𝑚𝑠 ,𝑇𝑔𝑢𝑎𝑟𝑑 =

42𝑚𝑠 , and Δ1 = 320𝑚𝑠 . When all divers are in the leader’s range,
the maximum round trip time for a protocol run is 𝑇𝑟𝑜𝑢𝑛𝑑 = Δ0 +
(𝑁 −1)Δ1. When some divers are out of range of leader, in the worst
case, the maximum round trip time is 𝑇𝑟𝑜𝑢𝑛𝑑 = Δ0 + 2(𝑁 − 1)Δ1.

2.4 Communication system
After the distributed protocol, the users need to send the timestamp
and depth information to the leader. Due to the limited bandwidth,
we need to compress this data. We discretize depth at a 0.2 m
resolution and so we need 8 bits to represent depths between 0-40 m.
For timestamps, instead of transmitting the absolute timestamp 𝑇 𝑖

𝑗
,

we transmit the time difference between 𝑇 𝑖
𝑗
and the assigned time

slot for device 𝑗 , i.e.Δ0+( 𝑗−1)Δ1. This time difference is bounded by
[0, 2𝜏𝑚𝑎𝑥 ). We set 2𝜏𝑚𝑎𝑥 = 42𝑚𝑠 which corresponds to a maximum
propagation distance of 32 m. For fs=44100Hz, this is around 1852
samples in the microphone buffer. At a 2 sample resolution, the
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Figure 10: Different underwater scenarios. (a) Swimming pool, (b) Dock, (c) Viewpoint, (d) Boathouse.

timestamp differences require 𝑙𝑜𝑔2 (1852/2) ≈ 10𝑏𝑖𝑡𝑠 . Hence, with
𝑁 divers, each device sends 10(𝑁 − 1) + 8 bits to the leader.

We use FSK which is a widely deployed modulation [32, 57, 86,
93]. The devices transmit simultaneously to the leader device to
reduce latency. To do this, we divide the 1-5 kHz bandwidth into
𝑁 bands and pre-assign each device to a different band. Device 𝑖
uses FSK within its band. We apply 2/3 convolutional coding to the
payload. We note that this communication system takes around 0.9,
1 and 1.2 s when 𝑁 is 6, 7 and 8 at a bit rate of 100 bps per device.

When some users are out of range of the leader, they cannot
directly send the message back. Thus, a multi-hop communication
mechanism is required which is not in the scope of this paper.

3 RESULTS
We evaluated our system in the four environments in Fig 10.
• Swimming pool. The length of the water here is around 23 m. The
depth of the swimming pool varied from 1 to 2.5 m.
• Dock. This outdoor location has a length of around 50 m with a
depth of 9 m. Boats and seaplanes would frequently sail or dock at
this location with aquatic plants and animals.
• Viewpoint. By the waterfront of a park with a length of 40 m. The
water had a depth of around 1 to 1.5 m.
• Boathouse. Fishing dock by the lake with a horizontal distance
of 30 m. The lake had a depth of 5 m. This is a busy location with
people fishing and kayaking close to the dock.

3.1 Benchmark evaluation

Accuracy versus device separation. Here, we evaluate our system
along the dock of a lake with an average water depth of 9 m. We
performed experiments using two Samsung Galaxy S9 phones set
to transmit at the maximum speaker volume. The phones were
set to transmit using the speaker at the bottom of the device, and
receive using the microphones at the bottom and top of the device.
The experiment was repeated in each location every six seconds. At
each distance, the sender and replier are set to exchange messages
up to a maximum of 60 times. The measurements were divided into
roughly three sessions, where after 20 measurements, the phones
were removed and submerged again. The phones were enclosed
in a pouch (Hiearcool waterproof phone pouch [9]) and attached
to a selfie stick and telescopic extension pole, which was used
to submerge the phones to a depth of 2.5 m. The selfie stick and
extension pole were attached using waterproof tape and zip ties.
This setup was chosen so that the phone’s position and angle could
be controlled. We used a tape measure to mark distances up to 45 m.
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Figure 11: (a) Ranging accuracy v/s separation. CDF of abso-
lute error as a function of separation. (b) 95% errors using
both microphones, the bottom and top microphone only.
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Figure 12: (a) Ratio of false positive and false negative for
signal detection (b) 1D ranging error versus distance.

