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Abstract: Autonomous Underwater Vehicles(AUVs) have always been used in oceanic exploration. They were used
for topographic mapping, studying the various elements of the sea from flora and fauna to synthetic objects and debris
alike. This paper aims to produce perceivable maps of the shallow seabed using AUVs, using the Scale-Invariant Feature
Transform(SIFT) algorithm for collecting features from the images and using the Brute-force matcher to match the images
producing 2-dimensional rectangular maps by applying the proposed algorithm. The algorithm was tested using handheld
webcams in a simulated environment and our results were consistent with the expected output, and also account for the
uncertainty of noise, distortion due to the reflection of light on the surface of the water at shallow depths. This approach
to mapping has a low computational cost and can be deployed to multiple AUVs to map larger areas.
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1. INTRODUCTION

Underwater robotics research widely involves au-
tonomous vehicles and controlled robots/rovers for un-
dersea exploration for research and entertainment such as
photography alike. They have multiple ways of getting
SLAM(Simultaneous Localization and Mapping) data
using acoustic sensors, laser rangefinders, and visual sen-
sors.
Our paper presents an approach to use on-board optical
sensors(cameras) independently of the AUVs on-board
navigation computer to map the shallow seabed. Our
approach uses feature extraction based on the SIFT al-
gorithm and Matching methods to generate maps in seg-
ments and merge them independently to create maps.
The paper goes over the past work and research done in
a similar domain; the experiment set up, a brief overview
of the SIFT algorithm, the mapping ideology, and our as-
pired future work.

2. REVIEW OF LITERATURE

Several Underwater Mapping techniques and research
projects using AUVs have been performed in the past, but
mapping rectangular portions using SIFT and generating
visual maps only was not to be found.

In the paper SLAM in Underwater Environment us-
ing SIFT and Topologic Maps by Paulo Drews Jr, Silvia
Botelho and Sebastião Gomes. October, 2008.In the Pa-
per they have provided an approach for localization and
mapping of underwater terrain, using cameras and the
SIFT algorithm. They also have worked on producing
topological maps from localization and mapping[1].

There are also some non profit oceanographic research
centers and surveying government organisations which

have been actively working on seafloor mapping with
AUVs. MBARI has two AUVs optimised for seafloor
mapping which can chart the seafloor more precisely
than hull-mounted or towed sonar systems can in their
fleet.[3][4] They are equipped with four SONAR sensors
each in which two side scan sonars produce images based
on the intensity of the reflected sound. The Swath Multi-
beam Sonar is responsible for producing high resolution
bathymetry. It is the measurement of depth to the ocean
floor. The last sensor, Sub-Bottom profiler, detects the
layers between sediments and depth to the basement for
higher precision.[4]

The SeaFloor Mapping Group (SFMG) supports
coastal and marine geographic research at Woods Hole
Coastal Marine Science Center (WHCMSC) under the
US Geological Survey (USGS).[5] It has been active for
25 Years. It uses Acoustic and Optical techniques for
seabed study. SFMG nearly uses the same mapping
techniques like MBARI[4] with inclusion of still pho-
tographs, seismic reflection systems and sediment col-
lection from the underwater. They also study the sea
surface in addition to the Underwater. This group spe-
cialises in geophysical and sample data acquisition, anal-
ysis, and interpretation in the lacustrine, tidal, and marine
ecosystems with a large community of maritime electron-
ics technicians, physicists, geologists, physical scientists,
geographers, and visual and photographic experts.[6]

3. METHODOLOGY

Our project on Seafloor mapping aims to map rect-
angular sections of the seafloor using AUV(Autonomous
Underwater Vehicles). The project aims to use only cam-
eras and vision based systems to map the desired region
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on the map. We will choose an area at the selected lo-
cation to map it, and the AUV will be programmed to
follow a path as shown in Fig.1. The cameras present
on the AUV underside will capture images continuously
with breaks at respective areas, as they go along the route.

Fig. 1. Path followed by the AUV

The cameras will be capturing images only as the AUV
moves in a vertical path and will be off during the turn
the AUV makes to realign itself parallel to the direction
it transited before. This process continues until the AUV
reaches the end of the area it has to cover during the map-
ping expedition.

