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Abstract
Evidence suggests that vision is among the most critical factors in marine information
exploration. Instead, underwater images are generally poor quality due to color casts, lack
of texture details, and blurred edges. Therefore, we propose the Multiscale Gated Fusion
conditional GAN (MGF-cGAN) for underwater image enhancement. The generator of
MGF-cGAN consists of Multiscale Feature Extract Module (Ms-FEM) and Gated Fusion
Module (GFM). In Ms-FEM, we use three different parallel subnets to extract feature infor-
mation, which can extract richer features than a single branch. The GFM can adaptively
fuse the three outputs from Ms-FEM. GFM generates better chromaticity and contrast than
other fusion ways. Additionally, we add the Multiscale Structural Similarity Index Mea-
sure (MS-SSIM) loss to train the network, which is highly similar to human perception.
Extensive experiments across three benchmark underwater image datasets corroborate that
MGF-cGAN can generate images with better visual perception than classical and State-
Of-The-Art (SOTA) methods. It achieves 27.1078dB PSNR and 11.9437 RMSE on EUVP
dataset. More significantly, enhanced results of MGF-cGAN also provide excellent per-
formance in underwear saliency detection, SURF key matching test, and so on. Based on
this study, MGF-cGAN is found to be suitable for data preprocessing in an underwater
multimedia system.
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1 Introduction

With the advent of marine research, underwater information processing has increasingly
become an indispensable technique [1, 25, 55]. Unfortunately, the quality and visual expe-
rience of the original marine image is poor owing to light absorbance, and refraction by
seawater [13, 47], resulting in substantial difficulties while presenting aquatic information.
Whether in ocean exploration or resource development, research on automatic underwater
image enhancement is paramount. This research is mainly aimed at the data preprocessing
of the underwater multimedia system. The images processed by our method are clearer and
can reflect richer environmental information (Fig. 1).

Deep learning-driven means are being used to realize image processing [8, 9, 39, 40, 45],
for example, underwater image enhancement, image dehazing, image super-resoultion, etc.
Wang et al. [46] presented a CNN-based underwater image enhancement network (UIE-
Net), which can solve both color cast and hazy problems. Since real-world training sets
are lacking, the network must be trained on synthetic images. To alleviate the aforemen-
tioned congestion, Li et al. [28] established the real-world underwater image enhancement
dataset (UIEB), which provides a benchmark for training and evaluating. They also pro-
posed a CNN-based multi-input fusion framework (Water-Net), enhancing the visual quality
of images effectively. In practice, the network requires three preprocessed images, which
greatly slows down the network. Li et al. [30] proposed a GAN-based fusion method (Dewa-
terNet) for enhancing underwater images. Combined with basic blocks and multi-term loss
function, it can also produce visually appealing results. However, this method still needs to
preprocess the input image, and the effect of fusion is not obvious. Liu et al. [31] designed

Fig. 1 In the top row are raw images taken underwater, while in the bottom row are the images enhanced by
our method
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a CNN-based deep residual network (UResnet), which works well with color balancing and
detail improvement. Instead, the network uses the same convolution layers which may lead
to problems such as insufficient feature learning. Zong et al. [56] presented a GAN-based
cycle network (Local-CycleGAN) that enhances images acquired in complicated environ-
ments. The network can simultaneously supervise local and global information through
multiple losses.

Presently, deep learning-based underwater image enhancement has been the subject of
many research studies. Even though these methods contribute to the overall quality of the
image, there are several issues to consider:

• 1) Some algorithms produce weak enhancement effects for images with problems such
as color cast, lack of details.

• 2) Due to the use of the same convolution layers, the extracted features are not rich,
resulting in poor learning ability and insufficient performance (e.g. UResnet).

• 3) There are few studies on fusion module, and some algorithms require image
preprocessing before fusion (e.g. Water-Net, DewaterNet).

• 4) The loss function of most image enhancement networks has a fixed shape, and new
loss functions are rarely employed.

To address these issues, we propose the multiscale gated fusion conditional GAN
(MGF-cGAN) for underwater image enhancement. By comparison with classical and State-
Of-The-Art (SOTA) methods, the proposed method shows more promising results and is
effective in multiple underwater applications. The following are our major contributions:

• 1) We present a network called MGF-cGAN, which can correct colors, enhance details.
In this framework, the generator enhances the underwater image, and the discriminator
determines whether the image is generated or ground truth.

