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Abstract: Unmanned underwater operations using remotely operated vehicles or unmanned surface
vehicles are increasing in recent times, and this guarantees human safety and work efficiency. Optical
cameras and multi-beam sonars are generally used as imaging sensors in underwater environments.
However, the obtained underwater images are difficult to understand intuitively, owing to noise and
distortion. In this study, we developed an optical and sonar image fusion system that integrates the
color and distance information from two different images. The enhanced optical and sonar images
were fused using calibrated transformation matrices, and the underwater image quality measure
(UIQM) and underwater color image quality evaluation (UCIQE) were used as metrics to evaluate
the performance of the proposed system. Compared with the original underwater image, image
fusion increased the mean UIQM and UCIQE by 94% and 27%, respectively. The contrast-to-noise
ratio was increased six times after applying the median filter and gamma correction. The fused image
in sonar image coordinates showed qualitatively good spatial agreement and the average IoU was
75% between the optical and sonar pixels in the fused images. The optical-sonar fusion system will
help to visualize and understand well underwater situations with color and distance information for
unmanned works.

Keywords: underwater visualization; optical and sonar image fusion system; geometric calibration
of multi-imaging systems; image fusion; single-image enhancement

1. Introduction

Recently, the need for unmanned vehicles, such as remotely operated vehicles and
autonomous underwater vehicles, has increased due to the high safety and efficiency in
tasks, such as surveying underwater structures and acquiring seabed data. For unmanned
vehicles, imaging sensors are essential for visualizing underwater situations. Underwater
optical cameras and multi-beam imaging sonars are the most commonly used imaging
sensors. As shown in Figure 1, optical and sonar images are expressed in Cartesian and fan-
shaped image coordinates, respectively. An optical camera provides an intuitive expression
of underwater situations using red, green, and blue (RGB) color signals of the measured
light signal. Since the light reaching the camera undergoes physical distortions, such as
attenuation and reflection by water and floating particles, underwater optical images suffer
from color casting and low visibility [1]. Multi-beam sonars provide images expressed in
the fan-shaped image coordinate of the direction (angle, θ) and distance (range, r) calculated
from the time-of-flight of the sonic beam. Sonic beams are well transmitted through water,
but it is difficult to understand sonar images due to the low signal-to-noise ratio [2]. Several
studies have been conducted to improve the quality of underwater optical and sonar images.
Table 1 summarizes the single-enhancement techniques for optical and sonar images.
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Figure 1. Two image coordinate systems, (a) Cartesian and (b) fan-shaped image coordinate systems 
of optical and multi-beam sonar sensors. 

To compensate for wavelength-dependent color casting and low visibility, three rep-
resentative approaches of single-image enhancement have been reported: conventional 
image processing-based, image formation model (IFM)-based, and deep learning-based 
enhancements. Conventional image processing algorithms, such as contrast-limited adap-
tive histogram equalization (CLAHE), homomorphic filtering, empirical mode decompo-
sition, and multi-processing step-based techniques have been applied to underwater im-
ages for color compensation, histogram equalization, and boundary enhancement. How-
ever, these algorithms do not consider the spatial variance of the degradation over the 
field of view [3–6]. The IFM can be simplified as shown in Equation (1), where I is the 
measured light intensity of a pixel in the image, J is the restored light intensity, t is the 
light transmission map, and A is the background light: 𝐼ሺ𝑥ሻ ൌ 𝐽ሺ𝑥ሻ𝑡ሺ𝑥ሻ ൅ 𝐴ሺ1 െ 𝑡ሺ𝑥ሻሻ (1) 

To restore 𝐽 from 𝐼 based on Equation (1), it is necessary to estimate the transmis-
sion map and background light relevant to the flight path of the measured light and the 
physical characteristics of the underwater environment. The dark channel prior (DCP) 
and gradient domain transform restore underwater images with physical prior 
knowledge of light, or through domain transform to estimate the transmission map [7–9]. 
IFM-based enhancement is effective in removing haziness in underwater images. How-
ever, there is a tradeoff between computational complexity and enhancement perfor-
mance. Recently, deep learning methods, such as convolutional neural networks (CNNs) 
and generative adversarial networks (GANs) have been applied for transmission map es-
timation and white balancing [10–12]. The trained generator network of the underwater 
GAN and fast underwater image-enhancement GAN are enhanced from the underwater 
image to the cleaner image. Although uncertainty is minimized due to inaccurate prior 
knowledge and computational complexity of accurate IFMs, the performance of deep 
learning-based enhancement depends on robust construction of training datasets. 

