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Abstract

With the increasing significance of deep-sea resource development, Forward-Looking Sonar
(FLS) has become an essential technology for real-time environmental mapping and naviga-
tion in deep-sea mining vehicles (DSMV). However, FLS images often suffer from a limited
field of view, uneven imaging, and complex noise sources, making single-frame images
insufficient for providing continuous and complete environmental awareness. Existing
mosaicking methods typically rely on external sensors or controlled laboratory conditions,
often failing to account for the high levels of uncertainty and error inherent in real deep-sea
environments. Consequently, their performance during sea trials tends to be unsatisfactory.
To address these challenges, this study introduces a robust FLS image mosaicking frame-
work that functions without additional sensor input. The framework explicitly models the
noise characteristics of sonar images captured in deep-sea environments and integrates
bidirectional cyclic consistency filtering with a soft-weighted feature refinement strategy
during the feature-matching stage. For image fusion, a radial adaptive fusion algorithm
with a protective frame is proposed to improve edge transitions and preserve structural
consistency in the resulting panoramic image. The experimental results demonstrate that
the proposed framework achieves high robustness and accuracy under real deep-sea con-
ditions, effectively supporting DSMYV tasks such as path planning, obstacle avoidance,
and simultaneous localization and mapping (SLAM), thus enabling reliable perceptual
capabilities for intelligent underwater operations.

Keywords: Forward-Looking Sonar; image mosaicking; deep-sea mining

1. Introduction

With the depletion of terrestrial mineral resources and the growing strategic impor-
tance of oceanic assets, deep-sea mineral extraction has emerged as a critical priority for
many nations [1]. To achieve efficient and safe deep-sea mining, the development of intelli-
gent underwater equipment capable of environmental perception has become a key focus
of current international research. The deep-sea environment is characterized by extreme
darkness, high turbidity, and a complex terrain, which significantly limits the effectiveness
of optical sensing methods. Forward-Looking Sonar (FLS), as an active acoustic sensing
device, enables efficient real-time perception through turbid plumes generated by the
movement and operation of deep-sea mining vehicles (DSMV) [2]. Compared to optical
sensors and other acoustic systems such as mechanical scanning sonar and side-scan sonar,
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FLS is unaffected by ambient lighting conditions and provides higher-resolution imagery.
As aresult, it plays a crucial role in tasks such as obstacle avoidance, path planning, and
simultaneous localization and mapping (SLAM) for DSMVs, as illustrated in Figure 1a,b.
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Figure 1. Deep-sea mining system and sonar-mosaic artefacts: (a) system overview; (b) DSMV with
Forward-Looking Multibeam Sonar; (c) mosaic showing fixed-pattern stripe noise and stitching seam.

However, due to its characteristic fan-shaped imaging geometry, FLS suffers from
uneven resolution across near and far fields, a limited field of view, and frequent issues such
as echo noise and structural artifacts. These factors make single-frame images inadequate
for capturing intuitive, high-quality, wide-area environmental information [3]. The field of
view is inherently constrained by sonar-hardware design, making short-term improvement
difficult. A common approach is to mosaic multiple overlapping FLS images captured from
different viewpoints of the same scene, creating a seamless panoramic image with richer
environmental information [4], as shown in Figure 1c. This technique has been successfully
applied to engineering tasks such as the underwater inspection of marine structures and
seafloor mapping.

In real-world deep-sea operations, however, the continuous motion of the FLS-equipped
platform introduces significant changes in image brightness and contrast. Different regions of
the fan-shaped image are affected to varying degrees by movement, making traditional
alignment methods based on image intensity or handcrafted features unreliable. These
methods often struggle to maintain alignment accuracy under such varying imaging
conditions [4,5]. Moreover, mosaicked images frequently suffer from fixed-pattern noise
and visible seams, which degrade overall image quality.

Many existing studies rely on auxiliary pose data provided by external sensors such
as Inertial Measurement Units (IMU) and Doppler Velocity Logs (DVL) to improve mo-
saicking accuracy. The resulting outputs are often treated as approximate ground truth.
However, in real deep-sea environments, measurements from such sensors are typically
subject to high levels of noise and uncertainty, compromising the stability and reliability
of sensor-assisted mosaicking methods in practical deployments. Other approaches uti-
lize sonar data collected in simulators or controlled water-tank experiments. Although
these datasets offer favorable imaging conditions suitable for algorithm validation, they
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fail to reflect the degraded perception quality and robustness challenges encountered in
real underwater scenarios. Additionally, some sensor-independent methods lack struc-
tural designs adapted to the non-ideal conditions of deep-sea environments. In particular,
their components for feature extraction, mismatch suppression, and image fusion are not
robustly designed, which limits mosaicking accuracy in practice.