• 2) In the generator, a multiscale feature extract module (Ms-FEM) is designed to extract
the features. Ms-FEM consists of three different parallel subnets, which can extract
richer features than a single branch.

• 3) We also propose the gated fusion module (GFM) to synthesize clear images by adap-
tively fusing the features from parallel subnets. GFM generates better chromaticity and
contrast than other fusion ways.

• 4) Considering the impact of resolution on image clarity, we use the loss functions with
MS-SSIM, which is also more suitable for human perception.

In this paper, Section 2 outlines the background related to our method. Section 3
describes our algorithm in detail. Section 4 indicates the qualitative and quantitative anal-
yses. Section 5 depicts a comprehensive ablation study. Section 6 discusses the advantages
and limitations of our method. Section 7 offers a conclusion of our work.

2 Background

2.1 Deep learning-driven underwater image enhancement algorithms

Traditional methods use specific filters [37] and morphological techniques [34] to balance
local colors, enhance contrast and brightness. Unlike traditional methods, deep learning-
driven underwater image enhancement algorithms learn the paired training data through
the network, achieving better performance. Deep learning-related methods can be classified
into two types: CNN-based model [10, 27–29, 31, 44, 46]; GAN-based model [5, 14, 19,
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30, 56]. CNN-based models prioritize the original underwater images, whereas GAN-based
models emphasize image quality.

Methods with CNN-based model Li et al. [27] proposed a scene prior inspired deep net-
work (UWCNN). Underwater image reconstruction is done directly by the network, rather
than estimating model parameters, which may be beneficial from a synthetic underwater
image training set. The model is lightweight, but it does not do well for enhancing image
details. To address color casts and low contrast problems, Li et al. [29] presented Ucolor,
which fully exploits the characteristics of multiple color spaces. Ucolor can effectively
improve the visual quality of underwater images. Unfortunately, Ucolor fails to work on
some underwater images with high turbidity.

Methods with GAN-based model Despite the development of various algorithms, real-
time and adaptable approaches remain inadequate for real-world tasks. Chen et al. [5]
created an underwater image restoration scheme (GAN-RS), which can automatically
enhance underwater vision in real time. This method has been proven to be effective in
improving the target grasping ability of underwater robots. Nevertheless, the images gen-
erated by this method tend to be gray and white, and the colors are not vivid. To correct
color distortion, underexposure, and fuzziness, Guo et al. [14] developed a multiscale
dense network (UWGAN), which can provide greater detail information and take advan-
tage of previously features. But this algorithm cannot generate images that are aesthetically
pleasing.

Light propagates through water similarly to how it does in the atmosphere, but the
underwater image has its unique optical model. So we will introduce the underwater opti-
cal imaging model. Additionally, pixel-to-pixel deep network (P2P) and conditional GAN
(cGAN) are also two basic models we will describe.

2.2 Basic models according to our work

Underwater optical imagingmodel It can be represented with three separate components
according to the McGlamery model [32] in Fig. 2. Direct transmission is calculated by using
the infrared back of the aiming reticule. The forward scattering component describes a por-
tion of the reflected light dispersed at a slight angle. The background scattering component
represents the background light dispersed by the remaining small particles.

When the d(x) is short enough, forward scattering can be ignored by imaging systems
[24]. As a consequence, the simplified model is specified:

Iβ(z) = Jβ(z) · tβ(z) + Bβ · (
1 − tβ(z)

)
(1)

where Iβ(z) is the intensity observed at the pixel z and it is formed by mixing the
background light Bβ in relation to the transmission map tβ(z).

Pixel-to-pixel deep network (P2P) Researchers commonly use convolution layers to filter
out the noise and keep the crucial components of the input. In underwater image pro-
cessing, continuous convolution layers can extract most features. However, these layers
cannot recover the details of low definition images. Therefore, Isola et al. [23] introduced
the deconvolution layers to refine the details and proposed the pixel-to-pixel deep net-
work (P2P). Sun et al. [41] applied the P2P to underwater image enhancement. This model
enhances the image pixel-by-pixel rather than considering the physical parameters of the
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Fig. 2 Underwater optical imaging model

image. Inspired by P2P, we design three different parallel subnets, which can extract and
refine the details of the input.