Single-image enhancement techniques for multi-beam sonar images have been pro-
posed to remove noise and increase image contrast. Conventionally, the quality of sonar 
images is improved using filters or deep learning for noise removal and contrast enhance-
ment. The median filter, which chooses a median value among the ascending-sorted pixel 
values in a kernel, is conventionally applied to remove random noise from the sonar im-
age [13]. Gabor filters improve contrast and reduce noise in underwater sonar images [14]. 
A new adaptive cultural algorithm (NACA) optimized the filtering parameter for de-
noising sonar images [15]. In addition, CNNs are actively applied for noise reduction, 
crosstalk removal, and increasing the image resolution [16–18]. 

Figure 1. Two image coordinate systems, (a) Cartesian and (b) fan-shaped image coordinate systems
of optical and multi-beam sonar sensors.

To compensate for wavelength-dependent color casting and low visibility, three rep-
resentative approaches of single-image enhancement have been reported: conventional
image processing-based, image formation model (IFM)-based, and deep learning-based en-
hancements. Conventional image processing algorithms, such as contrast-limited adaptive
histogram equalization (CLAHE), homomorphic filtering, empirical mode decomposition,
and multi-processing step-based techniques have been applied to underwater images
for color compensation, histogram equalization, and boundary enhancement. However,
these algorithms do not consider the spatial variance of the degradation over the field
of view [3–6]. The IFM can be simplified as shown in Equation (1), where I is the mea-
sured light intensity of a pixel in the image, J is the restored light intensity, t is the light
transmission map, and A is the background light:

I(x) = J(x)t(x) + A(1− t(x)) (1)

To restore J from I based on Equation (1), it is necessary to estimate the transmission
map and background light relevant to the flight path of the measured light and the phys-
ical characteristics of the underwater environment. The dark channel prior (DCP) and
gradient domain transform restore underwater images with physical prior knowledge of
light, or through domain transform to estimate the transmission map [7–9]. IFM-based
enhancement is effective in removing haziness in underwater images. However, there is
a tradeoff between computational complexity and enhancement performance. Recently,
deep learning methods, such as convolutional neural networks (CNNs) and generative
adversarial networks (GANs) have been applied for transmission map estimation and
white balancing [10–12]. The trained generator network of the underwater GAN and fast
underwater image-enhancement GAN are enhanced from the underwater image to the
cleaner image. Although uncertainty is minimized due to inaccurate prior knowledge
and computational complexity of accurate IFMs, the performance of deep learning-based
enhancement depends on robust construction of training datasets.

Single-image enhancement techniques for multi-beam sonar images have been pro-
posed to remove noise and increase image contrast. Conventionally, the quality of sonar
images is improved using filters or deep learning for noise removal and contrast enhance-
ment. The median filter, which chooses a median value among the ascending-sorted pixel
values in a kernel, is conventionally applied to remove random noise from the sonar im-
age [13]. Gabor filters improve contrast and reduce noise in underwater sonar images [14].
A new adaptive cultural algorithm (NACA) optimized the filtering parameter for denoising
sonar images [15]. In addition, CNNs are actively applied for noise reduction, crosstalk
removal, and increasing the image resolution [16–18].

There have been some reports on fusion techniques for multiple imaging sensors.
Two different datasets measured from acoustic and stereo cameras were fused by extrinsic
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calibration and feature matching [19,20]. The data measured from two 3D imaging sensors,
an acoustic camera and stereo camera, were aligned and fused using point-to-point cor-
respondence [19]. Opti-acoustic stereo imaging is performed by matching the structural
features of the edges and specific points in the data measured from multiple sensors [20].

Table 1. Summary of single-image enhancement techniques for optical and multi-beam sonar images.