To address these challenges, this paper proposes a high-precision mosaicking frame-
work for wide-area FLS images that does not rely on external-sensor input. The main
objective of this study is to design a fully image-driven and sensor-independent mosaick-
ing framework that enhances the robustness of sonar-image registration and the quality of
large-scale acoustic panorama construction under real deep-sea conditions. The framework
explicitly models common imaging defects such as fixed-pattern structural noise and re-
gional brightness inconsistency. During the feature-matching stage, a bidirectional cyclic
consistency filtering mechanism and an expectation-guided feature refinement strategy
are introduced. In the panoramic mosaicking stage, a radial adaptive fusion algorithm
with protective frames is designed to smooth stitching seams and improve both global
consistency and local detail fidelity, enabling the construction of high-quality, large-scale
panoramic acoustic images. The proposed framework is readily integrable into DSMV
perception systems. The resulting wide-area seafloor panoramas can provide reliable sup-
port for subsequent DSMV tasks such as path planning [6], obstacle avoidance control,
and acoustic simultaneous localization and mapping (SLAM) [7], thereby significantly
enhancing the safety and operational efficiency of deep-sea mineral extraction [8].

The remainder of this paper is organized as follows. Section 2 reviews related work
and key technologies. Section 3 presents the FLS imaging model and details the pro-
posed mosaicking framework and algorithms. Section 4 presents the experimental results,
followed by a comprehensive analysis and evaluation. Section 5 concludes the paper.

2. Related Work
2.1. Review of Sonar-Image Denoising Methods

FLS images acquired during deep-sea operations are often affected by strong speckle
noise, fixed-pattern stripe artifacts, and global brightness non-uniformity, all of which
significantly impair the accuracy of subsequent feature extraction and matching. Existing
research on noise suppression and image-quality enhancement for FLS images primar-
ily falls into two categories: traditional image-filtering techniques and self-supervised
denoising methods based on deep learning [9].

Traditional filters such as mean filtering, median filtering, and Gaussian filtering [10]
have shown good performance on natural images, particularly in suppressing Gaussian
and salt-and-pepper noise. However, these methods exhibit two major limitations when
applied to FLS imagery under deep-sea conditions. First, they tend to blur image edges
and suppress weak target signals during the filtering process. Second, they are generally
ineffective at removing structured noise such as fixed-pattern stripes [11], making it difficult
to balance noise suppression with the preservation of key echo features.

To address the lack of clean ground truth in real FLS datasets, we constructed a
static-view dataset using adjacent frame pairs, enabling the application of self-supervised
denoising methods like Noise2Noise (N2N) [12]. However, the experimental results re-
vealed that these methods exhibit limited effectiveness when applied to deep-sea FLS
images. This is mainly due to the complex noise characteristics in such data, which vio-
late the basic assumptions of zero-mean and pixel-wise independent noise required by
these approaches.

In recent years, self-supervised learning methods such as N2N and Noise2Self [13]
have made significant progress in domains such as natural and medical imaging. These
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approaches learn denoising mappings by leveraging paired noisy images or internal im-
age redundancy, without requiring ground-truth labels. In theory, they are suitable for
label-scarce scenarios. However, these methods are typically built upon assumptions
such as zero-mean noise, pixel-wise independence, or sufficient internal redundancy
within the image. In FLS imagery, noise tends to exhibit strong spatial correlation and
non-independent, non-identically distributed (non-I1ID) characteristics. Additionally, it is
influenced by physical mechanisms such as multipath echoes and gain drift, making model
convergence difficult and limiting both generalization and stability during training [14].

In summary, most existing denoising methods are designed for natural images or syn-
thetic underwater datasets, and are not well suited to the extreme low signal-to-noise ratios
and systematic noise interference commonly encountered in deep-sea mining scenarios.
To address these limitations, this study proposes a two-stage preprocessing and denoising
framework that integrates sonar-imaging physics with multi-frame image enhancement,
aiming to improve the overall image quality and feature fidelity. The proposed approach is
detailed in Section 3.2.