Fig. 11a shows the CDF of the absolute error obtained by our
system for four distances of 10, 20, 35 and 45m. The error in distance
increases with separation between the devices because the signal
strength is lower at larger separation. We also analyze the effect
of using both the top and bottom microphones for ranging versus
using only a single microphone in isolation. Fig. 11b shows the
95th percentile distance error for these scenarios at distances of
up to 45 m. The figure reveals the following: firstly, utilizing both
microphones yields lower ranging errors at all distances. This can
reduce error by as much as 4.52 m at a distance of 45 m (while we
set the maximum distance to 32m in the distributed protocol, here
we relax this to evaluate the limits of 1D localization). Secondly,
when a single microphone is used in isolation, there is no clear
relationship between microphone position and error.

We also compare our 1D ranging algorithm with previous works
on acoustic-based 1D ranging and tracking like [64, 75]. [75] uses
the linear chirp signal and applies auto-correlation with specially-
designed peak detection. [64] implements an FMCW-based ap-
proach where the receiver mixes the received signal with the trans-
mitted signal. For a fair comparison, we control the duration and
bandwidth of three types of signals to be the same. We put the



Underwater 3D positioning on smart devices ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

0.0 0.5 1.0 1.5
Distance error (m)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Depth
2m
5m
8m

a

0 2 4 6 8
Reference depth (m)

0

2

4

6

8

M
ea

su
re

d 
de

pt
h 

(m
)

Smartwatch
depth gauge
Smartphone
pressure sensor
(in pouch)

b

Figure 13: (a) Effect of device depth. Errors for different
depths with devices separated horizontally by 18 m. (b) Ac-
curacy of depth measurements from smartwatch and phone.
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Figure 14: Effect of (a) orientations with phones separated by
20 m, and (b) various smartphone model pairs.

phones at horizontal distances of 10, 20, 28m with a depth ∼ 1𝑚
at the boathouse location. To compare the robustness of signal
detection, we send three types of preambles for 180 times at each
distance. We implement the window-based power threshold 𝑇𝐻𝑆𝐷

in [75] to detect the FMCW signal. Since 𝑇𝐻𝑆𝐷 = 3𝑑𝐵 in [75] is
selected for in-air experiment, we try different 𝑇𝐻𝑆𝐷 to calculate
the false positive and false negative for fair comparison. Fig. 12 (a)
shows that our preamble detection is more robust than the state of
art. To compare the 1D ranging algorithm with [64, 75], the phones
exchange each of different signals ∼ 60 times. Then we apply our
dual-mic channel estimation, auto-correlation [75] and FMCW[64]
on these measurements to calculate the 1D ranging error. Fig. 12
(b) shows the mean value and standard deviation of the 1D ranging
errors demonstrating that our approach outperforms prior work.
Accuracy versus depth.We place the smartphones at different water
depths at the dock location which had a total depth of 9 m. We
lowered the smartphones into the water using ropes marked at 2,
5, and 8 m. The phones were weighed down with a bag of pebbles
to ensure the ropes were vertical. The phones were positioned at
a horizontal distance of 18 m. Unlike previous experiments, the
rope would cause the phone to rotate and sway slowly. We repeat
measurements thrice at each depth. Fig. 13a shows that the median
and 95th percentile error is lowest at 0.28 and 0.73 m for the 5 m
depth, which is around the midpoint depth of the dock. This likely
is because multipath reflections can be stronger when the devices
are close to the surface or floor of the water body.
Effect of phone orientation and make.We evaluate this at the dock
at a horizontal distance of 20 m and a depth of 2.5 m. We first
positioned the speaker and microphone of both phones to directly
face each other so their azimuth 𝜙 and polar angle 𝜃 is set to 0° and
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Figure 15: 1D Ranging errors for moving devices.

Figure 16: Human orientation evaluation.

