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Abstract

Underwater robots require fast and accurate localization results during challenging near-
bottom operations. However, commonly used methods such as acoustic baseline localiza-
tion, dead reckoning, and sensor fusion have limited accuracy. The use of forward-looking
sonar (FLS) images to observe the seabed environment for pose estimation has gained
significant traction in recent years. This paper proposes a lightweight front-end FLS odom-
etry to provide consistent and accurate localization for underwater robots. The proposed
direct FLS odometry (DFLSO) includes several key innovations that realize the extraction
of point clouds from FLS images and both image-to-image and image-to-map matching.
First, an image processing method is designed to rapidly generate a 3-D point cloud of the
seabed using FLS image, enabling pose estimation through point cloud matching. Second,
a lightweight keyframe system is designed to construct point cloud submaps, which utilize
historical information to enhance global pose consistency and reduce the accumulation of
image-matching errors. The proposed odometry algorithm is validated by both simulation
experiments and field data from sea trials.

Keywords: underwater robots; localization; sonar odometry; forward-looking sonar

1. Introduction

Underwater robots are essential for executing demanding tasks in harsh seabed con-
ditions, including target search, biological surveys, oceanographic research, seabed ex-
ploration and inspection [1], and ocean resource development [2]. These robots require
accurate position estimation [3]. Whereas typical acoustic baseline localization approaches
perform poorly in time delay and accuracy [4]. Consequently, there is growing interest in
leveraging environmental data to enhance underwater localization precision [5], particu-
larly in seabed operations where forward-looking sonar (FLS) images have shown promise
in estimating pose transformations [6].

FLS can provide real-time acoustic imaging of areas within a wide aperture in the
elevation, azimuth angles and a certain range of distance. FLS can have an azimuth opening
angle of approximately 130° and an elevation opening angle of about 30°. The maximum
detectable distance can reach nearly 100 m. FLS operates by simultaneously emitting multi-
ple fan-shaped acoustic beams and receiving the echo intensities from different distances in
various azimuth directions to form an acoustic image. However, during the process of pro-
jecting the 3-D underwater environment into a 2-D image, information about the elevation
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angle is lost, which introduces ambiguity regarding the actual environment corresponding
to the image. Compared with optical cameras, FLS has a significant advantage as it can
achieve a much longer imaging distance. Moreover, in contrast to some other sonars, it is
capable of real-time imaging at a frequency as high as 15 Hz. Thus, FLS would be highly
used for perception and localization.

Recent progress in FLS odometry, however, faces challenges related to the accuracy
of relative pose transformations and the accumulation of error. This study introduces
algorithmic advancements to improve the precision of pose transformations derived from
FLS image matching. Furthermore, a two-stage matching approach is proposed to address
the issue of accumulated error in odometry positioning.

Odometry-based positioning methods, widely used in terrestrial applications, estimate
self-pose changes using sensor-derived environmental information. Visual odometry (VO)
typically matches feature points between adjacent images, while laser odometry (LO) uses
3-D point clouds for matching. In contrast, FLS images present unique challenges: low
signal-to-noise ratio (SNR) and resolution, as well as a nonlinear projection model. These
challenges arise due to the longer wavelengths of acoustic waves and the similarity in
acoustic properties of underwater surfaces [7]. The nonlinear projection of FLS, where
pixels represent curved arcs rather than straight rays [8], further complicates the matching
process and necessitates specialized techniques for accurate pose estimation. Unlike LiDAR,
which directly provides 3-D coordinates, FLS images lack direct point cloud data and lose
elevation information during projection. Recovering 3-D information from FLS images
before matching could enhance accuracy, drawing inspiration from LO. Thus, developing
innovative algorithms for matching adjacent FLS images remains critical to improving the
accuracy of relative pose transformations in sonar odometry.

Cumulative errors are inevitably introduced during each image-to-image matching
process. Essentially, each matching result contributes to the overall positioning inaccuracy.
Relying exclusively on adjacent image matches results in a progressive accumulation of
errors with increasing match times. To counteract these cumulative errors, VO commonly
employs loop closure detection methods, which identify previously visited locations to
correct the estimated trajectory and thereby mitigate long-term drift. On the other hand,
LO often utilizes a two-stage approach. In the first stage, initial estimates of relative motion
are derived from scan-to-scan matching. During the second stage, the current LiDAR
scan is matched against a map constructed from historical data, followed by a scan-to-map
registration process. This second stage acts as a global correction, refining the pose obtained
from each scan-to-scan match using past environmental information to enhance global
pose consistency. This global adjustment effectively diminishes the influence of cumulative
errors inherent in LO. Research on loop closure detection using FLS images has achieved
some progress; however, there remains a significant gap in the exploration of the two-stage
global pose correction method involving image matching with a pre-constructed map. This
gap is largely due to the limited research on mapping natural seabed environments using
FLS, as it is challenging to rapidly and directly construct past environmental information
suitable for matching with current images.