2.2. Review of Sonar-Image Matching and Mosaicking Algorithms

Research on sonar-image registration and mosaicking can be broadly categorized
into two main approaches: region-based frequency-domain methods and feature-based
spatial-domain methods.

Frequency-domain approaches typically utilize Fourier transforms to extract spectral
features and perform image alignment based on frequency correlations. For instance,
Hurtés et al. [15] proposed a phase-correlation-based Fourier registration method capable
of robust mosaicking in low-visibility underwater environments, demonstrating the adapt-
ability of frequency-domain strategies under weak texture conditions. Hansen et al. [16]
introduced the FS2D method, which maps the Fourier spectrum onto a spherical surface
and estimates rotations using SO(3) transformations. This method achieves robust regis-
tration under large viewpoint changes and high noise levels, highlighting the potential
of frequency-domain techniques for highly disturbed sonar data. These methods are
computationally efficient and less sensitive to translational shifts, making them suitable
for low-texture or noisy conditions. However, they are generally less effective at han-
dling rotation and spatial structural variations, which limits their accuracy under dynamic
viewpoints and complex terrain.

To overcome the limitations of frequency-domain methods in handling complex geo-
metric transformations, recent studies have increasingly focused on feature-based spatial-
domain mosaicking techniques [17], which have become the dominant approach in sonar-
image processing. Inspired by frameworks in optical-image mosaicking, these methods
extract key-points and geometric descriptors, match features based on descriptor similar-
ity, and estimate inter-image transformations using algorithms such as RANSAC. This
category of methods demonstrates good robustness against scale changes, rotations, and
local occlusions, particularly in well-structured, texture-rich imagery. However, extreme
environments such as deep-sea mining still pose significant challenges. Repetitive textures
and blurred edges in FLS images reduce the distinctiveness and stability of key-points.
Furthermore, non-uniform sound propagation caused by complex seafloor topography,
combined with low signal-to-noise ratios and occlusions, further undermines the relia-
bility of feature extraction and matching, limiting the effectiveness of these methods in
real-world conditions.

To enhance the performance of traditional feature-based registration methods for
FLS mosaicking, various improvements have been proposed. These include advanced
matching strategies, multi-stage registration pipelines, and fusion-aware mosaicking tech-
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niques aimed at improving geometric consistency and accuracy. For example, Li et al. [18]
proposed a hybrid approach combining feature-based region selection with region-level
registration. Their method achieved favorable results on both commercial ship datasets
and ROV-based pool experiments, validating the effectiveness of multi-stage strate-
gies. Su et al. [19] addressed the issue of registration errors by introducing a local
statistics-based weighting mechanism during the fusion stage to mitigate error propa-
gation. Shang et al. [20] proposed a matching optimization framework based on density
clustering and convolutional consistency analysis, designed to reduce the dependency on
predefined geometric models. While their work primarily targets multi-source sonar-image
matching, its motion modeling and outlier suppression concepts offer useful insights for
improving geometric consistency. In another approach, Wei et al. [21] moved beyond
traditional image-domain mosaicking and developed a beam-domain representation model
based on FLS imaging principles, enabling improved alignment accuracy and efficiency
through deformation modeling. Despite these advancements, many of the aforementioned
methods still rely on external pose data from navigation sensors or assume well-structured
image content. As a result, they struggle to remain deployable under real-world conditions
such as image degradation, weak features, or unstable positioning.

Recently, deep-learning-based methods such as SuperPoint [22] and LoFTR [23] have
achieved remarkable performance in feature extraction and matching for natural and
remote-sensing imagery. However, these methods require large-scale, high-quality labeled
datasets for training and are mainly optimized for texture-rich, edge-defined scenes. Due to
the inherent low texture, high noise, and distortion in FLS images, the direct transferability
of these models is severely restricted, leading to poor generalization and compromised
robustness. SONIC [24], a more recent approach tailored to sonar images, employs a
pose-aware feature-learning framework aided by IMU data and synchronized pose labels
under a weakly supervised setting. Nevertheless, SONIC relies on data collected from sim-
ulators and external-sensor inputs. In actual deep-sea operations, accurate pose estimation
is difficult, and high communication latency often prevents real-time deployment, limiting
the applicability of such systems in real-world platforms.

