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Abstract— The use of Autonomous Underwater Vehicles
(AUVs) for underwater tasks is a promising robotic field. These
robots can carry visual inspection cameras. Besides serving the
activities of inspection and mapping, the captured images can
also be used to aid navigation and localization of the robots.
Visual odometry is the process of determining the position
and orientation of a robot by analyzing the associated camera
images. It has been used in a wide variety of non-standard
locomotion robotic methods. In this context, this paper proposes
an approach to visual odometry and mapping of underwater
vehicles. Supposing the use of inspection cameras, this proposal
is composed of two stages: i) the use of computer vision through
the algorithm SIFT to visual odometry, extracting landmarks in
underwater image sequences and ii) the development of topo-
logical maps for localization and navigation. The integration
of such systems will allow visual odometry, localization and
mapping of the environment. A set of tests with real robots
was accomplished, regarding online and performance issues.
The results reveal an accuracy and robust approach to several
underwater conditions, such as illumination and noise, leading
to a promissory and original visual odometry and mapping
technique.

I. INTRODUCTION
Autonomous Underwater Vehicles can be applied to many

tasks of difficult human exploration [9]. In underwater visual
inspection, the vehicles can be equipped with down-looking
cameras, usually attached to the robot structure [12]. These
cameras capture images from the bottom of the ocean. In
these images, natural landmarks, also called keypoints in this
work, can be detected allowing the AUV visual odometry.

In navigation, classical odometry is the process of deter-
mining the position and orientation of a vehicle by measuring
the wheel rotations through devices such as rotary encoders.
While useful for many wheeled or tracked vehicles, tradi-
tional odometry techniques cannot be applied to robots with
non-standard locomotion methods, such as AUVs. In addi-
tion, odometry universally suffers from precision problems,
since wheels tend to slip and slide on the floor, and the error
increases even more when the vehicle runs on non-smooth
surfaces. As the errors accumulate over time, the odometry
readings become increasingly unreliable.

Visual odometry is the process of determining equivalent
odometry information using only camera images. Compared
to traditional odometry techniques, visual odometry is not
restricted to a particular locomotion method, and can be
utilized on any robot with a sufficiently high quality camera.

In this paper we propose a new approach to extract and
map keypoints between consecutive images in underwater
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environment. We use Scale Invariant Feature Transform
(SIFT), which is a robust invariant method in keypoints
detection [17]. Furthermore, these keypoints are used as
landmarks in an online topological mapping. We propose
the use of self-organizing maps (SOM) based on Kohonen
maps [16] and Growing Cell Strutures (GCS) [10] that allow
a consistent map construction even in the presence of noisy
information.

First the paper presents related works on visual odometry
and mapping. Section III presents a detailed view of our
approach with SIFT algorithm and self-organizing maps,
followed by the implementation, test analysis and results
with different undersea features. Finally, the conclusion of
the study and future perspectives are presented.

II. RELATED WORKS

Localization, navigation and mapping using vision-based
algoritms use visual landmarks to create visual maps of the
environment. The extent to which the robot navigates, the
map grows in size and complexity, increasing the compu-
tational cost and making it difficult to process in real time.
Moreover, the efficiency of the data association, an important
stage of the system, decreases as the complexity of the map
augments. It is therefore important for these systems, to
extract a few, but representative, features (points of interest)
of the environment.

The problem of extracting points of interest in image
sequences has resulted in the development of a variety of
keypoint detectors: Shi and Tomasi [26], SIFT [17], Speeded
up robust features Descriptor (SURF) [1], affine covariant
[20], etc. All these proposals are based on the same approach:
extraction points representing regions with high intensity
gradient. These regions are highly discriminatory and thus
robust to noise and changes in illumination, point of view of
the camera, etc [21]

Some approaches using SIFT for visual indoor Simulta-
neous Localization and Mapping (SLAM) were made by Se
and Lowe[24] [25]. They use SIFT in a stereo visual system
to detect the visual landmarks, together with odometry, using
ego-motion estimation and the Kalman filter. The tests were
made in structured environments with new maps.