This paper proposes a lightweight front-end FLS odometry solution named Direct
FLS Odometry (DFLSO), which is designed to provide fast and accurate positioning for
underwater robots. Different from SLAM methods that include loop closure detection
and perform global pose optimization after loop closure is detected, this method focuses
on improving positioning accuracy and minimizing cumulative errors while ensuring
real-time performance, so as to quickly obtain the most accurate pose corresponding to the
current FLS image. The DFLSO focuses on enhancing positioning accuracy and minimizing
cumulative errors to achieve precise real-time localization. The approach is marked by
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two core innovations. First, a lightweight FLS image processing technique is developed
to efficiently extract elevation information from FLS images, generating a 3-D point cloud
suitable for matching to estimate relative poses. Second, a fast keyframe-based submapping
approach with overlapping images is designed to create local submaps, directly reducing
odometry-based localization errors for each FLS image. The feasibility of the proposed
DFLSO algorithm is validated through simulations and real sea trial datasets.

2. Related Work

Odometry-based localization is often formulated as a nonlinear optimization problem
to compute a best fit homogeneous transform that minimizes error across corresponding im-
ages or point clouds. Early research adapted optical image-matching techniques to address
the FLS projective model and its images. Sekkati et al. [9] utilized sparse point features
detected via Harris corner detection and Lucas-Kanade tracking to estimate relative motion
with FLS images. Wang et al. [10] explored the Perspective-n-Point (PnP) problem in FLS,
proposing two methods to solve it and derive the relative pose. The first method employed
a non-approximate model with Singular Value Decomposition (SVD) to eliminate the cosine
term in feature points, while the second approximated the projection model as a linearized
system for an approximate solution. However, these point-feature-based approaches de-
pend on stable feature extraction, which is challenging due to the low SNR, resolution,
and intensity variations in FLS images [11]. Thus, region-based features have been devel-
oped. Johannsson et al. [12] selected regions with large gradient changes for matching,
approximating the nonlinear projection as planar and assuming negligible elevation angles,
enabling a linearized 2-D matching method. Aykin et al. [13] and Negahdaripour [14]
utilized acoustic shadows at the region level, incorporating elevation angle estimation and
proposing a registration approach based on a simplified 2-D image transformation model.
Lee et al. [15] presents a method or estimating the height of feature points through shaded
area analysis to enhance the performance of iterative closest point (ICP)-based algorithms
for matching sonar images. Although these methods leverage stable region features, they
rely on linearized approximations of the FLS projection model, potentially introducing
errors in pose estimation.

Some studies employed spectral analysis methods for matching, which avoid the
steps of feature extraction. Hurtos et al. [16] used Fourier transform to convert FLS images
from the spatial to the frequency domain, estimating heading angles and 2-D translations
between adjacent images. Franchi et al. [17] applied Fourier-transformed FLS images
to approximate linear speed, integrating it with orientation data from other sensors for
localization. Yoon et al. [18] propose a method to improve the accuracy of acoustic odometry
using optimal frame interval selection for Fourier-based image registration. However,
frequency analysis methods require assumptions such as constant height above the seabed
and negligible roll-pitch rotations, limiting their applicability.

Optical flow methods derived from VO have been developed to estimate the motion of
FLS images by analyzing pixel changes. One approach [19] assumes uniform pixel motion
between frames, using statistical analysis of selected feature pixels for pose estimation.
Another method [20] constructs pixel displacement maps for various motions and selects
the most matching map as the motion estimation result.

In recent years, deep learning (DL) methods have been increasingly applied to FLS
pose estimation. These approaches leverage DL architectures to extract spatiotemporal
information from image sequences for motion estimation. For instance, Almanza-Medina
et al. [21,22] used a multi-layer neural network to estimate three degrees of freedom (DOF)
motion (heading angle, forward /backward, and lateral displacements) from consecutive
FLS images. Their model, trained on synthetic data, assumes constant FLS height and
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negligible roll/pitch changes. Similarly, Mufioz et al. [23] proposed an RCNN architecture
with LSTM modules to estimate 3-DOF motion using sequential FLS images, which was
initially trained on synthetic data and fine-tuned with field data for real-world adaptation.
While DL-based methods show promising results in simulations and specific scenarios,
they primarily rely on synthetic training data, raising concerns about generalization across
various environments.