In summary, current studies primarily focus on feature-matching pipelines that depend
on high-quality training data and external-sensor assistance. There remains a lack of fully
image-driven, sensor-independent mosaicking frameworks that can robustly operate under
the extreme conditions of deep-sea environments. To address this gap, this study introduces
a practical system based on uncertainty-aware feature matching and multi-scale incremental
mosaicking. The proposed approach is entirely based on FLS imagery and achieves high
robustness in both feature registration and image mosaicking. The detailed algorithms are
presented in Sections 3.3 and 3.4.

3. Methodology

This study proposes a panoramic mosaicking framework based on sequences of FLS
images, as illustrated in Figure 2. It is important to note that the focus of this work is
on the engineering feasibility of applications in deep-sea mining operations. At depths
ranging from 4000 to 6000 m, external positioning sensors such as IMU and DVL often
fail to provide stable and reliable localization due to factors such as cumulative attitude
drift, signal attenuation, and reflections from complex seafloor topography. To ensure
the generality and practical applicability of the proposed method, the image-matching
and mosaicking processes were performed entirely based on the information contained
within FLS images, without reliance on any external-sensor data. Moreover, external
measurements were not utilized for supervision or geometric alignment at any stage of
the process.
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Figure 2. Flowchart of the proposed FLS image stitching and mosaicking framework.

3.1. Imaging Model and Platform Perturbation

To achieve high-precision image matching, it is necessary to establish the FLS imaging
model and its projection variations under motion perturbations, as illustrated in Figure 3.
FLS captures the range r and azimuth angle 6 of a target point through multibeam scanning.
However, due to the wide vertical-beam width and low resolution, the elevation angle ¢ of
the target is lost during imaging, and the projection is approximated onto a plane with zero
elevation angle. Let the 3D target point be defined as P, = [X, Y, Z]'; its 2D projection
onto the sonar-image coordinate system can be expressed as

X rcosd
Ys rsind |’

r=vVX2+Y2+7Z2, 0 =arctan2(Y,X) (1)

Tmax

(a)

Figure 3. FLS imaging geometry. (a) 3D fan-shaped scanning model. (b) 2D image projection.

In practical applications, this study focuses on the movement of DSMVs equipped with
FLS operating over complex seafloor terrains, where slight pose disturbances inevitably oc-
cur during task execution. Suppose the DSMV undergoes small translations Aty, = [dx, dy] T
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along the x and y axes and a minor yaw rotation ¢ about the z-axis. The position of the
target point in the DSMV coordinate system then transforms as

P, = R(6¢)" (Py — Atyy) )

where the 2D rotation matrix is given by

cosép —sindg
R(d¢) = 3
(09) Lin&q} COS§(p1 ©)

According to the existing literature [25], FLS imaging is typically modeled as a 2D
polar projection, considering mainly in-plane translations and yaw rotations of the sensor
platform. Under this model, the influence of such perturbations on the geometric structure
of targets can be neglected, and the variations in target positions can be represented by a
2D rigid-body transformation:

P, = R(6¢)-Ps + Aty (4)

It is worth noting that in deep-sea mining scenarios of interest in this study, DSMVs
may frequently experience minor pitch perturbations during movement and operation on
sloped terrains. Although pitch disturbances do not affect the spatial relative positions
or beam indices of the targets and thus keep the observed r and 6 stable, they alter the
incidence angles of the sonar beams. This affects local illumination angles and occlusion
patterns, leading to variations in brightness and shadowing in the images, which can
degrade the stability of inter-frame image matching.

Based on this analysis, the subsequent registration modeling continues to employ
a 2D rigid-body transformation to describe geometric variations in the images, under
the assumption that pitch disturbances do not affect the geometric contour positions of
targets but do induce changes in image-brightness features. This assumption reveals
the underlying conditions for geometric invariance relative to platform attitude stability
while also exposing the potential interference risks posed by brightness variations during
the registration process. Accordingly, to address brightness variations caused by pitch
disturbances, this study further designs an image preprocessing and denoising strategy
that integrates dynamic normalization and physical modeling to enhance the image quality
and improve the robustness of feature matching.

3.2. Brightness Normalization and Noise Suppression

During the process of panoramic mosaicking based on FLS images, non-uniform bright-
ness variations and noise interference often become critical factors limiting registration
accuracy. Under specific FLS systems and the extreme operational conditions of deep-sea
mining, images are frequently affected by fixed-pattern stripe noise and non-uniform
brightness, which can introduce abrupt boundaries and local artifacts at stitching seams,
thereby degrading the overall reconstruction quality. To improve grayscale consistency
and local contrast in sonar images, this study proposes a two-stage image preprocessing
and noise suppression approach that combines physical modeling and image enhancement
techniques. The two stages, respectively, perform nonlinear brightness normalization and
logarithmic-domain multi-frame noise suppression.