Image Type Enhancement Method [Reference] Description

Optical
image

Empirical mode decomposition [3]
Decompose the color spectrum components of underwater images,
and improve the images by applying different weights on the color

spectrum components

CLAHE-mix [4] Apply CLAHE on the image in RGB and HSV color models and
combine two contrast-enhanced images by Euclidean norm

Image fusion [5] Apply three successive steps of white balancing, contrast and edge
enhancing, and fusing

CLAHE-HF [6] Enhance contrast of underwater images by CLAHE, and reduce noise
by homomorphic filtering (HF)

Red channel restoration model [7] Apply a red channel model, which is a variation of DCP, to improve
the most attenuated red channel signal of the underwater image

Underwater IFM-based algorithm [8] Recover the original image with the determined transmission map of
direct transmitted, forward and backward scattered light

DCP and depth transmission map [9]
Fuse DCP and depth map, which are the difference between the

bright and the dark channels and the difference of
wavelength-dependent light absorption, respectively

UGAN [10]
Train underwater GAN (UGAN) from the paired clean and

underwater images to learn the difference between the paired images,
and generate enhanced underwater images using the trained UGAN

CNNs for estimation of transmission and
global ambient light [11]

Train two parallel CNN branches to estimate the blue channel
transmission map and global ambient light signal

FUnIE-GAN [12]
Train fast underwater image enhancement GAN (FUnIE-GAN) to

learn global content, color, texture, and style information of
underwater images

Sonar image

Median filter [13] Reduce noise in sonar images by median filter

Gabor filter [14] Improve edge signal in sonar images by Gabor filter

NACA [15]
Apply adaptive initialization algorithm to obtain a better initial
clustering center and quantum inspired shuffled frog leaping

algorithm to update cultural individuals

CNN based auto encoder [16] Train auto encoder from 13,650 multi-beam sonar images for
enhancing resolution and denoising

GAN based algorithm [17] Train GAN using high- and low-resolution sonar image pairs for
enhancing resolution

YOLO [18] Train you only look once (YOLO) network from the crosstalk noise
sonar image dataset, and then remove the detected crosstalk noise

In this study, we developed an underwater optical-sonar fusion system that can simul-
taneously record optical and multi-beam sonar images, enhance both images, and then fuse
the RGB color of the enhanced optical image and the distance of the enhanced sonar image.
For optical image enhancement, we chose the image fusion method according to reports on
the qualitative and quantitative comparisons of different single image enhancement tech-
niques [21,22]. For sonar image enhancement, median filter and gamma correction method
were applied to reduce noise and to enhance contrast because they are conventionally used
on sonar images [23]. For image fusion, we performed geometric calibration with an RGB
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phantom, and estimated the transformation matrix between different optical and sonar
image coordinates.

2. Materials and Methods
2.1. Underwater Optical-Sonar Fusion System

We developed an optical-sonar fusion system comprising two underwater cameras
(Otaq, Eagle IPZ/4000, Lancaster, UK), a multi-beam sonar (Teledyne marine, Blueview
M900-2250, Daytona Beach, FL, USA), two light-emitting diode (LED) lights (Deepsea
power & light, LED SeaLite, San Diego, CA, USA), and a communication case, as shown
in Figure 2. The communication box is an aluminum watertight case with power and
data communication cables. Table 2 summarizes the specifications of the imaging sensors
and LED lights. Each imaging sensor was attached to a movable bracket, which was
equipped with a servo motor (Cehai Tech, D30, Qingdao, China) to control the tilting
sensors. As shown in Figure 3, the bracket is designed for ±45◦ tilting with a servo motor
operating at up to 30 kgf.cm torque and 270◦ angle. The optical-sonar fusion system weighs
approximately 80 kg and 30 kg in air and water, respectively.
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Figure 3. Schematic of the bracket equipped with a servo motor for tilting imaging sensors.

Table 2. Specifications of two imaging sensors and the light in the optical-sonar fusion system.

Device Specifications

Eagle IPZ/4000
Field of view 3.3~45◦

Spatial resolution 1920 × 1080

Blueview M900-2250

Dual frequencies 900 kHz 2250 kHz

Maximum range 100 m 10 m

Field of view 130◦ (H) × 20◦ (V)

LED SeaLite
Output 10,000 Lumens

Efficacy 63 lm/W

Figure 4 shows a graphical user interface software supporting real-time visualization
and simultaneous acquisition of optical and sonar images, turning on/off lights, and
performing single-enhancement and optical-sonar fusion.
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2.2. Enhancement of Underwater Optical and Sonar Images

In this study, we applied image fusion comprising three successive image processing
steps: balancing, enhancing contrast and sharpness, and fusing two enhanced images to
improve the color tone and sharpness of underwater optical images [5]. The first step,
white balancing, compensates for the values of the red and green color channels of a pixel,
WBr and WBg via Equations (2) and (3) to reduce the difference between the average RGB
color channels (Ir, Ig, Ib). The weights, α and β, were experimentally determined in the
range of 1.8 to 2.3 and 1.3 to 1.8, respectively:

WBr(x, y) = Ir(x, y) + α
(

Ig − Ir
)
(1− Ir(x, y))

(
Ig(x, y)

)
(2)

WBb(x, y) = Ib(x, y) + β
(

Ig − Ib
)
(1− Ib(x, y))

(
Ig(x, y)

)
(3)

In the second step, CLAHE and the unsharp masking principle (UMP) were adopted
to enhance the contrast and sharpness of the white-balanced image. CLAHE performs
histogram equalization on the multiple sub-patches of an image and combines the equalized
sub-patches. In Equation (4), the UMP sharpens the white-balanced image by weighted
addition of the difference between the original and Gaussian filtered (G⊗WB) images:

UMP{WB} = WB + γ(WB− (G⊗WB)) (4)

Finally, the enhanced image (J) was obtained by the weighted sum of the enhanced
image by CLAHE and UMP in Equation (5). The weights ω1 and ω2 are determined using
the normalized Laplacian contrast and saturation factors:

J = ω1CLAHE{WB}+ ω2UMP{WB} (5)

To reduce noise and enhance the contrast of multi-beam sonar images, we applied a
median filter and gamma correction. The median filter selects the median value among the
pixels in a 5 × 5 patch, and the center pixel in the patch is replaced by the median value.
Consequently, values that are significantly higher or lower than the neighboring pixels in
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the patch can be removed. Gamma correction in Equation (6) corrects the input sonar pixel,
I(x, y) with a nonlinear weight (γ2). In this study, we set γ2 to 0.2:

J(x, y) = 255 ∗
(

I(x, y)
255

)γ2

(6)

2.3. Calibration and Fusion of Underwater Optical-Sonar Fusion System

To fuse two different image coordinates, we first need to calibrate the two image
sensors geometrically. For geometric calibration, we designed an RGB phantom that can be
captured by optical and sonar image sensors, as shown in Figure 5. The size of the RGB
phantom is 1.5 × 1.5 m in width and height, and the colored RGB aluminum plates and the
transparent acrylic plates are aligned to construct various color and shape patterns. Each
plate was 35.25 cm in width and height, and the weight of the RGB phantom was 40 kg
in air.
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underwater optical-sonar fusion system.

Figure 6 shows the experimental setup in the water tank (Underwater test and eval-
uation center, Pohang, Korea). The water tank is 20 m in width, 35 m in height, and the
maximum depth is 9.6 m. The optical-sonar fusion system was installed on the wall of
water tank 0.5 m below water surface. We obtained simultaneous optical and sonar images
of the RGB phantom. The phantom was located at a distance of 4.5 m and at a depth
of 2 m. At a depth of 2.2 m from the water surface, the RGB phantom was moved at a
distance of 5, 5.5, and 6 m from the image fusion system. At each distance and depth, the
phantom was rotated by an angle of 15, 30, and 45 degrees on the left and the right. Table 3
summarizes 28 different locations of RGB phantom to acquire calibration data. By acquiring
the calibration image data with the phantom placed at various locations in field of view,
the calibrated transformation matrices could reflect the different geometric relationships
between the corresponding pixels in sonar and optical image coordinates.

Table 3. Different setup locations of the RGB phantom for acquisition of geometric calibration data.

Depth (m) Distance between System and Phantom (m) Rotation (◦)

2 4.5
0, −15, −30, −45, 15, 30, 45

2.2 5, 5.5, 6
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Figure 6. Experimental setup of the RGB phantom and optical-sonar fusion system for acquisition of
calibration data.