Existing research predominantly focuses on improving motion estimation between
consecutive FLS images but overlooks the cumulative error problem in FLS odometry.
Fallon et al. [24] addressed this by matching current FLS image features against a prior map,
selecting the most likely pose for loop closure and global optimization. Suresh et al. [25]
extended this to 3-D grid maps using a global submap saliency metric, while Li et al. [26]
applied machine learning for loop closure detection in ship hull images. Gaspar et al. [27]
proposed an unsupervised recognition approach based on FLS images to solve the loop
closure detection in harbor facilities. However, these methods depend heavily on accurate
loop closure detection and pose graph optimization delays global optimization when no
loop closure is detected.

Previous research on positioning using FLS image matching focuses on developing
point or region features in 2-D images, as well as performing spectral analysis or deep
learning on images. However, when FLS projects a 3-D environment onto a 2-D image,
projection distortion occurs, which leads to certain errors in the pose obtained through
image matching. Regarding the research on eliminating cumulative errors, it mainly
focuses on loop closure detection and global pose optimization. These methods rely on the
accuracy of loop closure detection. Moreover, since global optimization is delayed until a
loop closure is detected, it may not be possible to obtain the optimal pose corresponding to
the current image in real-time.

To overcome these limitations, this paper proposes DFLSO. Its algorithm framework
is shown in the Figure 1, aiming to quickly and directly obtain the pose estimation result
of the current FLS image. There are two core contributions: Firstly, a lightweight FLS
image processing technique is developed, which can extract 3-D point clouds from FLS
images. By using point cloud matching instead of image matching, the pose errors caused
by the nonlinearity of the projection model are reduced. Secondly, a method for quickly
constructing a local submap using past overlapping images is designed. By matching
the point cloud of the current image with the submap, the cumulative errors based on
odometry are reduced. This enhances the global pose consistency without relying on the
accuracy of loop closure detection or waiting for a loop closure to be detected.
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Figure 1. The DFLSO framework.
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3. Methods
3.1. FLS Projection Model

FLS can simultaneously transmit and receive multiple fan-shaped acoustic beams
along different azimuth angle directions. Each beam has a narrow azimuth opening angle
and a wide elevation opening angle, with the ranges covered by these acoustic beams
collectively forming the field of view of FLS. As shown in Figure 2 and Equation (1), a 3-D
point P in FLS coordinates can be described as (x, y, z) in Cartesian coordinates, and (7, 6, ¢)
in polar coordinates.

X ¥ cos¢cos 0
P=|y| = |rcospsiné (1)
z 7 sing

rmax

Figure 2. Projection model of FLS.

Actually, FLS only generates 2-D images. The imaging plane of FLS images can
be conceptualized as a horizontal plane formed by the X and Y axes within the FLS’s
coordinate system. During the projection process, only the azimuth angle and distance
of the echo are received, resulting in the loss of elevation angle and the elevation angle is
assumed to be zero in this process. Thus, a 3-D point P is projected onto this 2-D imaging
plane as P/, with the coordinates shown in Equation (2):

P — [x: ] _ lrcgs()] )
Yy rsind

The point P’ ultimately needs to be presented on the pixel plane. FLS receives the
echo intensity at different distance bins for each beam and generates a raw beam-bin image.
Define the pixel coordinate system of the beam-bin image as 0s;—us—vs, with the origin o,
located at the top-left corner, and the u;-axis and vs-axis as shown in Figure 3a. Assume
that the sonar configuration parameters include N acoustic beams, and each beam can
measure the echo intensity at M bins, with the minimum and maximum detection distances

being t,,;;, and 74y, and the minimum and maximum detection azimuth angles being 0,,,;,,
and 6¢. The point P/ (us, vs) in the beam-bin image are given by Equation (3).

— . Qfemir\
Us = N Omax—0Omin (3)
vs=M- " —Vimin

"max —"min
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Figure 3. Different forms of FLS images. (a) Beam-bin image in polar pixel plane. (b) Image in
Cartesian pixel plane.