First, to better understand the noise components, the formation process of sonar
images was modeled based on a multiplicative-additive noise model. The observed image
can be expressed as

Iohserved(xr]/) = Itme‘(x/ ]/) X Nm(xr y) + Na (x/y) 6)
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where I (x,y) represents the ideal echo image, Ny, (x,y) denotes the multiplicative
noise components such as systematic gain drift and stripe noise, and N,(x, y) represents
additive noise components such as electronic and thermal noise. In deep-sea applica-
tions, the echo signals are extremely weak, making the effects of multiplicative noise
particularly significant.

To validate the reasonableness of this noise modeling assumption, multiple FLS im-
ages collected under various deep-sea conditions were subjected to frequency-domain
analysis, as shown in Figures 4 and 5. Figure 4 reveals prominent stripe-like interference
patterns, corresponding to high-intensity frequency components along specific directions
in the Fourier spectrum, forming typical directional spectral peaks. Furthermore, Figure 5
presents the normalized noise characteristic curves extracted from the analyzed images.
Despite differences in acquisition environments and scenes, the images exhibit similar
distribution trends in metrics such as average spectral energy, peak spectral energy, and
local contrast. This observation further demonstrates the common structural properties of
sonar-image noise, particularly the dominance of multiplicative structures and directional
stripe interference. These findings provide strong theoretical and practical support for
the adoption of a denoising strategy that integrates frequency-domain suppression with
structural modeling in the proposed algorithm.

Image 1 - Original Image 1 - FFT log-magnitude

Image 2 - Original Image 2 - FFT log-magnitude

Image 3 - Original

Image 3 - FFT log-magnitude

Image 4 - Original

Image 4 — FFT log-magnitude

Image 5 - Original Image 5 - FFT log-magnitude

Figure 4. FLS images and their spectra from various deep-sea scenes. Directional peaks indicate
striping-like multiplicative noise.
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Figure 5. Normalized feature comparison across images. Consistent trends support the proposed
noise modeling.

The proposed method consists of a two-stage image processing pipeline:

(1) Raw Data Preprocessing and Brightness Normalization

First, raw sonar data are decoded frame-by-frame to generate range-azimuth r-6
grayscale images, preserving spatial geometric information. Due to pitch disturbances,
the dynamic range of image brightness may become unstable. To address this, a nonlin-
ear normalization strategy is employed to adjust brightness dynamically. Specifically, a
combination of min-max normalization and exponential enhancement is used to stretch
low-intensity regions and suppress high-intensity saturation, thereby improving the overall
brightness balance. The transformation model is expressed as

Imax - Imin

p

Iadjusted(x/ y) = < ) X (Umax = Umin) + Umin (6)
where p is a parameter controlling brightness enhancement. This stage aims to generate
standardized images with a balanced dynamic range and preserved details, providing a
stable input for subsequent noise suppression;

(2) Log-Domain Modeling and Multi-Frame Fixed-Pattern Noise Suppression

To further mitigate fixed-pattern stripe noise, this stage adopts a log-domain back-
ground modeling and multi-frame fusion strategy. A logarithmic transformation is first
applied to the images, converting multiplicative noise into additive interference:

log(l + Iobserved(x/]/)) = log(l + Il‘mé‘(x/ ]/)) + log(l + Nm(xr]/)) (7)

Subsequently, for image sequences of the same dimensions, a truncated mean is com-
puted at each pixel by retaining only the central 90% of pixel values, thereby enhancing
robustness against outliers and modeling the background distribution. Each frame is then
background-subtracted in the log domain and restored to the linear domain using the in-
verse exponential transformation, achieving the simultaneous suppression of fixed-pattern
noise and global brightness non-uniformity. Finally, contrast-limited adaptive histogram
equalization (CLAHE) is applied to enhance local details, further improving texture clarity
and overall visual quality.

Algorithm 1 summarizes the proposed preprocessing and denoising procedure. By
integrating the physical modeling of sonar imaging, image enhancement, and multi-frame
noise suppression, the method achieves brightness consistency and detail preservation
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under extremely low signal-to-noise ratio conditions, providing a high-quality image
foundation for subsequent image registration and mosaicking tasks.