180° respectively. We measure the error when the sender phone is
rotated to different azimuth and polar angles. We first rotate the
sender phone in the azimuth angle to 90° and 180°while keeping the
polar angle constant. We then reposition the phone so its speaker
and microphone faces upwards with 𝜙 = 0◦, 𝜃 = 0◦. Fig. 14a shows
that median error ranges from 0.54 to 1.25 m. Note that when the
phone faces upwards it had the largest error likely because the
phones are closer to the water surface resulting is higher multipath
when pointing towards the surface. We also evaluated our system
with different smartphone model pairs. In Fig. 14b, we evaluated
three different Android phones models.
Depth accuracy. We evaluate the depth gauge sensor on the Apple
Watch Ultra and use the pressure sensor on the Samsung Galaxy S9
smartphone in a waterproof case for estimating underwater depth.
The depth gauge readings from the smartwatch were obtained from
the Oceanic+ app. The smartphone’s pressure sensor values 𝑃 in
units of Pascals are converted to depth measurements ℎ in units of
meters using the equation [73]: ℎ =

𝑃−𝑃0
𝜌𝑔 , where 𝜌 = 997 𝑘𝑔/𝑚3 is

the average density of water, 𝑔 = 9.81𝑚/𝑠2 and 𝑃0 = 101325 𝑃𝑎 is
atmospheric pressure at sea level. We performed this evaluation in
the dock location which had a depth of 9 m, and lowered each smart
device underwater with a rope in increments of 1 m using markings
on the rope as a measure of ground truth. The devices were held in
place at each depth for 30 s. Fig. 13b shows the accuracy for depth
from the smartwatch and smartphone. Across all measurements,
the average depth error on the smartwatch and smartphone were
0.15 ± 0.11𝑚 and 0.42 ± 0.18𝑚, respectively.
Effect of motion.We first evaluate how our 1D ranging algorithm
works when the device keeps continuously moving. In this experi-
ment, we keep a phone static and attached another phone to the
extension pole in the dock location. The transmitter sends the pre-
amble every 1 second. Then we moved the extension pole along
different 1D trajectories parallel to the coast. To obtain the ground-
truth trajectory, we placed a measurement tape along the dock
coast, mounted a camera on the extension pole, and pointed it to
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Figure 17: Testbeds used to evaluate our positioning system
at the (a) dock and (b) boathouse locations.
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Figure 18: 2D localization error broken down by links of
different distances at the (a) dock and (b) boathouse.

the measurement tape. Since the movement of the phone on the
extension pole is parallel to the measurement tape, the ground truth
of distance changes between the two phones can be recorded by
the camera video (yellow lines in Fig. 15). As shown in Fig. 15a,b,
the smartphone was moved at an average speed of 32 and 56 cm/s.
The median and 95th percentile 1D errors were 0.51 and 1.17 m.
Leader orientation accuracy.We evaluate the ability for a dive leader
to orient themselves to face a diver within their visual range. To do
this, we measure the orientation error with respect to two users in a
swimming pool at different distances. Both users wore a wristband
(HCcolo Wristband Phone Holder) that held a smartphone in a
waterproof case. One user (the diver) stayed in a stationary position
at the end of the pool with their smartphone and also held a 4 × 5
checkerboard pattern used for camera calibration. The other user
(the leader) was positioned at a fixed distance initially at a random
orientation, and would then rotate their body and arm to directly
face the stationary user. The leader’s smartphone was set to capture
video footage of the orienting motion, and the process was repeated
at different distances. To compute the orientation error, we leverage
algorithms from prior work [14] to calculate the position in world
coordinates of the camera 𝐶 = (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶 ), the stationary user’s
checkerboard/phone 𝑃 = (𝑥𝑃 , 𝑦𝑃 , 𝑧𝑃 ), and the center of the camera
frame 𝐷 = (𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 ). We define the vector between the camera
and the checkerboard/smartphone as ®𝑣𝑃𝐶 = 𝑃 −𝐶 and the vector
between the camera and the center of the camera frame as ®𝑣𝐷𝐶 =

𝐷 −𝐶 . We then compute the orientation error as the angle between
the two vectors 𝑐𝑜𝑠−1 ( ®𝑣𝑃𝐶 ·®𝑣𝐷𝐶

| ®𝑣𝑃𝐶 | | ®𝑣𝐷𝐶 | ). If the checkerboard/smartphone
is at the center of the image frame, the orientation error would be
0◦. Fig. 16 shows our evaluation with two different users as the lead
diver. The average error across both users and distances is 5.0◦.