FLS images can also be interpolated into a Cartesian pixel plane. Define the pixel
coordinate system as o.—u.—v., with the origin o, at the top-left corner, the u.-axis and v.-axis
as shown in Figure 3b. The coordinates of point P’ (i, v.) are given by Equation (4).

{ Ue = (% - (r_rmil’l) 'COS(Q_GmiH) f”) (4)

Ve = (¥ — min) - SIN(0 — Omin) - fo

where u,,,4x denotes the width of the image, f, and f, are the scaling factors between the pixel
space of the interpolated image and the physical space along the us and v; axes, respectively.
These scaling factors are typically expressed in pixels per meter and are generally equal
along both axes.

3.2. Point Cloud Extraction from Image

The grayscale value of each pixel in a FLS image is directly correlated with echo
intensity, which is influenced by factors such as the acoustic beam’s propagation distance,
reflection angle, and the acoustic properties of the reflecting surface. Typically, flat seabed
terrain exhibits moderate echo intensity. In contrast, areas with rocks or protruding terrain
display stronger echo intensity and accompanied by shadow regions with weaker intensity
formed by the acoustic beam being blocked by the height of obstacles. Similarly, abrupt
depressions, such as trenches or gullies, also produce shadow regions of weaker echo
intensity. By segmenting the FLS image into three distinct regions: highlight, shadow, and
background, it becomes possible to identify and extract seabed features associated with
these regions. Specifically, highlight-shadow pairs generated by protruding terrain or
rocks, as well as shadow features resulting from depressions, can be analyzed. Through the
examination of their spatial positions and shadow lengths within the image, these terrain
features can be extracted and represented as 3-D point clouds.

3.2.1. Image Processing

The objective of image processing is to classify each pixel in the FLS image based on
its grayscale value into highlight, shadow, and background regions. This classification
facilitates the extraction of highlight and shadow features, which are essential for subse-
quent calculations of the height and position of terrain features to form a 3-D point cloud.
Firstly, FLS images are often contaminated with salt-pepper noise, which can be mitigated
using a median filter, as shown in Figure 4b. Secondly, as acoustic beams propagate further,
their intensity attenuates, leading to lower grayscale values in pixels corresponding to
farther regions. The gain compensation coefficients for each distance are computed by
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averaging the grayscale values of pixels at the same distance along different azimuth angles
in the image, thus compensating for the grayscale value differences caused by propagation
distance, as shown in Figure 4c. Thirdly, the compensated pixels are classified based on
their grayscale values. Given that only three categories are required, the k-means clustering
method is chosen to perform the image segmentation, as shown in Figure 4d. Finally, the
fast extraction method for 3-D point clouds in this work demands the preservation of the
completeness of the highlight and shadow region features in the image. Consequently, mor-
phological processing is applied to the segmented image. Specifically, an erosion operation
is first employed to remove small highlight and shadow regions resembling noise, followed
by a dilation operation to complete the damaged highlight and shadow regions, as shown
in Figure 4e.

(@ (b)

Figure 4. Preprocessing of FLS images. (a) Raw beam-bin image. (b) Image after median filter.
(c) Image after gain compensation. (d) Image after segmentation. (e) Image after morphological
processing.

3.2.2. Elevation Angle Estimation

In FLS images, if some highlight pixels are immediately followed by shadow pixels,
these pixels correspond to an acoustic beam encountering a protruding terrain with a certain
height on the seabed. The shadow region is formed due to the elevation difference between
the protruding terrain and the seabed, which blocks the sound waves. The length of shadow
region can be used to calculate the elevation and elevation angle of the protruding terrain.
Assuming the seabed around the protruding terrain is flat, the geometric relationship of
elevation and shadow length in one acoustic beam is shown in Figure 5a. O represents
the point where the FLS transmits and receives acoustic beams. Py is the point where
the protruding terrain begins to block the acoustic beam, and Pg, is the point where the
protruding terrain no longer blocks the acoustic beam. With the ideal model, Py, and Py,
share the same elevation angle ¢. Therefore, the elevation /1, and elevation angle can be
calculated using the elevation ho of the FLS above the seabed and the distances from point
O to Py, and Py, by Equation (5).