Conditional GAN (cGAN) On the other hand, GAN is too free, uncontrolled for larger
images with more pixels. Comparatively, due to the conditional information, cGAN [33]
offers better stability and representation flexibility than the original GAN during the pro-
cess of image enhancement. Li et al. [26] presented an encoder-decoder generator network
(Dehaze-cGAN) for image dehazing, which extends the basic cGAN formulation to help
generate realistic clear images. To tackle the difficulty of removing raindrops, Zhang et al.
[53] employed cGAN. When compared to the GAN-based method, cGAN delivers superior
outcomes. In [43], Wang et al. established a cGAN-based high-resolution image synthesis
network, which generates high-quality images by using a modified loss function. Employing
a similar methodology, MGF-cGAN builds upon cGAN to produce high-resolution results
and improve robustness.

3 Methods andmaterials

The MGF-cGAN includes two parts, as shown in Fig. 3. The first part is the generator
responsible for generating clear images. Part two involves a discriminator capable of distin-
guishing the images produced by the generator from the corresponding target images. By
using discriminator-supervised generator learning, the network is able to enhance images
well.
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Fig. 3 Overview of the proposed method. k is the kernel size of convolution layers (conv) or deconvolution
layers (deconv), above each block is the number of channels, GT means target image (ground truth), BN
represents the batch normalization, LReLU represents the leaky ReLU function
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3.1 Generator

In Fig. 4, the generator is composed of multiscale feature extract module (Ms-FEM) and
gated fusion module (GFM). Ms-FEM and GFM complete feature extraction and fusion
tasks respectively.

Specifically, the Ms-FEM comprises three different parallel subnets (k=3, k=5, and k=7).
Each subnet consists of a symmetric structure shaped like a P2P network. The subnet is com-
posed of encoders and decoders, which are responsible for extracting and refining features.
Additionally, the batch normalization (BN) [21] and the leaky ReLU (LReLU) function [15]
in each block reduce the number of parameters and improve network convergence respec-
tively. Moreover, we add a convolution layer (stride=1) in the middle of each subnet to help
increase the nonlinearity and make the subnet deeper while maintaining the size of feature
maps. GFM adaptively fuses the features extracted byMs-FEM, and its relevant information
will be introduced in detail below.

3.2 Discriminator

The discriminator is similar to the PatchGAN [49], as shown in Fig. 4. In the discriminator,
each pixel block is determined by whether each M × M pixel block is real or created by
the generator. The last layer of the discriminator uses the sigmoid function to convert the
output range to [0,1], and then gets the score of authenticity. Each pixel block represents the
difference between the local receptive fields of the input. As the model of GAN progresses
and matures, PatchGAN is extended to serve as the basis for the cycle adversarial network
(CycleGAN) [51]. The discriminator parameters are less than the full image discriminator.

3.3 Gated FusionModule (GFM)

Nowadays, the gate module [38] has a significant effect on the fusion of essential
features. Inspired by the gate module, we propose the gated fusion module (GFM)

Fig. 4 Structure of gated fusion module (GFM). k is the kernel size of convolution layers (conv) or
deconvolution layers (deconv), above each block is the number of channels, concat represents concatenate
layer
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that adopts a recursive strategy to fuse the features extracted from parallel subnets
gradually.

As shown in Fig. 4, the GFM is composed of multiple sets of recursive gate block
(ReGB). In the first ReGB, φf 1, φf 2 and φf 3 represents the features extracted from the three
parallel subnets. Parallel subnet (k=3) has a small receptive field for extracting detailed fea-
tures, while parallel subnet (k=7) possesses a larger receptive field for extracting structural
features. Between parallel subnet (k=3) and parallel subnet (k=7), parallel subnet (k=5) can
extract most of the features.

Hence, we first obtain φg1 through the ReGB:

φg1 = ReGB−1
(
φf 1, φf 2, φf 3

)
(2)

second, we multiply φg1 with the φf 1 acquired from the parallel subnet (k=3) to enhance
detailed features:

φh1 = φg1 ⊗ φf 1 (3)

where ⊗ means pixel by pixel multiplication.

Algorithm 1 Our proposed GFM scheme.

Finally, the results represented by φh1 and φf 3 (from parallel subnet (k=7)) are then
added together to enhance structural features:

Fusion−1 = φh1 + φf 3 (4)

where + means pixel by pixel addition.
As evidenced above, we proposed a recursive strategy to fuse the observed feature by

using the dependency of three parallel subnets. Through stacking n ReGBs in a clump,
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each ReGB has the same goal of integrating the features φf 1 and φf 3 into the mainstream
Fusion−n-1 in an adaptive way.