Using calibration data, we estimated transformation matrices, Pn∀n = 1, 2, 3 between
the world coordinate and two optical (n = 1, 3) and a sonar (n = 2) image coordinate, as
shown in Figure 7. Equation (7) represents the transformation from the world to image
coordinates [24]:

[
Xn Yn 1

]
=

[
Wx Wy Wz 1

]
· Pn, Pn =

[
Rn
Tn

]
·Kn (7)

Each transformation matrix Pn in Equation (7) comprises an extrinsic parameter matrix
and an intrinsic parameter matrix. The extrinsic matrix, which indicates the location of the
optical camera and sonar in world coordinates, is represented by a 3× 3 rotation (Rn) and
a 1× 3 translation (Tn) matrix. The 3× 3 intrinsic matrix (Kn) expresses the characteristics
of the image sensors, such as focal length, principal point, and skew coefficient, based
on the pinhole camera model. Unlike optical images, sonar images are expressed in fan-
shaped coordinate systems with the shooting angle of multi-sonic beams and the distance
measured from the time-of-flight of the returned sonic beams. Thus, to transform the
optical image coordinates to sonar image coordinates, we successively conducted three
coordinate conversion steps: (i) from optical image to world coordinates, (ii) from world
to sonar Cartesian coordinates (θ, r), (iii) from sonar Cartesian coordinates to sonar image
fan-shaped coordinates (P f ), as in Equation (8):[

θ r
]
=

[
X1 Y1 1

]
· P1

−1· P2· P f (8)

The acquired 28 calibration data of the simultaneous optical and sonar image pairs
were used to estimate the transformation matrices Pn in the Cartesian coordinate system.
As shown in Figure 8, we manually extracted 36 and 8 corner image points from each
simultaneously acquired optical and sonar image. The color difference of the plates in the
RGB phantom creates corners in the optical images, and the material difference between
the plates creates corners in sonar images.
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3. Results

Figure 9 qualitatively compares the original underwater optical image and the im-
age enhanced by the image fusion technique. The greenish background in the original
underwater image in Figure 9a was mitigated in the enhanced image (Figure 9b), and the
overall color tone and edge signals corresponding to the RGB phantom were improved.
In addition, the underwater image quality measure (UIQM) and underwater color image
quality evaluation (UCIQE) were computed to quantitatively evaluate the optical color
image quality [25,26]. In Equation (9), the UIQM is defined as the weighted sum of col-
orfulness (UICM), sharpness (UISM) and contrast (UIConM). UCIQE in Equation (10)
is defined as the weighted sum of the chroma (σchr), luminance (conLum), and saturation
(µsat). The UIQM values are 0.39 and 0.85 before and after applying image fusion enhance-
ment, respectively. UCIQE is evaluated as 19.47 and 22.18 before and after enhancement,
respectively:

UIQM = 0.0282 UICM + 0.298 UISM + 0.034 UIConM (9)

UCIQE = 0.468 σchr + 0.275 conLum + 0.258 µsat (10)

The performance of image fusion was evaluated with 28 image pairs acquired from
two cameras for calibration by calculating the mean and standard deviation (SD) of the
UIQM and UCIQE. The mean and SD of UIQM and UCIQE of 56 underwater images were
0.56 ± 0.13 and 19.96 ± 1.15, respectively. After image fusion enhancement, the increased
UIQM and UCIQE were 1.1 ± 0.17 and 25.53 ± 2.35, respectively. Compared with the
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original underwater image, image fusion increased the mean UIQM and UCIQE by 94%
and 27%, respectively.
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Figure 9. Single optical image enhancement, (a) original underwater optical image and (b) its
enhanced image by image fusion.

Figure 10 shows the original sonar image and the enhanced image by median filter
and gamma correction. The image after median filter and gamma correction showed more
clear distinction of RGB phantom to the background than the original sonar image. In
addition, we calculated the contrast-to-noise ratio (CNR) to evaluate the quality of sonar
images using Equation (11) [27]. Sa and Sb are the average pixel values of region of interest
(ROI) drawn on the background and on the RGB phantom regions of the sonar image,
respectively. The noise term, σ, is the SD of the background ROI. The CNRs of before and
after enhancement are 0.31 and 1.76, respectively. The CNR for 28 original sonar images
was 0.33 ± 0.05 (mean ± SD), and the mean CNR was increased by six times after applying
median filter and gamma correction (2.03 ± 0.12):

CNR =
|Sa − Sb|

σ
(11)

Sensors 2022, 22, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 9. Single optical image enhancement, (a) original underwater optical image and (b) its en-
hanced image by image fusion. 