_ |OPyy| —|OPy |
i = ho - \bOPsb| “ (5)

The elevation of FLS h;, is a fixed value for some underwater robots operating close to
the seabed, such as deep-sea mining vehicles or trenchers. For robots that float in the water,
this elevation &, can be measured using an altimeter. The distances of |OPy;, | and | OPyg, |
can be calculated by identifying the pixel positions corresponding to Pj;, and Pg, in the
image column. Point Py, corresponds to the transition boundary from the highlight region
to the shadow region. However, in actual FLS images, the transition does not occur directly
from the highlight region to the shadow region but includes a small transition background
area. Therefore, the end pixel of the highlight region is defined as the corresponding pixel
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for point Py, denoted as the j-th pixel. Point Pg, corresponds to the position where the
protruding terrain no longer blocks the acoustic beam, which is the transition point from
the shadow region to the background region. Here, the end pixel of the shadow region is
defined as the corresponding pixel for point Py, denoted as the I-th pixel. The distances
|OPyy | and | OPg;, | can be calculated with j and I based on Equation (4).

0 @2 B
:
IIIIIllIlIIIUIIIIl

¢ One beam in image plane Obackground pixel
AN  Mshadow pixel

J \'4) One beam in i.gnagc p:lane thighlight pixel !
S Obackground pixel i
~ i ; Ishadow pixel 4t
: $ ho i \\
!
1

(b)

Figure 5. Geometric relationship between shadow length and seabed terrain. (a) Protruding terrain.
(b) Depression terrain.

The depression terrain on the seabed will form a shadow region without a correspond-
ing highlight region. The geometric model based on the planar assumption is shown in
Figure 5b. In this case, the points Py and Py, should theoretically have the same elevation
angel ¢. The elevation between point Pg, and the seabed plane can be calculated based
on the geometric relationships by Equation (6). It should be noted that the elevation /s is
negative here.

‘OPsb|7|Ost‘

he = —hy - 2019771

S 0 \ |(2P5f| (6)
— ] 0 — s

@ = arcsin |OPsb‘

The distances of 0Pyl and |0Pg | can be determined by identifying the pixel
positions corresponding to points Pgt and P, in the image column. Point Py corresponds to
the transition boundary from the background region to the shadow region, which is set as
the front pixel of the shadow region, denoted as the k-th pixel. Point Py, corresponds to the
transition boundary from the shadow region to the background region, which is defined as
the end pixel of the shadow region, denoted as the I-th pixel. The distances | OPy| and

| OPg, | can also be calculated with k and I/ based on Equation (4).

3.2.3. Fast Point Cloud Extraction

In Section 3.2.2, the elevation and elevation angle of the end pixels of highlight or
shadow regions in the FLS image can be calculated, thereby obtaining the 3-D coordinates
of the corresponding points. However, the number of edge points obtained through this
method is limited. When employing point cloud matching, it is advantageous to have a
greater number of 3-D points to form a comprehensive point cloud. Several researchers
have developed reconstruction methods to recover 3-D information about object surfaces,
such as utilizing the elevation of the end pixel of the highlight region and constructing
relationships between grayscale, reflection angle, and elevation for each highlight pixel
to iteratively solve for the 3-D shape of the object’s surface [28]. However, these recon-
struction methods often oversimplify the propagation and reflection models of acoustic
beams, which may lead to inaccuracies in the results. Additionally, they require multi-
ple iterative solutions, imposing a significant computational burden that makes real-time
computation challenging.

This paper aims to implement a fast method for obtaining an approximate point cloud
of the seabed. To achieve this, the elevation at the end pixel is assumed to be representative
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of the entire region. Specifically, for highlight-shadow regions of protruding terrain, the
elevation of the end highlight pixel is used to represent the elevation of each pixel within the
highlight region, and the elevation angle is then calculated to determine its 3-D coordinates.
For isolated shadow regions of depressed terrain, the elevation corresponding to the end
shadow pixel in the column is used to represent the elevations of all pixels within the
shadow region, and the elevation angle and 3-D coordinates are subsequently calculated.
While this approach may introduce some discrepancies in elevation and horizontal size
between the point cloud and the actual protruding or depressed terrain, it enables the rapid
acquisition of an approximate point cloud of the seabed. Figure 6 shows an example of
extracting point cloud from an FLS image.

() (b) (c)
Figure 6. An example of extracting point cloud from an FLS image. (a) Beam-bin image. (b) Image in
Cartesian pixel plane. (c) The 3-D point cloud from this image.