Every fusion operation uses the features obtained from the last recursive round. Thus,
the feature Fusion−n-1 learned from different rounds has been fused continuously:

φgn = ReGB−n
(
φf 1, φf 2, Fusion−n-1

)
(5)

φhn = φgn ⊗ φf 1 (6)

Fusion−n = φhn + Fusion−n-1 (7)

DGFN [38] uses a module to fuse the three enhanced images to generate a clear image.
However, due to DGFN requiring pre-processing of the input, adaption to other imaging
fields is entirely unfeasible. In contrast, the proposed GFM is a generalized image fusion
module that does not rely on prior knowledge and pre-processes. GFM is designed to fuse
the features collected by Ms-FEM adaptively.

3.4 The choice of ReGB number

In determining the best number of ReGB in GFM, we use 245 underwater images from
UIEB [28] (188 images), EUVP [22] (48 images) and U45 [2] (9 images) for the testing of
this section. The implementation details will be introduced in Section 4.

A comparison of test images and their corresponding gradient maps between pixel by
pixel addition (ADD), concatenate fusion (CONCAT), and GFM with different ReGB num-
bers are shown in Figs. 5 and 6. Before the fusion, the output shape of the last layer is set as
h × w × 3.

In Fig. 5, we can obviously see that most results generated by ReGB will be better than
those from ADD and CONCAT. Significantly, the Image3, Image4, and Image5 generated
from CONCAT are shrouded in a green mask, and there is no noticeable change in the
ADD results. The surface in Image1, Image3, and Image4 suffers from severe exposure
when ReGB = 1. In contrast, the images generated from ReGB = 2 are bright, with strong
contrast. From the ReGB = 3, we find that its visual effect is worse than ReGB = 2.
Furthermore, few results of the ReGB = 4 have seriously color cast and uneven noise.

In Fig. 6, images with CONCAT and ReGB are shown to have good texture features
relative to the configuration of using ADD. With the increase of the number of ReGBs, the
description of gradient maps corresponding to Fig. 6 become complex, and the texture of the
results are clear. Moreover, it can be proved that the ReGB = 3 has a advantage of details
compared with other situations.

To further highlight the effectiveness of GFM, we not only use information entropy (IE)
[42] to describe the richness of features but also use color colorfulness index (CCI) [16] to
assess the hue of images.

In Fig. 7, the values of IE show an upward trend before the ReGB = 2. Additionally, a
remarkable advantage is evident by ReGB = 1 or = 2 when measured with the CCI. And
we can clearly see that when the ReGB = 2, the values of IE and CCI are the highest points
in their respective curves.

The above comparison results indicate that ReGB = 2 can produce the highest visual
effect and image quality at the same time. Therefore, based on the comparative results
above, the ReGB = 2 is selected as the primary network architecture of the GFM.
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Fig. 5 Comparison of processed images between ADD, CONCAT and GFM with different numbers of
ReGB. (a) Input, (b) ADD, (c) CONCAT, (d) ReGB = 1, (e) ReGB = 2, (f) ReGB = 3, (g) ReGB = 4

3.5 Loss function

(1) Wasserstein GAN with gradient penalty (WGAN-GP) loss

Considering the challenging problem during training the original GAN, namely, a burst-
ing or diminishing gradient, we use the WGAN-GP loss [12] and change the condition
variable:

LWGAN-GP = Eu,v[D(u, v)] − Eu[D(u, G(u))]
+ ξEû

[(∥∥
ûD(û)

∥∥
2 − 1

)2] (8)

where u and v are the input and ground truth, respectively, û are the samples at the spatial
distance between G(u) and v, ξ represents the ratio.

(2) L1 loss

L1 loss [17] is selected to reduce the amount artifacts:

L1 = 1

N

∑

e∈S

|x(e) − y(e)| (9)

where e is the pixel, S is the color block represented by the pixel, x(e) and y(e) represent
the pixel value of the generated and ground truth, respectively.
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Fig. 6 Comparison of gradient maps between ADD, CONCAT and GFM with different numbers of ReGB.
(a) Input, (b) ADD, (c) CONCAT, (d) ReGB = 1, (e) ReGB = 2, (f) ReGB = 3, (g) ReGB = 4

(3) Multiscale structural similarity index measure (MS-SSIM) loss

MS-SSIM loss [54] is an SSIM loss based on a multilayer. The MS-SSIM loss is
calculated as follows for each level of the binary pyramid:

VMS−SSIM(p) = lαM(p) ·
W∏

j=1

cs
βj

j (p) (10)

Fig. 7 IE and CCI comparison between ADD, CONCAT, and GFM with different numbers of ReGB.
Num Block is the number of ReGB. The red and blue figures indicate the highest and second-highest values,
respectively
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for convenience, we set α = βj = 1, j = {1, . . . ,W }. The loss of color blocks P and the
loss of its central pixel p̃ can be roughly calculated as:

LMS−SSIM(P ) = 1 − VMS−SSIM(p̃) (11)

MS-SSIM loss may result in brightness changes and color deviation. To compensate for
the aberration caused by MS-SSIM loss, we use L1 loss to maintain brightness and color
simultaneously.

(4) Total loss

Ultimately, the aggregate of three components means the total loss:

L = λLWGAN−GP + αL1 + (100 − α)LMS−SSIM (12)

where λ, α are constant, we have set to 2, 18, respectively.

4 Experiments

For this study, we choose 6000 paired samples from the EUVP [22] dataset (5500 paired
images) and UIEB [28] dataset (500 paired images) to train MGF-cGAN, ensuring that
the ratio of the sample taken out to the total sample is similar in the two datasets. In the
EUVP dataset, there are numerous images of poor and good perceptual quality. A total of
11950 pairs of underwater images were collected during ocean explorations under varying
circumstances. The UIEB dataset is a large-scale real-world underwater image enhancement
benchmark consisting of 950 paired images. The underwater images were likely taken in
natural light, artificial light, or a mixture of the two.

For testing, we selected the remaining 515 and 450 paired samples of the EUVP and
UIEB datasets, respectively. Additionally, to futher evaluate the ability of our method, we
add U45 [2] dataset for testing the challenging samples. The U45 dataset contains under-
water images of three classic scenes (greenish, bluish and hazy), which is very difficult to
enhance.

The training process involves resizing samples to 256 × 256 and normalizing the pixel
value to [-1, 1]. We set ReGB = 2, as proved by Section 3.4. On an NVIDIA Titan Xp
(12G), the proposed MGF-cGAN is built by using Tensorflow and trained for 100 epochs.
Training is sped up using the Adam optimizer with learning rate set at 0.0001, where β1
and β2 have default values of 0.5 and 0.99.

4.1 Subjective evaluation

Our purpose in this section is to conduct visual comparisons including color card and
real-world underwater images. To examine the color recovery ability of MGF-cGAN, we
conducted a comparison of underwater color card restoration. We evaluate proposed method
against the following classical and state-of-the-art (SOTA) approaches: relative global his-
togram stretching (RGHS) [18], de-scattering and enhancing using dehazenet and HWD
(DehazeNet & HWD) [35], CNN-based multi-input fusion framework (Water-Net) [28],
CNN-based deep residual network (UResnet) [31], GAN-based fast underwater image
enhancement (FUnIE-GAN) [22], conditional GAN-based underwater image restoration
(UGAN) [50], GAN-based underwater image restoration scheme (GAN-RS) [6] in Fig. 8.

It can be clearly seen that the image processed by DehazeNet & HWD is generally gray
and white, and the color card is dark. Results of FUnIE-GAN, UGAN, GAN-RS have low
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Fig. 8 Results of color card restoration. (a) Input, (b) RGHS, (c) DehazeNet&HWD, (d) Water-Net, (e)
UResnet, (f) FUnIE-GAN, (g) UGAN, (h) GAN-RS, (i) MGF-cGAN, (j) Standard color card

contrast, and some blocks are indistinguishable. RGHS, Water-Net, UResnet and MGF-
cGAN can correct the color effectively, while MGF-cGAN has more vivid colors and higher
brightness.

In order to show enhancement of image color and details using MGF-cGAN, we com-
pare it with the classic and SOTA algorithms mentioned above in Fig. 9. The RGHS can
improve the contrast of images, but fails to address the color cast. And the details are blurry
in Image4 and Image6. The color of DehazeNet&HWD results are relatively single, and the
overall brightness of them are low. Furthermore, images enhanced by DehazeNet&HWD
lack some texture features. The Water-Net cannot balance the color well, and outputs are
too dark with poor visual effect. The UResnet, FUnIE-GAN and UGAN are not capa-
ble of removing haze from Image2, Image3, Image4, Image7 and there are red artifacts
in some images processed by FUnIE-GAN. The UGAN has obvious yellowish artifacts in
Image5. In contrast, both GAN-RS and MGF-cGAN can effectively enhance image details,
while the images processed by MGF-cGAN have more balanced chromaticity and better
contrast.