Several AUVs localization and mapping methods are based
on mosaics [11] [14]. Delaunoy et al analyse change detec-
ton techniques available nowadays for on-land applications
and propose a method to detect changes in sequences of
underwater images [6]. Mahon e Williams [19] propose a
visual system for SLAM in underwater environment, using
the Lucas-Kanade optical filter and extended Kalman filter
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(EKF), with aid of a sonar. Nicosevici et al propose an
identification of suitable interest points using geometric and
photometric cues in motion video for 3D environmental
modeling [21].

Booij et al. [3] has the most similar approach to this
presented in this work. They do visual odometry with topo-
logical maps based on appearance. In this case, the SIFT
method is used in omnidimentional images. However, this
approach is validated only with mobile robots in terrestrial
environment. The use of both i. SIFT to extract visual
underwater features and ii. topological maps for mapping
and localization on underwater environment was not found
in the literature.

III. A SYSTEM TO VISUAL ODOMETRY

Figure 1 shows an overview of the approach proposed
here. First, the underwater image is captured and pre-
processed for the removal of radial distortion and others
distortions caused by water diffraction. With the corrected
image, keypoints are detected and local descriptors for each
one of these points are computed by SIFT. Each keypoint
has a n dimensional local descriptors and global pose in-
formations. A matching stage provides a set of correlated
keypoints between consecutive images. Considering all cor-
related points found, outliers are removed, using RANSAC
[8] and LMedS [23] algorithms.

Fig. 1. Overview of the system proposed.

The relative motion between frames is estimated, using
the correlated points and the homography matrix.

Moreover, the keypoints are used to create and train the
topological maps. A growing cell strutures algorithm is used
to create the nodes and edges of the SOM. Each node has
a n-dimensional weight. After a trainning stage, the system
provides a topological map, where its nodes represent the
main keypoints of the environment.

During the navigation, when a new image is captured,
the system calculates its local descriptors, correlating them
with the nodes of the current trained SOM. To estimate the
pose of the robot (center of the image), we use use the

correlated points and the homography matrix concept. Thus,
the global position and orientation of the center of the image
is obtained, providing the localization of the robot.

Each module of the proposed approach is detailed below.

A. Pre Processing

The distortion caused by the camera lenses can be rep-
resented by a radial and tangential approximation. As the
radial component causes higher distortion, most of the works
developed so far only correct this component [13].

In underwater environment, there is an additional dis-
tortion caused by water diffraction. Equation 1 shows one
method to solve this problem [30], where m is the point
without radial distortion with coordinates (mx,my), and M0

the new point without additional distortion; u0 and v0 are the
central point coordinates. Also, R =

√
mx

2 +my
2 and R0

are defined by 2 with focal distance f .

m0x = mx +
R0

R
(mx − u0)

m0y = my +
R0

R
(my − v0) (1)

R0 = f tan (sin−1(1.33 ∗ sin(tan−1 R

f
))) (2)

B. SIFT

The Scale Invariant Feature Transform (SIFT) is an effi-
cient filter to extract and describe keypoints of images [17].
It generates dense sets of image features, allowing matching
under a wide range of image transformations (i.e. rotation,
scale, perspective) an important aspect when imaging com-
plex scenes at close range as in the case of underwater
vision [6]. The image descriptors are highly discriminative
providing bases for data association in several tasks like
visual odometry, loop closing, SLAM, etc.

First, the SIFT algorithm uses the Difference-of-Gaussian
filter to detect potential interesting points in a space invariant
to scale and rotation. The SIFT algorithm generates a scale
space L(x, y, kσ) by convolving repeatedly an input image
I(x, y) using a variable-scale Gaussian, G(x, y, σ), see eq.
3:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3)

SIFT analyzes the images at different scales and extracts
the keypoints, detecting scale-invariable image locations. The
keypoints represent scale-space extrema in the difference-of-
Gaussian function D(x, y, σ) convolved with the image, see
4:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (4)

where k is a constant multiplicative factor.
After the keypoints extraction, each feature is associated

with a scale and an orientation vector. This vector represents
the major direction of the local image gradient at the scale



where the keypoint was extracted. The keypoint descriptor
is obtained after rotating the nearby area of the feature
according to the assigned orientation, thus achieving invari-
ance of the descriptor to rotation. The algorithm analyses
images gradients in 4 × 4 windows around each keypoint,
providing a 128 elements vector. This vector represents each
set of feature descriptors. For each window a local orientation
histogram with 8 bins is constructed. Thus, SIFT maps every
feature as a point in a 128-dimension descriptor space.