3.3. Image-to-Image

In the first stage of DFLSO, it is necessary to match FLS images sampled at adjacent
time instants to obtain the relative transformation of the robot’s pose at the time of image
acquisition. Py is defined as the point cloud extracted from the FLS image at time f.
And Xj -1 Xk x—1 € SE (3)) is defined as the relative transformation between the robot’s
pose at time f;_; and time t;. Therefore, the problem is transformed into a classical point
cloud registration problem as shown in Equation (7), which involves finding a relative
transformation Xy, ;_1 to make the distance between corresponding points in Py and Py_;
is minimized.

X1 = arg)glkiﬂg(xk,k—lpkr Py_1) (7)

This paper uses the classical Iterative Closest Point (ICP) algorithm [29] for point cloud
registration. The ICP algorithm is a classic method for 3-D point cloud matching, aiming to
find the optimal rigid transformation between two point clouds. First, transform the source
point cloud Py using the transformation X}, 1, and for each point in the source point cloud
P;, the algorithm finds the closest point in the target point cloud Pj_; as its corresponding
point. Second, based on the corresponding point-pairs found in the previous step, the
algorithm calculates the rigid transformation Xj, ;1 that minimizes the sum of squared
distances between the corresponding points. Repeat the above steps until a convergence
condition is met, such as the increment of the transformation being smaller than a certain
threshold. The ICP algorithm needs an initial value for the transformation Xy x_1. If prior
information about the relative pose transformation can be obtained from an IMU or other
sensors, we use this prior as the initial value for the registration. Otherwise, we assume that
the robot’s attitude and position changes are small, and use an initial value of Xy x_1 =1
for the registration.

3.4. Submap and Image-to-Map Match

In the first stage, the relative transformation between adjacent FLS images obtained
through image-to image matching is combined with the previous global pose to generate
an initial estimate of the current pose. To enhance global consistency and mitigate potential
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cumulative errors, a second stage of image to-map matching is employed. Here, the global
pose at time # is denoted as X"} and the point cloud of submap is denoted as P",,. This
image-to-map matching is formulated as a classical point cloud registration problem, as
shown in Equation (8).
)A(,LN = argmvivns (X,LNPZV, P ) (8)
Xk

A key innovation in this work lies in the generation of a point cloud of submap for
image-to-map matching. Instead of directly accumulating all historical point clouds, this
work keeps a history of keyframes, where each keyframe consists of an image paired with
its corresponding global pose. For the image-to-map matching, the submap point cloud is
generated by searching for a subset of keyframes that have a co-visibility relationship with
the current image.

3.4.1. Keyframe Selection for Submap

In this study, we propose principles for selecting appropriate keyframes to construct a
submap for matching, focusing on minimizing odometry cumulative error and enhancing
global pose consistency. To address cumulative errors, we employ a K-Nearest Neighbors
(KNN) search to identify keyframes closest to the current pose, ensuring overlapping
terrain features with the current image. By including them in the submap, the cumulative
error between the current pose and the selected nearby poses is minimized.

Additionally, to improve global consistency, we incorporate earlier keyframes whose
fields of view (FoV) overlap with the current sonar image’s FoV, including these older
keyframes in the submap helps enhance the global consistency of the pose derived from
image-to-map matching. Notably, FLS observes only a front-facing sector of the environ-
ment, unlike LIDAR which provides 360° coverage. This work defines the FoV center as
the point located at half of the maximum observation distance in the FLS coordinate system
directly, as shown in Figure 7. Consequently, the center of the FoV for each keyframe
can be computed based on the global pose of the keyframe. Using the FoV centers, we
perform a KNN search to select keyframes that enhance global pose consistency, crucial
for underwater robots performing round-trip inspections, thereby improving localization
accuracy and robustness.

Figure 7. The center of FLS’s field of view.

3.4.2. Adaptive Keyframing

The selection of images and their corresponding poses for keyframe designation
significantly impacts the construction of the submap and the accuracy and robustness



Remote Sens. 2025, 17, 2166

11 of 17

of the image-to-map matching process. Traditional approaches typically employ fixed
thresholds for keyframe addition, where a keyframe is inserted when changes in position or
orientation exceed predefined values. The keyframe should ideally aim to cover the entire
environmental space with a minimal number. To address this, adaptive thresholds for
keyframe insertion were proposed in [30], where the thresholds are dynamically adjusted
based on spatial information derived from the image. Specifically, when the point clouds
are distributed at greater distances, features at large distances remain visible even after
significant displacement, making them suitable for matching. In such cases, the distance
threshold can be larger. Conversely, if the point clouds are concentrated close to the FLS,
even minor positional changes can cause nearby features to disappear from the image,
rendering them unsuitable for matching. Thus, a smaller distance threshold is required in
such scenarios. The distance threshold d*"y for current image at time t; can vary adaptively
by the median Euclidean point distance m; from the FLS to each point in the point cloud
extracted from current image by Equation (9).