Figure 10 shows the original sonar image and the enhanced image by median filter 
and gamma correction. The image after median filter and gamma correction showed more 
clear distinction of RGB phantom to the background than the original sonar image. In 
addition, we calculated the contrast-to-noise ratio (CNR) to evaluate the quality of sonar 
images using Equation (11) [27]. S௔ and S௕ are the average pixel values of region of in-
terest (ROI) drawn on the background and on the RGB phantom regions of the sonar im-
age, respectively. The noise term, σ, is the SD of the background ROI. The CNRs of before 
and after enhancement are 0.31 and 1.76, respectively. The CNR for 28 original sonar im-
ages was 0.33 േ 0.05 (mean േ SD), and the mean CNR was increased by six times after 
applying median filter and gamma correction (2.03 േ 0.12): 𝐶𝑁𝑅 ൌ  |𝑆௔ െ 𝑆௕|𝜎  (11) 

 
Figure 10. Single sonar image enhancement, (a) original sonar image and (b) its enhanced image by 
median filter (5 × 5) and gamma correction (𝜸𝟐 = 0.2). 

Figure 11 shows the fused optical-sonar images with the calibrated transformation 
matrices after single-image enhancement. Both optical and sonar images were obtained 
simultaneously at a distance of 5 and 6 m from the optical-sonar fusion system. The fused 
image showed good spatial agreement between the optical and sonar images. The fused 
optical and sonar image in the fan-shaped coordinate provides simultaneously not only 
RGB color of the interested object, but also the distance. In order to evaluate quantitatively 
the spatial agreement between the optical and sonar images, Equation (12) calculates in-
tersection over union (IoU). IoU is the intersected (𝐴௢) to the union (𝐴௨ሻ area rate of the 
sonar and optical pixels corresponding to the RGB phantom region in the fused image. In 
Table 4, IoU at the distances of 5 and 6 m were 69 and 81% on average, respectively: 𝐼𝑜𝑈 ൌ  𝐴௢𝐴௨ (12) 

Figure 10. Single sonar image enhancement, (a) original sonar image and (b) its enhanced image by
median filter (5 × 5) and gamma correction (γ2 = 0.2).

Figure 11 shows the fused optical-sonar images with the calibrated transformation
matrices after single-image enhancement. Both optical and sonar images were obtained
simultaneously at a distance of 5 and 6 m from the optical-sonar fusion system. The fused
image showed good spatial agreement between the optical and sonar images. The fused
optical and sonar image in the fan-shaped coordinate provides simultaneously not only
RGB color of the interested object, but also the distance. In order to evaluate quantitatively
the spatial agreement between the optical and sonar images, Equation (12) calculates
intersection over union (IoU). IoU is the intersected (Ao) to the union (Au) area rate of the
sonar and optical pixels corresponding to the RGB phantom region in the fused image. In
Table 4, IoU at the distances of 5 and 6 m were 69 and 81% on average, respectively:

IoU =
Ao

Au
(12)
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Figure 11. Enhanced and fused optical and sonar images taken at different distances of 5 and 6 m
from the fusion system, (a) enhanced optical images (top and bottom rows are images measured from
camera 1 and 2 at each distance, respectively), (b) enhanced sonar images, (c) overlayered optical
color image on the sonar image.

Table 4. IoU result value by distance and camera.

Distance Camera 1 Camera 2

5 m 67.7% 70.4%
6 m 77.1% 84.1%

4. Conclusions

We developed an optical-sonar fusion system with two underwater cameras and a
multi-beam sonar and proposed a geometric calibration method for two different imaging
sensors. In addition, we studied single-image enhancement techniques and multi-data
fusion of optical cameras and multi-beam sonars, which are mainly used as imaging sensors
for underwater tasks. To compensate for the color casting and low visibility of the optical
images, we adopted image fusion comprising three steps: white balancing, contrast and
edge enhancement, and enhanced image fusion. Noise reduction and contrast enhancement
of the sonar images were conducted using a median filter and gamma correction. The
single-enhancement techniques of optical and sonar images increased the visibility of the
objects of interest in both images, and the figure of merit for performance evaluation was
higher than that of the original underwater images. Both the enhanced optical and sonar
images were fused with calibrated transformation matrices between different imaging
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coordinates. The fused image in sonar image coordinates showed qualitatively good spatial
agreement and the average IoU was 75% between the optical and sonar pixels in the fused
images. The calibration and fusion methods proposed in this study can be applied to
other sonar systems, such as synthetic aperture sonar, by estimating the transformation
matrix between two image coordinates from the paired corner points extracted from the
simultaneously measured sonar and optical images [28,29]. Single-image enhancement
techniques and the optical-sonar fusion system will help to visualize and understand
underwater situations with color and distance information for unmanned works.
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