A point to point distance computation between keypoints
in the descriptors space provides the matching. To eliminate
false matches, an effective method is used to compare the
smallest match distance to the second-best distance [17],
where through a threshold only close matches are selected.

Furthermore, outliers are removed through RANSAC and
LMedS, fitting a homography matrix H 1. In this paper, this
matrix can be fitted by both RANSAC and LMedS methods
[29]. Both methods are considered only if the number of
matching points is bigger than a predefined threshold tm.

C. Estimating the Homography Matrix and Computing the
Camera Pose

We use the homography concept to provide the cam-
era pose. A homography matrix H is obtained from a
set of correct matches, transforming homogeneous co-
ordinates into non-homogeneous. The terms are oper-
ated in order to obtain a linear system [15], consider-
ing the keypoints (x1, y1), .., (xn, yn) in the image I and
(x1′, y1′), .., (xn′, yn′) in the image I′ obtained by SIFT.

The current global pose of the robot can be estimated using
5, where 1Hk+1 is the homography matrix between image
I1 in the initial time and image Ik + 1 in the time k + 1.
The matrix 1H1 is defined by the identity matrix 3x3 that
consider the robot in the beginning position (0, 0).

1Hk+1 =
k∏

i=1

iHi+1 (5)

Thus, the SIFT provides a set of scale invariant keypoints,
described by a feature vector. A frame has a m keypoints,
and each keypoint, Xi, has 128 features, f1, ..., f128 and the
pose and scale (x, y, s):

Xi = f1, f2, ..., f128, x, y, s, i = 1, ..,m (6)

These m vectors are used to obtain a topological map,
detailed in the next section.

D. Topological Maps

In this work, the vectors extracted from SIFT feature are
used to compose a topological map. This map is obtained
using a self-organizing mapping (SOM) based on Kohonen
Neural Networks [16] and the Growing Cell Structures
(GCS) method [10]. Like most artificial neural networks,

1We suppose a plannar motion - the altitude of the vehicle makes the
relief differences of the scene neglectable. On the other hand if the scene
were 3D, we could use a fundamental matrix F for outliers methods and
structure-from-motion to compute the pose of the camera.

SOMs operate in two modes: training and mapping. Training
builds the map using input examples. It is a competitive
process, also called vector quantization. A low-dimensional
(typically two dimensional) map discretizes the input space
of the training samples. The map seeks to preserve the
topological properties of the input space. A structure of
this map consists of components called nodes or neurons.
Associated with each node is a weight vector of the same
dimension as the input data vectors and a position in the
map space. Nodes are connected by edges, resulting in a
(2D) grid.

a) Building the map: Our proposal operates in Scale
Invariant Feature vectors Space, SIFT space, instead of image
space, in other words, our space has n = 131 values (128
by the SIFT’s descriptor vector and 3 by the feature’s pose).
A Kohonen map must be created and trainned to represent
the space of descriptors. To build the map, feature vectors
are presented to the SOM. The learning algorithm is based
on the concept of nearest-neighbor learning using KD-Tree
algorithm [17]. When a new input arrives, the topological
map determines the feature vector of the reference node that
best matches the input vector. As our system uses several
feature vectors associated with each captured image, the
nearest-neighbor algorithm is applied to each feature vector
separately. The results of the nearest-neighbor algorithms are
combined with a simple scheme based on unanimous voting.