15m, if my > 40m

10m, if 30m < my < 40m

dih = {5m,  if 10m < my < 30m )
2m, if5m < my < 10m

1m, ifm <b5m

The rotational threshold is derived from the horizontal opening angle of FLS, and is
set to 1/6 of this angle in this work. After the current image undergoes two-stage matching
to obtain its global pose, the distance and rotational thresholds are computed based on the
point cloud. If the positional or orientational changes between the current pose and the
pose of the previous keyframe exceed these thresholds, the current image and its global
pose are added to the set of keyframes.

3.4.3. Fast Keyframe-Based Submapping

For the seabed point clouds extracted from FLS images, the accuracy of the elevation
information depends on the precision of the shadow region segmentation, which cannot
achieve the same accuracy as the lidar. As a result, points associated with the same
horizontal region across different images may exhibit variations in elevation. Simply
stacking the point clouds from multiple keyframes can introduce “ghosting” artifacts
in the representation of the seabed surface, thereby compromising the reliability of the
image-to-map matching process.

To mitigate this issue, in this work, we perform a grid-based rasterization of the seabed
space on the horizontal plane. Specifically, we create a grid map on the horizontal expanse
of the seabed area. Each cell in this grid map serves as a discrete unit for processing. For
every grid cell in the grid map, we aggregate the points contained within it into a single
representative point. The elevation and horizontal position of this representative point
are computed as the average of all the points from each keyframe that fall within that
specific grid cell. This averaging mechanism effectively reduces the impact of elevation
inconsistencies of different keyframes.

Once the submap point cloud is constructed from the selected keyframes, the
ICP method is employed to match the current image’s point cloud with the submap,
thereby facilitating accurate image-to-map matching and enabling the determination of the
global pose.



Remote Sens. 2025, 17, 2166

12 of 17

4. Experiment and Discussion
4.1. Simulation Experiment

In underwater experiments, obtaining the true pose of an underwater robot is challeng-
ing. Therefore, the proposed DFLSO was validated through a simulation experiment. The
simulations were conducted using ROS (Robot Operating System) in the Gazebo physics
simulation environment, with the FLS simulated using the open-source UUV-Simulator [31].
In the simulation, the FLS was maintained at a fixed elevation of 2 m above the seabed,
the azimuth opening angle is set as 45°, the elevation opening angle is set 30°, the de-
tection range is set as 8 m and the imaging frame rate is set as 10 Hz. The simulation
environment was set on a sandy seabed and included several rocks as terrain features, as
shown in Figure 8a. Figure 8b displays the seabed point cloud map constructed using all
the keyframes. To provide a more intuitive visualization of the point cloud heights, after
filtering the points within the horizontal grids, the points were filled from the seabed plane
to their respective heights.

(a) (b)

Figure 8. Simulation environment and mapping results. (a) Simulation environment in Gazebo.
(b) Seabed point cloud map.

In the simulation experiment, three different odometry methods are compared: the
first method (2-D features) [12] extracts 2-D features with large gradient changes in the FLS
images and performing image-to-image matching for odometry estimation. The second
method (3-D point clouds) [15] estimates the elevation through shaded area to form 3-
D feature point clouds and use ICP-based algorithm for matching. The third method
is the proposed DFLSO approach, which incorporated both image-to-image and image-
to-map matching using the extracted 3-D point clouds; the number of keyframes for
each submap is set as 6. The data was processed using a 16-core Intel Ultra 9 2.90 GHz
CPU. In this simulation, the average processing times per image for the 2-D features, 3-
D point clouds, and DFLSO are 14.6 ms, 24.8 ms, and 32.7 ms, respectively. Although
both extracting 3-D point clouds and constructing submaps for two-stage matching will
lead to an increase in computing time, with the fast point cloud extraction and submap
construction methods proposed in this paper, the increased computing time can still meet
the real-time requirements.

The trajectories for different methods are shown in Figure 9. Here, use the absolute
position errors (APE) to evaluate the accuracy, which are shown in Figure 10, and some
statistical metrics are summarized in Table 1. The APE used in this paper focuses on the
deviation in the horizontal direction between the estimated position and its true position,
as shown in Equation (10). Where £ and 7 are the estimated position in the x-direction and
y-direction, x¢t and yg; are the ground-truth.