4.2 Objective evaluation

The subjective evaluation finds that the MGF-cGAN corrects the color and enhances the
detail of images. To reaffirm the effects, we use structural similarity (SSIM) [52], peak
signal-to-noise ratio (PSNR) [20], root mean square error (RMSE) [7] in UIEB [28] and
EUVP [22] dataset, UCIQE [48], UIQM [36] in U45 [22] dataset to provide a objective
evaluation of the image quality. The SSIM, PSNR and RMSE can determine the difference
between the generated image and the ground truth. In addition, UCIQE and UIQM can
comprehensively evaluate the quality of underwater images. Tables 1 and 2 list the average
SSIM and PSNR values on UIEB and EUVP dataset. Table 3 shows the average UCIQE
and UIQM values on U45 dataset.



Multimedia Tools and Applications

Fig. 9 Visual comparison results with red boxes which mark the important region. (a) Input, (b) RGHS, (c)
DehazeNet&HWD, (d) Water-Net, (e) UResnet, (f) FUnIE-GAN, (g) UGAN, (h) GAN-RS, (i) MGF-cGAN

Among the compared methods, the proposed MGF-cGAN outperforms all of them in
most cases, as can be seen. Despite some cases where our model is not the best or second-
best, its performance is still very close to the top results in the majority of quality metrics.
Therefore, it can be concluded that our method outperforms the other models for its superior
performance in most quality metrics.

4.3 Specific applications in related fields

To investigate the applicability of MGF-cGAN in related domains, saliency detection [11],
SURF key matching test [3] and key point detection [4] are used to perform for underwater
visual tasks, as illustrated in Figs. 10, 11 and 12.
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Table 1 Statistical results applying SSIM, PSNR and RMSE in UIEB dataset

Methods SSIM Variance PSNR Variance RMSE Variance

RGHS 0.7753 0.0926 23.3994 4.8660 19.9955 10.9782

DehazeNet & HWD 0.7248 0.0805 19.4252 2.8684 28.7892 9.9312

Water-Net 0.8058 0.0848 22.4686 4.1820 21.4522 10.3325

UResnet 0.8545 0.0623 23.4128 4.1753 19.2873 9.5281

FUnIE-GAN 0.7309 0.1002 21.1926 3.8942 24.5889 11.8037

UGAN 0.8120 0.0531 25.2241 3.3161 15.0648 6.2261

GAN-RS 0.6749 0.0863 18.5851 2.3539 31.1522 8.7727

MGF-cGAN 0.8654 0.0493 24.0672 2.3020 18.6340 5.9968

The red and blue figures indicate the best and second-best values, respectively. Variance is the number
following the mean

Table 2 Statistical results applying SSIM, PSNR and RMSE in EUVP dataset

Methods SSIM Variance PSNR Variance RMSE Variance

RGHS 0.7385 0.0680 21.6699 3.7493 23.0962 10.3917

DehazeNet & HWD 0.6419 0.0952 17.8813 3.0135 34.5297 12.0481

Water-Net 0.7893 0.07451 24.3033 3.8019 17.1410 8.0754

UResnet 0.7288 0.0954 19.6279 3.8939 29.4150 13.4542

FUnIE-GAN 0.7927 0.0610 26.2057 3.0589 13.3546 5.6165

UGAN 0.7365 0.0772 21.1100 3.0747 23.9354 9.0420

GAN-RS 0.6009 0.0934 16.6111 2.4113 39.1675 11.2318

MGF-cGAN 0.7877 0.0845 27.1078 3.0021 11.9437 4.3490

The red and blue figures indicate the best and second-best values, respectively. Variance is the number
following the mean

Table 3 Statistical results applying the UCIQE, UIQM in U45 dataset

EQICUsdohteM Variance UIQM Variance

RGHS 0.6369 8865.26730.0 0.7354

DehazeNet & HWD 0.6150 0.0226 3.2113 0.2506

2316.0teN-retaW 5293.35130.0 0.2412

4206.0tenseRU 6191.37520.0 0.2539

3655.0NAG-EInUF 3450.38650.0 0.4917

7616.0NAGU 0.0346 3.4534 0.1555

5675.0SR-NAG 0.0213 3.4274 0.2864

MGF-cGAN 0.6343 0.0322 3.5053 0.2370

The red and blue figures indicate the best and second-best values, respectively. Variance is the number
following the mean
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Fig. 10 Comparison of saliency detection, (a) Input, (b) FUnIE-GAN, (c) UResnet, (d) MGF-cGAN