Battery life. We evaluate the power consumption of our system
on an Apple Watch Ultra and Samsung Galaxy S9 smartphone. To
do this, we had the smartwatch continuously play the Emergency
SOS [20] siren, and had the smartphone continuously transmit
the system preamble at maximum volume every three seconds.
The sound levels produced by both devices were 85 and 88 dB
SPL respectively at a distance of 1 m in air. The smartwatch and
smartphone’s battery power reduced by 90% and 63% respectively
after a duration of 4.5 hours which is longer than the maximum
recommended dive times for recreational scuba diving [13, 15].

3.2 Network testbed evaluation

2D localization accuracy versus device separation.We evaluate our
system at the dock and boathouse locations using a network of
five devices as shown in Fig. 17. The topologies were chosen such
that the pair-wise distances between smartphone nodes spanned
a range of distances from 3 to 25 m from the leader device. Each
smartphone was submerged underwater with a rope at different
depths. The ground truth for the 2D locations in the dock location
was measured using a measuring tape. At the boathouse location,
the 2D ground truth was obtained using the distance measuring tool
on Google Maps as the devices were distributed onto two separate
islands that were separated by a body of water. In each configu-
ration, a total of approximately 240 measurements were collected.
Each measurement was split across roughly 5 sessions, where the
devices were retrieved from the water and submerged between
measurements. Fig. 18 shows the CDF of the 2D localization errors
for the devices at the dock and boathouse broken down by link
distance to the leader device. The median (95%) errors across all
devices were 0.9 m (3.2 m) and 1.6 m (4.9 m) in the two deployments.
As excepted the error increases as the distance to the leader diver
increases. This is acceptable since localizing a device at 20 m to
within 3 m, is sufficient for our target application.
Effect of erroneous links. We evaluate this in the dock location by
blocking the link between the leader and user 1 with a thick solid
sheet attached to a telescopic extension pole. To ensure the link
was completely occluded, we place the leader and user 1 at the
same depth of 1.5 m. Note that despite being occluded, the devices
can hear each other but have an erroneous distance estimate. The
median and 95% error in this network deployment with our outlier
detection algorithm applied were 1.4 and 3.4 m respectively. In
Fig. 19a, we focus on the worse 10% of the localization errors, i.e.,
90–100th percentile. We plot the CDF with and without our outlier
detection algorithm applied. The plot shows that without outlier
detection, our error estimates have a long tail due to the presence
of occlusions. However, our outlier detection algorithm can address
erroneous distance estimates and reduce 2D localization errors.
Effect of link removal. We use the data collected from the dock
location and randomly remove a single random link for each of the
measurements. Fig. 19b shows the 2D localization error with and
without link removal. The main observation is that although the
median errors between the two scenarios are similar with an error
of 1.0 and 0.9 m respectively, the 95th percentile error with link
removal is higher than a fully connected network with an error of
6.2 and 3.2 m respectively. The reason for this is that certain links
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Figure 19: Effect of (a) erroneous links due to occlusions, and
(b) link and node removal.

play a greater role in constraining the rotational ambiguities needed
to distinguish between nodes that are positioned in a straight line.
Dropping these links increases localization error. For randomly
dropping nodes, the localization error does not increase and even
become slightly better. This is because some of the far away devices
have larger ranging errors. Sometimes dropping the “bad” far-away
devices can improve topology estimation for the remaining devices.