APE = \/ (2 = xg1) 2 + (9 — yg1)? (10)
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Figure 10. Error comparison for different methods in the simulation.
Table 1. Evaluation of different odometry methods in the simulation.
Method Max [m] Mean [m] Std [m] Rmse [m]
2-D features [12] 3.47 1.98 0.85 2.16
3-D Point clouds [15] 1.05 0.51 0.25 0.57
DFLSO 0.48 0.25 0.12 0.28

Compared to the 2-D feature-based approach, using the 3-D point clouds extracted
from the FLS images achieves more accurate localization results. Furthermore, a comparison
between the 3-D point cloud based matching method and the DFLSO approach revealed
that the proposed image-to-map matching stage effectively mitigated the accumulation of
errors and significantly improved the global consistency of the localization results.

4.2. Field Experiment

The proposed DFLSO was also tested with field data, and the number of keyframes
for each submap was set as 6. We constructed a tracked deep-sea underwater robot, which
is a cable robot equipped with a BlueView M900 FLS shown in Figure 11a. The robot was
tested at a depth of 2000 m in July 2024. During this sea trial, the FLS is set to have an
azimuth opening angle of 120°, an elevation opening angle of 20°, a detection range of
50 m, and an imaging frequency of 15 Hz. The FLS communicates via Ethernet, and the
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data is transmitted in real-time to the computer on board through the optical fiber in the
cable. Data processing and recording are then carried out on the computer on board.

(b)

Figure 11. The tracked underwater robot with FLS and the mapping result of the sea trial. (a) the
tracked deep-sea underwater robot (b) the mapping result of the sea trial.

The sea trial has a rugged seabed with many topographical features, and the mapping
result with DFLSO is shown in Figure 11b. During the sea trials, it was challenging to
obtain the true position of the underwater robot. Therefore, to determine the true position
of the selected reference points, we manually registered the FLS images sampled at different
reference points, as shown in Figure 12. This process allowed us to establish the truth
to evaluate the odometry results. The data was processed using a 16-core Intel Ultra 9
2.90 GHz CPU. With the FLS images in this field experiment, the average processing times
per image for the 2-D features, 3-D point clouds, and DFLSO are 27.4 ms, 38.5 ms, and
52.6 ms, respectively.

Figure 12. Example of manual registering of FLS images.

Four reference points were selected to quantitatively evaluate the positioning results,
and the trajectories of the three methods are shown in Figure 13, the APE of each method
relative to the reference points are shown in Figure 14, and statistical metrics are summa-
rized in Table 2. The truth was obtained by directly connecting the reference points with
straight lines, which represents the true trend of movement but does not necessarily imply
that the robot traveled in a straight line between reference points. Notably, the DFLSO
method proposed in this paper achieves the closest approximation to the true values of
the reference point positions. These findings demonstrate the feasibility and superiority
of the DFLSO method in a real seabed. By comparing the results of the method based on
2-D features and 3-D point clouds, it can be seen that using the 3-D point clouds extracted
from the images for matching can improve the accuracy of the relative pose. By comparing
the odometry results of the method based on 3-D point clouds and DFLSO, it can also
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be seen that the matching between the images and the submap effectively improves the
positioning accuracy.
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Figure 14. APE for different methods in the sea trial.

Table 2. Evaluation of different odometry methods in the field experiment.

Method Max [m] Mean [m] Std [m] Rmse [m]
2-D features [12] 2.1 1.8 0.6 1.5
3-D Point clouds [15] 1.3 0.8 0.5 0.9
DFLSO 0.9 0.5 0.3 0.5

5. Conclusions

This work presents the DFLSO, a lightweight front-end FLS odometry for underwater
robot localization. The key innovation lies in proposing a lightweight image processing
method that rapidly extracts approximate point clouds of the seabed terrain, enabling point
cloud matching for odometry estimation, avoiding pose errors caused by image ambiguities
when directly using image matching for localization. Secondly, the work develops a fast
keyframe-based point cloud submapping method for FLS images. The point cloud of
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submap can realize image-to-map matching for FLS images, which can improve the pose
global consistency and mitigate the accumulation of odometry errors. The reliability of
the proposed DFLSO is validated through both simulation experiments and field trials,
demonstrating its capability to provide high-precision localization for underwater robots
in real-world scenarios, which would contribute to higher-precision localization, operation,
and observation capabilities, reducing the omission or repetition of operation areas.
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