In Fig. 10, the FUnIE-GAN and MGF-cGAN are shown to be able to enhance the edge
of the fish in Image1. The UResnet and MGF-cGAN can define the contour features of the
portrait and diver in Image2. Compared with other algorithms, the details of the wooden
boat are clearer when we use MGF-cGAN. In Fig. 11, the proposed method can match
more keypoints. And the diver image processed by our algorithm can detect more points to
describe the human body, in Fig. 12. Therefore, it can be proved that MGF-cGAN has good
applicability.

5 Ablation study

As our proposed GFM is based on several essential components from different P-sns in
Ms-FEM, we use ablation studies to analyze the main components. More specifically, we
denote the abbreviations as below, Table 4 and Fig. 13:

• 1) M1: Our proposed network with φf 1.
• 2) M2: Our proposed network with φf 2.
• 3) M3: Our proposed network with φf 3.
• 4) M4: Our proposed network with φf 1 and φf 2.
• 5) M5: Our proposed network with φf 2 and φf 3.
• 6) M6: Our proposed network with φf 1 and φf 3.
• 7) Proposed: Our proposed network with φf 1, φf 2 and φf 3 .
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Fig. 11 Comparison of SURF key matching test, (a) Input, (b) FUnIE-GAN, (c) UResnet, (d) MGF-cGAN
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Fig. 12 Comparison of key point detection, (a) Original underwater images, (b) Results. From the first row
to the last row are Input, FUnIE-GAN, UResnet, MGF-cGAN, respectively

The ablation study experiments are carried out on the EUVP-testset with the same set-
tings as in Section 4. We set ReGB = 2, as proved by Section 3.4. Quantitative evaluations
are reported in Fig. 14.

Each component of our proposed method is valuable, as can be shown in Fig. 14.
Especially, M4 and M5, i.e., our proposed network without φf 3 and our proposed net-
work without φf 1, have much lower performance, which proves the importance of
Multiscale information from different P-sns playing an essential role in our method,
although the variance in M2 is good. Furthermore, we present a graphic illustration as
a comparison of the effectiveness of every component in Fig. 15. We can obviously
see that the outputs of our proposed network have superior visual perception than other
results.

Table 4 The various components of our proposed network

Components M1 M2 M3 M4 M5 M6 Proposed

φf 1 � � � �
φf 2 � � � �
φf 3 � � � �

The � sign denotes the use of the corresponding component
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Fig. 13 GFM architecture of different components in Table 4

6 Discussion

For the experiment, we first conduct a subjective evaluation. By comparing the proposed
method with classical and SOTA approaches, we find that it can correct color in underwater
images and enhance the details. We then perform an objective evaluation, and conclude
that the MGF-cGAN is better than other models in terms of various image quality metrics.
Furthermore, enhanced results of MGF-cGAN also demonstrate outstanding performance
in underwater saliency detection, the SURF key matching test, and other visual perception
tasks. Finally, we compare the effect of various architecture in the ablation study. However,
since the generator of MGF-cGAN is complex and the discriminator is simple, the two parts
cannot be balanced, which easily causes the discriminator to be unstable. To strengthen the
discriminator, we are considering the multi-branch discriminator in future research.

7 Conclusion

In this paper, we propose the MGF-cGAN to overcome the challenges of color cast, texture
details, and blurred edges. The model uses conditional generative adversarial networks. We
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Fig. 14 Evaluation of ablation study, the red and blue figures indicate the best and second-best values,
respectively
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Fig. 15 Visual examples of ablation study comparisons of our proposed method, (a) Input, (b) M1, (c) M2,
(d) M3, (e) M4, (f) M5, (g) M6, (h) Proposed, (i) Ground truth
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design a Ms-FEM to extract the features of the input via three P-sns, which extract richer
features than a single branch. Moreover, we propose a GFM for an adaptive combination of
the three branches. Compared to other fusion operations, GFM results in better chromaticity,
sharpness, and contrast. Extensive experiments performed on three benchmark underwater
image datasets indicated that the proposed MGF-cGAN is superior to classical and SOTA
methods for enhancing underwater images, and it can be applied to some underwater visual
tasks.
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