4-device networks.We evaluate 4-device network deployments by
randomly removing a node from the network using data from the
dock location. Here, we measure the 2D localization error when
randomly removing a device from the network, except for the leader
and user 1. Fig. 19b shows that the CDF of 2D localization error of
the 5-device and 4-device networks are similar with a median error
of 0.9 and 0.8 m, and a 95th percentile error of 3.2 and 3.2 m.
Effect of mobility.We also evaluate whether the motion of the device
affects our 2D localization. Specifically, we attach 5 phones to the
ropes and place them as shown in Fig. 17. Then we moved a single
device forward and backward around its original positions. Since
the phone is attached to the rope, its orientation also keeps changing
during movement. The speed of motion was between 15-50 cm/s.
We performed this evaluation twice, first by moving only user 1
then by moving only user 2. The ground truth for the moving device
was set to the midpoint of the trajectory. Our evaluation results
in Fig. 20 show that the change in 2D localization error is modest
with the median error for user 1 increasing from 0.2 to 0.3 m when
it is moving, while the median error for user 2 increases from 0.4
to 0.8 m when it is moving. This is due to the distributed nature of
our protocol which is able to tolerate multi-path variations caused
by mobility in the environment.
Flipping disambiguation accuracy. We ran experiments at the dock
environment with 5 devices (Fig. 17(a)). We used a long stick instead
of the rope so that we can control the orientation of the leader
device. We collect a total of 50 sets of localization data points with
the leader device oriented towards a closeby device (either device 1
or 2). We run the flipping disambiguation algorithm in 2 settings: (1)
we use signals from only one of the 3 devices (excluding leader and
the visual device that the leader is pointing to) to resolve flipping
as described in §2.1.4. (2) we use the signals from all other 3 devices
to resolve flipping. Across all 50 experiments, when using only
one device’s signal the flipping disambiguation accuracy is 90.1%.
When we use all three devices’ signals, the flipping disambiguation
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Figure 20: 2D localization errors for moving devices.

accuracy improved to 100%, which is expected since this is a binary
classification task and does not require precise AoA values.
Localization protocol round-trip time measurement. Finally, we ran
our distributed protocol with different number of devices in a
testbed and measured the round-trip time for each 2D localiza-
tion protocol run. For each configuration with a specific number of
devices, we ran the protocol 40 times and calculated the average
round time for the protocol. For 3, 4, 5, 6 and 7 devices, the mean
round times were 1.2, 1.6, 1.9, 2.2, and 2.5 seconds, respectively.

4 RELATEDWORK
While there is prior work on underwater communication and mes-
saging [32, 47], here we focus on localization.
Anchor-based underwater localization. There has been prior in-
terest in achieving underwater tracking for dive computers, sensors
and robots [24, 30, 63, 68, 69, 71, 78, 85, 88, 89, 91, 92, 94, 107]. These
proposals use time of arrival [31], time difference of arrival [33], an-
gle of arrival [45] or signal strength [77] to estimate distances and
angles from known anchor buoys (see [46] for a detailed survey).

[23] uses hydrophone devices on the surface as beacons with
known locations. The diver then uses a hand-held display connected
to an acoustic communication module [53]. [21] proposes the use
of an underwater pinger with a very high precision clock that is
synchronized to GPS, prior to deployment. The surface buoys may
be equippedwith GPS that can be translated to underwater GPS [22].
[31] computes the position based on time of arrival measurements
for an underwater autonomous vehicle. [61] proposes the use of
directional beacons for localization. [104] deploys a large number
of visible passive tags which are used as anchors for underwater
localization; in addition to requiring a large number of tags, visual
systems have a smaller underwater range than acoustic systems.

Multi-hop localization [44, 66, 79, 82] has been explored for ter-
restrial and underwater ad-hoc sensor networks. Here, the distance
to each anchor device is computed using intermediary devices at
different hops. While these works are theoretical in nature, they
provide avenues for localizing devices in ad-hoc networks. These
methods however are primarily designed for anchor-based sensor
networks, which is in contrast to our anchor-free design.
Anchor-free underwater localization. This problem formulation
is under-explored for underwater settings. [43] investigates “active-
restricted” sensors that are anchored to the bottom of the sea and
leverages the limited motion within a hemispherical area centered
at the anchor. [74] combines a discovery protocol and pairwise
ranging to localize the relative coordination of the underwater
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sensor networks. [67] propose an algorithm to account for the
motion effect of acoustic nodes and improve the self-localization
accuracy. Our work is more focused on some practical problems:
outlier detection, missing links, rotational and flipping ambiguities.