The Growing Cell Structures method allows the creation
and removal of the nodes during the learning process. The
algoritm constrains the network topology to k-dimensional
simplices whereby k is some positive integer chosen in
advance. In this work, the basic building block and also the
initial configuration of each network is a k = 2-dimensional
simplex. For a given network configuration a number of
adaptation steps are used to update the reference vectors of
the nodes and to gather local error information at each node.
This error information is used to decide where to insert new
nodes. A new node is always inserted by splitting the longest
edge emanating from the node q with maximum accumulated
error. In doing this, additional edges are inserted such that
the resulting structure consists exclusively of k-dimensional
simplices again.

After a set of training steps, the kohonen map represents
the descriptors space. This SOM can be used to locate the
robot during the navigation.

b) Location of the robot on the Map: New frames
are captured during the navigation. For each new frame F ,
SIFT calculates a set of m keypoints Xi, see equation 6. A
n = 131 dimensional descriptor vector is associated to each
keypoint. We use the trainned SOM to map/locate the robot
in the environment. A mapping stage is runned m times.
For each step i there will be one single winning neuron,
Ni: the neuron whose weight vector lies closest to the input
descriptor vector, Xi. This can be simply determined by
calculating the Euclidean distance between input vector and
weight vectors. After the m steps we have a set of m
winner nodes, Ni, associated with each feature descriptor,
Xi. With m pairs (Xi, Ni), we can use the homography



TABLE I
UNDERSEA FEATURES FOR EACH DISTORTION USING IN THE TESTS.

Distortion 1 2 3 4 5
Light Source Distance (m) 0.2 0.22 0.25 0.25 0.3
Attenuation Value (%) 0.05 0.05 0.06 0.05 0.05
Gaussian Noise (σ) 2 2 2 4 4
Gray Level Minimum 20 30 20 20 20
Number of Flakes of Snow Marine 30 30 30 30 30

concept to obtain a linear matrix transformation, HSOM .
Equation 7 gives the map localization of the center of the
frame, XC ′ = (xc′, yc′):

XC ′ = HSOM ∗XC , (7)

where XC is the position of the center of the frame.
Moreover the final topological map allows the navigation in
two ways: through target positions or visual goals. From the
current position, graph search algorithms like Dijkstra [7] or
A∗ algorithm [5] can be used to search a path to the goal.

IV. SYSTEM IMPLEMENTATION, TESTS AND
RESULTS

In this work, the robot presented in figure 2 was developed.
This robot is equipped with a Tritech Typhoon Colour
Underwater Video Camera with zoom, a MiniKing sonar and
a set of sensors (altimeters and accelerometers) [4].

Fig. 2. ROVFURGII in test field.

The visual system was tested in a desktop Intel Core
2 Quad Q6600 computer with 2Gb of DDR2-667 RAM.
The camera is NTSC standard using 320x240 pixels at a
maximum rate of 29.97 frames per second.

Different undersea features were applied in the images,
like turbidity, sea snow, non-linear illumination, and others,
simulating different underwater conditions. Table I shows the
applied features.

A. The method in different underwater features

The visual system was tested in five different underwater
environments, corresponding the image without distortion
and first four filters presented in table I (the effects were
artificially added to the images) . Figure 3 enumerates the
detected and matching keypoints obtained in a sequence of

visual navigation. Even though the number of points and
correlations has diminished with the quality loss because of
underwater conditions, it is still possible to localize the robot,
according to figure 4. In this figure, the motion referential is
represented in blue, executed by a robotic arm composed by
an harmonic drive actuator with a coupled encoder supplying
angular readings in each 0.651 ms, with a camera coupled to
this. It is possible to see that the approach proposed is robust
to underwater environment changes. All graphics shown in
this paper use centimeter as metric unit, including figure 4.

Fig. 3. Number of keypoints detected and true correlation during the robotic
arm movement.

B. Online Robotic Localization

Some tests were performed to evaluate the SIFT algo-
rithm performance considering a comparison with another
algorithm for robotic localization in underwater environment:
KLT [22] [28]. This one was proposed by Lucas and Kanade
[18] and was later improved by [27] [26]. The KLT tests
was performed over the Birchfield implementation [2] with
some modifications, such as search of new points after each
5 images processed.