The flowchart depicting the mapping algorithm is
shown in Fig 2

4. CONSTRAINTS OF THE STUDY

This research was intended to develop an algorithm for
Mapping relatively small rectangular areas of the seafloor
to produce a geographical map of the seabed. In the
study, we simulated the underwater environment of a
submersible AUV moving using a handheld digital cam-
era. This mapping algorithm can be deployed to various
AUVs which are intended to map similar surfaces.

5. EXPERIMENT SETUP

Using a handheld digital camera, we followed it
through the path described in Fig.1 as the trajectory of the
AUV; the camera was a 2mp digital webcam. The camera
capture 60 frames per second, and the average speed of an
AUV is 1.5 to 2m/s. The handled camera roughly main-
tained the rate of 1.6 to 1.7m/s. The algorithm is aimed
at generating clear maps of the seabed and a camera with
a focal distance of less than 2 feet (45-50cm).

The AUV(handheld camera) will be at an height of
(BLANK) to the seabed(ground/mapping surface). The
height will be determined by the camera’s focal distance
adjusted to parameters of the water surrounding it. in the
test case, it will beset to the default focal length

The AUV will be given the predefined Approximate
area of the surface to be mapped(area), Approximate
Length(L), and Breadth(B). The AUV takes these val-
ues and divides the space into segments, as shown in
Fig.1(the number of vertical and horizontal segments will
vary depending on the mapping area).

Fig. 2. Mapping algorithm Flowchart

6. ALGORITHM EXPLANATION

6.1 Image Capturing

The cameras will be capturing images only as the AUV
moves in a vertical path and will be off during the turn
the AUV makes to realign itself parallel to the direction
it transited before. This process continues until the AUV
reaches the end of the area it has to cover during the map-
ping expedition.

The AUV captures images in the vertical paths called
”strips” consecutively. Each upright portion will be
stored and processed separately before merging them to
generate an image. To make the vertical portions ”strips,”
we will be applying the SIFT algorithm[2] to find each
image’s key points and descriptors.

We start by capturing 200 images frame by frame as
the AUV moves through the vertical segments. It will
store the images in a folder temporarily.
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Fig. 3. The capturing and comparison of images in the
vertical segments

6.2 Loading the images into a useable array
The images will be updated into a list, simultaneously

applying the SIFT algorithm using OpenCV.[2] The im-
ages are updated into the array and will be resized to
(256, 256, 3), i.e., 256 pixels wide, 256 pixels long, and
with the three channel.The camera captures RGB images
which is converted to BGR images.(ref. Fig.4)

Fig. 4. The image array with images stored as the order
captured in

6.3 SIFT Application
6.3.1 Understanding SIFT

SIFT, or Scale-Invariant Feature Transform, is a
feature detection algorithm in Computer Vision. SIFT
helps locate the key points, which are local features in an
image. These key points are scale rotation invariant that
can be used for various computer vision applications, like
image matching, object detection, scene detection, etc.

The SIFT algorithm being the backbone of our project,
it is used to find the key points and the feature descriptors
of each of the images. The SIFT method uses a Differ-
ence of Gaussian (DoG) to see the difference between the
different Gaussian blurring of the image with different
sigma (σ) values. This same process will be repeated for
different octaves in the Gaussian pyramid.[2] The scale
space function represented by L(x, y , σ), is found by
convolving the The standard Gaussian function G(x, y ,σ)
with the Input Image I(x, y). The Difference of Gaussian
function(DoG), D(x, y, σ) can be computing the differ-
ence of two nearby scales wiht a constant multiplicative
factor k.[2]

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2

Fig. 5. The Difference in Gaussian for a specific pixel of
the image

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2)

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)

After finding the Difference of Gaussian , maxima and
minima of these images is found by comparing the neigh-
bours of individual pixels with the previous and further
images. The paper summary gives us empirical data, no

Fig. 6. Maxima and minima of the difference-of-
Gaussian images are detected by comparing a pixel
(marked with X) to its 26 neighbors in 3x3 regions at
the current and adjacent scales (marked with circles).