Anchor-free localization has also been explored for autonomous
underwater vehicles to correct for their accumulated inertial er-
rors [58, 80, 100].Autonomous underwater vehicles however can
more precisely control and know their motion, velocity and in-
stantaneous direction, which is difficult to do using a smart device
that is wore on a mobile human. For example, [97] leverage the
high-precision clock (drift rate < 1 ms over 14 hrs) and Doppler
sonar to track the robot positions, which are not available on mobile
devices. Finally some commercial products [11] claim to achieve
anchor-free localization using custom hardware with precise iner-
tial sensors. Our evaluation with smart device IMUs confirmed prior
observations that they drift within a few seconds [102], making
them challenging to use for anchor-free localization.
Underwater Synchronization. For time of arrival localization,
clock synchronization is critical. [97] avoids clock drifting by de-
ploying high-precision clocks (drift rate < 1 ms over 14 hrs). [48]
investigates the use of expensive atomic clocks for underwater
localization. [64, 95] calibrate the clock drifting during the sys-
tem initialization. However, such calibration requires known initial
positions of devices, which introduces initialization overhead. More-
over, the residual estimation error will still lead to drifting with
time. [34, 59, 87] apply a two-way timestamp exchanging protocol
for synchronized among different nodes. [60] utilizes the Doppler
shift to estimate the clock skew and assumes the estimated velocity
keeps constant within the sync interval. These methods require
frequent message exchange to estimate the time offset and assume a
higher bandwidth than is available on smart devices. In our system,
instead of frequently synchronizing among devices with audible
queries, synchronization only happens when the leader initiates
localization, which is more appropriate for our application.
In-air localization. [75, 106] achieve in-air 1D acoustic ranging
between two phones. 2D acoustic localization uses anchor devices
as beacons [84] and microphone and speaker arrays [64, 95, 103]
to perform either triangulation at distances of a few meters or AoA
estimation. In contrast, our target application requires localization
at distances of 30-40 m. Accurate underwater AoA estimation re-
quires microphone separation on the order of a meter at 1-4 kHz,
which is an order of magnitude larger than a mobile device.

Distributed localization has been theoretically explored for ad-
hoc anchor-free sensor networks [29, 37, 76]. [29, 76] use network
embeddings but do not address rotational and flipping ambiguities,
while [37] assumes that each device is capable of measuring the
angle of arrival from other devices. The closest to our work are
[38, 70] which achieve distributed in-air acoustic localization. [70]
is designed for a network with 16-40 sensors but assumes that the
pair-wise distance errors are 1-5 cm, which is an order of magnitude
lower than in underwater scenarios. [38] is limited in three key
aspects: 1) it requires at least 10-15 devices to provide localization
results. A dive party is typically much less than 10 divers, 2) it does
not address rotational and flipping ambiguities, and 3) it explicitly
assumes that all devices are in range of each other and no occlusions
exist between any device pairs.

5 DISCUSSION AND CONCLUSION
We present the first underwater acoustic positioning system for
smart devices. Our software system achieves 3D positioning on
commodity devices without external infrastructure. Here, we dis-
cuss the limitations of our current design.
When does it fail? Sometimes our localization system, like any wire-
less scheme, produces high localization errors, as demonstrated by
the long tail in Fig. 19. A topology-based design must fulfill three
key requirements: the network must be connected, each node must
have at least three links, and the links must be "well distributed"
across the nodes (see §2.1). Additionally, if a large number of pair-
wise distances are erroneous, or if we encounter degenerate cases
where say all devices are in a straight line, the localization results
may be impacted. Finally, our approach necessitates at least three
divers. With an increase in the number of divers, the design be-
comes more resilient to erroneous pairwise measurements. With
two divers, we can only provide ranging information.
Two-hop communication. Our distributed timestamp protocol (§2.3)
is designed to function evenwhen not all devices are within range of
the leader device. Additionally, our missing link evaluation (Fig. 19)
drops the direct link to the leader. However, our current implemen-
tation assumes that all devices are only one hop away from the
leader device, even if the link quality is imperfect.
Localization versus tracking.Our system enables a device to calculate
the 3D locations of other devices in relation to itself. However, this
is initiated by the user and is not a continuous tracking system.
This is a deliberate design choice, as it minimizes the duration of
acoustic signals underwater. Future work is necessary to develop a
continuous tracking system that could potentially perform sensor
fusion with other sensors, without continuous use of acoustics.
Audibility. As with prior work [32], we use 1-5 kHz for acoustic
pairwise distance estimation. These are in the human hearing range,
similar to many of the commercial and research modems [4, 26, 47].
To limit the time duration we use acoustic signals underwater,
our system is designed to be an user-initiated action that is only
performed when the leader wants to know the positions of their
dive group and is not designed for continuous tracking.
Visual odometry. A design decision we made in our paper is to
not use cameras for localization despite they being ubiquitous on
smartphones. We opted not to use cameras since our goal is to
create a design that works for wearables like smart watches which
are more likely than phones to be used in underwater scenarios.
Cameras unfortunately are not yet common on smart watches.
Light-based methods are also susceptible to turbid water [55].
Diver evaluations. In this paper, we mainly use ropes and long sticks
to put the devices underwater during evaluation. Further work is
required to evaluate our system with divers in real-world dives
(seaside or deep ocean) and with multiple divers constantly moving.
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APPENDIX