Figure 5 shows the performance results using SIFT and
KLT methods. SIFT has obtained an average rate of 4.4 fps
over original images, without distortion, and a rate of 10.5
fps with the use of filter 5, the worst distortion applied.
KLT presented higher averages, 13.2 fps and 13.08 fps,
respectively. Note that SIFT has its worst performance in
high quality images because of the large amount of detected
points and, consequently, because of the higher number of
descriptors to be processed. The KLT, on the other hand,
keeps an almost constant performance. However, due to the



Fig. 4. Position determinated by the robotic arm odometry and a visual
system, without and with distortion.

slow dynamic associated with undersea vehicle motion, both
methods can be applied to online visual odometry for AUV.
The green cross represent the real final position and the
metric unit is centimeter.

The SIFT results related to the robot localization were
considered satisfactory, even with extreme environment dis-
tortions (filter 5). On the other hand, KLT gives unsatisfying
results for both cases, once it is too much susceptible to the
robot’s depth variation, or image scale, that occurs constantly
in the AUV motion, despite the depth control.

C. Robustness to Scale

Tests were performed to estimate the robustness of the
proposed system to the sudden scale variation. In this case, a
translation motion with height variation was performed with
the camera to simulate a deeper movement of the robot in
critical conditions.

The figure 6 shows the SIFT results, considered satisfac-
tory, even in critical water conditions. Considering the use
of some filters in extreme conditions, SIFT is superior to
KLT although it shows an inexistent movement in Y axis.
Over the tests, SIFT has shown an average rate of 6,22 fps
over original images captured by the camera and a rate of
7.31 fps using filter 1 and 10.24 fps using filter 5. The KLT
have shown 12.5, 10.2 and 11.84 fps, respectively. The green
cross represent the real final position, it is the same to all
graphics in figure 6, the metric unit is centimeter.

Fig. 5. Real Robot Localization in online system, without and with artificial
distortion.

D. Topological Maps

Tests to validate the mapping system proposed were per-
formed. Figure 7 show the final map, using images acquired
during the underwater vehicle navigation. This map was used
to localize the vehicle, and to aid the navigation to visual
targets, validating the visual odometry, mapping and online
issues associated to AUVs inspection tasks. The position is
updated when the robot recognizes one local known.

V. CONCLUSION

This paper proposes a new approach to visual odometry
and mapping, using a SIFT space as reference for topological
maps. This system can be used either in autonomous inspec-
tion tasks or in control assistance of robot closed-loop, in
case of a human remote operator.

A set of tests were performed under different underwater
conditions. The effectiveness of our proposal was evaluated
inside a set of real scenarios, with different levels of turbidity,
snow marine, non-uniform illumination and noise, among
others conditions. The results have shown the SIFT advan-
tages in relation to others methods, as KLT, in reason of its
invariance to illumination conditions and perspective trans-
formations. The estimated localization is robust, comparing
with the vehicle real pose.

Considering time performance, our proposal can be used
in online AUV visual odometry and mapping, even in very
extreme sea conditions.



Fig. 6. Localization with translation and scale movement without and with
distortion.

The correlations of interest points provided by SIFT were
satisfying, even with the presence of many outliers, i.e.,
false correlations. The proposal of using homography matrix
estimated in robust ways in order to remove outliers through
RANSAC and LMedS algorithms shows good results.

The original integration of SIFT and topological maps
for AUV navigation is a promissing field. The topological
mapping based on Kohonen Nets and GCS showed potential
in underwater applications using visual information due to its
robustness to sensory impreciseness and low computational
cost. Although preliminary, this method presents promising
results which validate the approach.

As future work, we propose to detail the analysis of our

Fig. 7. Topological Map generated by ROVFURGII in movement.

topological mapping system, executing a set of tests with
different scenarios and parameters. We are also proposing
the use of scale information provided by SIFT in conjunction
with the altimeter information, allowing the estimation of the
depth motion of the vehicle. The utilization of stereoscopic
vision is also a possibility in order to provide more accuracy
to the system.
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