octaves = 4, number of scale levels = 5, initial , etc. DoG
has higher response for edges, so edges also need to be
removed. For this, a concept similar to Harris corner de-
tector is used. They used a 2x2 Hessian matrix (H) to
compute the principal curvature. We know from Harris
corner detector that for edges, one eigen value is larger
than the other. So here they used a simple function,If
this ratio is greater than a threshold, called edgeThreshold
in OpenCV, that keypoint is discarded. It is given as 10
in paper.So it eliminates any low-contrast keypoints and
edge keypoints and what remains is strong interest points.
For further understanding of SIFT refer to paper.[2]
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6.3.2 Application of SIFT
The images loaded into their specific arrays of each

vertical segment are passed one image array at a time
through a function that applies Scale Invariant Feature
Transform(SIFT) on each of the images. The SIFT func-
tion in OpenCV allows us to detect the key points and
feature descriptors of the images. The key points give us
information about the image location, scale, and orienta-
tion. [2]

All these parameters embedded within the keypoint
descriptor estimate a 2D coordinate system that con-
stantly describes the local image region throughout and
different for each image. The function also computes the
descriptor of the images by adding each image’s gradient
magnitude and orientation around a keypoint location a
Gaussian window, then weights the values to define the
final descriptor.[2]

These values also account for the change in 3D ori-
entation and illumination to remove false-positive key
points and descriptors. We still need to retain the val-
ues of the key points and descriptors for each image to
use them further, which will append into corresponding
arrays.

Fig. 7. A captured image with key points detected

6.4 Forming Each vertical Segment
. In the test case we have considered an are of 4×6

segments, with each segment of (30cm×30cm).The im-
age arrays of each of the vertical segments have the im-
ages with the detected key points drawn onto them, with
their respective feature descriptors also stored in respec-
tive arrays. To match images to form the vertical images
we have utilized the Brute Force Matcher(BFmatcher),
toolkit available in Open-CV.
• The first image in each segment which is the first image
of each vertical segment is matched with all the images
in the array, the no of matches with each of the images is
appended into an array simultaneously.
• The mean of the sorted matches is found and the values

higher than that are discarded, the repeating values less
than the mean are also discarded, we will be left with
only different frames from the same vertical segment.
• The images corresponding to the remaining matches
are arranged in the order they were captured.
• The first image of this new list which represents the
second frame of the vertical segment is considered and
the process is repeated with the first 10 images in the
sorted macthes list, now we have found the third frame
of the vertical segment.
• The first image in the new list which represents the
third frame of the vertical segment is considered and the
process is repeated with the first 5 or less images of the
new sorted macthes list, the fourth frame of the segment
is obtained.

Fig. 8. The complete mapping algorithm

• The four images stored in a new list are concatenated
vertically to obtain the vertical segment.
• Each of the image in the image arrays correspoding
vertical segments are processed as follows to form each
of the vertical segments,

6.5 Forming the Map
• The alternate vertical segments are mirrored along the
x-axis to account for the 180 degrees change in direction
of the AUV during the mapping.
• All of the vertical segment images are concatenated
horizontally to produce the map.

7. CONCLUSIONS

The mapping algorithm produces an accuracy of
around 55 to 60%.Is is efficient as it requires less com-
pute power and can also be run on basic cameras.The
algorithm can be deployed to AU Vs with various con-
figurations indented to map similar areas with very few
changes. The parameters needed to be altered would be
the number of images per vertical segments , number of
vertical segments, the match parameters such as the num-
ber of images in the first pool, camera parameters such as
brightness, the amount of noise reduction based on depth
and visibility in water.
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Fig. 9. Map preview

Fig. 10. Generated map

FUTURE WORK

The paper continues it work, by exploring multiple passes
of the AUV over the same area to improve in noise re-
duction in the images, improve accuracy by reducing
the false positive matches, and produce further detailed
maps[1]. We hope to test our algorithm with a swarm of
AUVs to achieve larger mapping surfaces, and reduce the
load of a single robot. Using the SONAR data and Vision
data simultaneously to achieve 3-dimensional Map of the
seabed.
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