Low-level audio timing. Our goal is to ensure that the replying
device can send a preamble at a precise sample index in the future
that corresponds to 𝑡𝑟𝑒𝑝𝑙𝑦 , after the signal from the sender arrives
at the device. To map the sample indices to time, we need to look
into how Android transmits and records sound at a low level. The
low-level OpenSL ES audio library in Android exposes access to
the speaker and microphone audio sample buffers. Specifically, the
library provides the ability to directly write audio samples to a
future speaker buffer even during speaker playback. During run-
time, the library executes a CallBack function when the microphone
buffer is full or the speaker buffer is empty. In this way, we can
acquire a continuous data stream for microphone data and another
continuous data stream for speaker data. Thus, the sample indices
in the microphone and speaker streams have a linear relationship
with timestamps:

𝑡𝑠 (𝑛) = 𝑛/𝑓 𝑠𝑠 + 𝑡0𝑠 , 𝑡𝑚 (𝑚) =𝑚/𝑓𝑚𝑠 + 𝑡0𝑚 (1)

Here𝑚 and 𝑛 are the sample indices in the microphone and speaker
data streams. 𝑡𝑠 (𝑛) is the timestamp when sample 𝑛 in the buffer is
send out by the speaker and 𝑡𝑚 (𝑚) is the timestamp when sample
𝑚 arrives in the microphone buffer. 𝑡0𝑠 is the initial timestamp when
the first sample in the stream is sent by the speaker, and 𝑡0𝑚 is the
initial timestamp when the first sample in the stream arrives at the
microphone. 𝑓 𝑠𝑠 and 𝑓𝑚𝑠 are the sampling rates for the speaker and
microphone, which may not be exactly our desired sampling rate
(𝑓𝑠 = 44.1 kHz). We assume that 𝑓 𝑠𝑠 = 𝑓𝑠/(1−𝛼) and 𝑓𝑚𝑠 = 𝑓𝑠/(1−𝛽),
where |𝛼 | ≪ 1 and |𝛽 | ≪ 1.

Figure 21: Mapping buffer samples to absolute time.

Self-synchronizing speaker andmicrophone streams.As shown
in Fig. 21, we do not know the exact timestamp 𝑡3 when the pream-
ble arrived at the microphone of device B. Instead, we only know
the sample index𝑚2 of the recorded preamble in the microphone
stream. At the speaker side, we also cannot directly know the exact
timestamp 𝑡4 when the speaker sends the signal, but we can control
the sample index 𝑛2 in the speaker stream. We define the 𝛿2 is the
propagation delay from the speaker to its own microphone. We
define 𝑡𝑟𝑒𝑝𝑙𝑦 as the time interval between the arrival of signal from
phone A and the arrival of its own signal at the phone B’s micro-
phone. According to Fig. 21 we have 𝑡𝑟𝑒𝑝𝑙𝑦 = 𝑡5 − 𝑡3 = 𝑡4 + 𝛿2 − 𝑡3.
Combining this with Eq. 1, we have

𝑡𝑟𝑒𝑝𝑙𝑦 = 𝑡4 + 𝛿2 − 𝑡3 = 𝑛2/𝑓 𝑠𝑠 + 𝑡0𝑠 + 𝛿2 −𝑚2/𝑓𝑚𝑠 − 𝑡0𝑚 (2)

The microphone and speaker buffers work separately, and there is
no guarantee of the relative order between the two buffers. In other
words, the initial offsets 𝑡0𝑠 and 𝑡0𝑚 can be different each time we
open the streams. To address this, once we open the microphone
and speaker data streams, we do not close them so as to keep the
offset, 𝑡0𝑠 − 𝑡0𝑚 , constant. We write zeros to the speaker stream when
we are transmitting nothing to keep the buffer full. Further, after
initializing the two streams, the speaker sends a calibration signal
(green in Fig. 21) to estimate this offset. We write the calibration
signal to the sample index 𝑛1 in the speaker stream. Then the
microphone stream would receive this calibration signal at sample
index𝑚1. The propagation time of the calibration signal from the
speaker to the microphone on device B is (𝑡2 − 𝑡1) (i.e., 𝛿2). By
applying Eq. 1, we get:

𝑡2 − 𝑡1 =𝑚1/𝑓𝑚𝑠 + 𝑡0𝑚 − 𝑛1/𝑓 𝑠𝑠 − 𝑡0𝑠 = 𝛿2 (3)

Now, we compute the offset (𝑛1 −𝑚1) between the microphone
and speaker after initial calibration, which can be used for (𝑡0𝑠 − 𝑡0𝑚)
compensation. After initial calibration, our goal is when device B
detects the start of the signal from device A at the sample index
𝑚2 in Fig. 21, device B will write the reply signal at the sample
index 𝑛2 in the speaker stream, such that they are separated in time
by the desired gap, 𝑡0

𝑟𝑒𝑝𝑙𝑦
, after adjusting for buffer delays. So, by

compensating the indices offset acquired from calibration, we set
𝑛2 to,

𝑛2 =𝑚2 + (𝑛1 −𝑚1) + 𝑓 𝑠 · 𝑡0𝑟𝑒𝑝𝑙𝑦, (4)

Here 𝑓𝑠 is the desired sampling rate. However the real reply interval
𝑡𝑟𝑒𝑝𝑙𝑦 is shown in Eq. 2. The difference between the real and desired
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Figure 22: SNR estimation between two Samsung S9 devices
at different distances.

reply times is,

𝑡𝑟𝑒𝑝𝑙𝑦 − 𝑡0𝑟𝑒𝑝𝑙𝑦 = 𝑛2/𝑓 𝑠𝑠 + 𝑡0𝑠 −𝑚2/𝑓𝑚𝑠 − 𝑡0𝑚 − 𝑡0𝑟𝑒𝑝𝑙𝑦 + 𝛿2 (5)

By combining Eqs. 3 and 5 and using the relationship between 𝑓𝑠 ,
𝑓𝑚𝑠 , 𝑓 𝑠𝑠 , we can rewrite the above equation as,

𝑡𝑟𝑒𝑝𝑙𝑦 − 𝑡0𝑟𝑒𝑝𝑙𝑦 = −𝛼𝑡0
𝑟𝑒𝑝𝑙𝑦

+ (𝑚2 −𝑚1) (𝛽 − 𝛼)
𝑓𝑠

(6)

The key observation here is that the main error source is from
the difference between the actual sampling rate and the nominal
sampling rate. 𝛼 for Android devices is around 1-80 ppm [42]. As for
the second term, while 𝛽−𝛼 is the clock drifting difference between
speaker and microphone clock, which is usually quite small in
most Android phone. To avoid the second error term accumulate as
𝑚2−𝑚1 increases, we can utilize the response signal of this device to
re-calibrate the offset between the speaker and microphone streams.
SNR measurement. We measure the Signal-to-Noise Ratio (SNR) at
10, 20, and 28 m at the boathouse. During the measurement, there
were people fishing and boating nearby. To estimate the SNR, we
send a preamble consisting of 8 OFDM symbols from 1-5 KHz. We
compute the SNR for each subcarrier by applying frequency-domain
MMSE channel estimation [32]. Fig. 22 shows the estimated SNR
for each subcarrier between 2 Samsung S9 phones.
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