It is worth noting that the design of the subsequent registration and mosaicking strat-
egy also takes into account the imaging characteristics of the sonar used in this study. The
high angular resolution (0.18° beam spacing) provides denser and more consistent spatial
sampling across adjacent frames, which facilitates stable feature extraction and matching.
Meanwhile, the narrow horizontal beamwidth (1°) results in sharper but more limited
fan-shaped views per frame, making multi-scale registration and geometric consistency
filtering essential for constructing seamless mosaics over extended seafloor areas.

Algorithm 1: Two-stage preprocessing and denoising framework for FLS images.

Input : Raw sonar frames F, brightness adjustment exponent p,
trimming fraction «
Output: Denoised sonar images S

for each frame f; in F do
Generate polar-coordinate grayscale image I (z,y);
Normalize I9(z,y) by min-max scaling;
Apply brightness adjustment with exponent p:

Ig(z,y)—1I P
_ ( Lro(z,y)—Imin ; . oo
I!l(l'j (T y) = ( ) X (7/max - 'Umm) + Vmin;

Imax —Imin

Save the preprocessed image I,q;(,y);
end

for each group G do
for each image g € G do
| Compute log-transformed image: Iiog(z,y) = log(1 + g(x,y));
end
Stack all Iiog(,y) into tensor T;
Compute trimmed mean background Biog(z,y) by removing top
and bottom a%;
for each Log(z,y) do
Subtract background: I.orr(x,y) = Log(x,y) — Blog(x,y);
Inverse log-transform: Ifinai(z,y) = exp(leorr(z,y)) — 1;
Normalize Ifinai(z,y) to [0,255];
Apply CLAHE enhancement to Ifinai(z,);
Save the denoised image;

end
end

return S

3.3. Key-Point Matching Optimization for FLS Images

To achieve high-quality mosaicking of FLS images, it is essential to ensure accurate
key-point matching across multiple frames. Although the A-KAZE algorithm can stably ex-
tract feature points and generate descriptors in a multi-scale nonlinear diffusion space, and
the BFMatcher provides an efficient brute-force matching method, significant challenges
arise when applying these techniques to FLS imagery. Specifically, due to the superposition
of multi-directional echoes, FLS images of terrains such as densely rocky seabeds and
soft sediment areas contain numerous structurally similar patterns. These characteristics
degrade the discriminative power of the descriptors, leading to a flattened distance distri-
bution. Consequently, the distances among multiple candidate points become very close,
making it difficult to select matches decisively based on minimum distance alone. This
issue results in frequent mismatches using conventional methods, adversely affecting the
subsequent geometric transformation estimation.
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Moreover, in regions near feature edges or with significant scale variations, pure pixel-
level matching lacks precision control, making it difficult to achieve the sub-pixel accuracy
required for high-quality mosaicking. To overcome these limitations, two key improve-
ments are proposed: bidirectional cyclic consistency filtering and expectation-guided match
refinement. These strategies address the problems of matching accuracy and geometric
consistency, respectively. Algorithm 2 summarizes the proposed matching algorithm.

In conventional BFMatcher, for each key-point d#! in image A, the corresponding point
is found in the descriptor set Dp of target image B by minimizing the Hamming distance,
as expressed by

fasp(i) = argmjindH (d?,d?) (8)

Although this method is simple and efficient and performs well on natural images,
several challenges have been observed in FLS images collected from real deep-sea envi-
ronments. Due to the local repetitiveness of structures such as rocks and gullies, as well
as speckle noise caused by multipath echoes, descriptors often exhibit ambiguity and
non-uniqueness in spatial distribution. As a result, descriptors for multiple key-points tend
to be closely clustered, causing the matching results to favor a set of similar points rather
than a unique and stable physical correspondence. This ambiguity severely undermines
the stability of subsequent geometric transformation estimations. To enhance geometric
consistency, a reverse matching validation function is introduced, defined as

fo—al(j) = argmindy (d]B/dzA) ©)
Only those matching pairs that satisfy the cyclic consistency condition are retained:

fea(fasp(i)) =i (10)

This strategy introduces a redundancy constraint into the matching process, requiring
that each key-point not only projects to its most reliable match in the target image but that
it must also be reciprocally matched back from the target image using the same nearest-
neighbor criterion. By enforcing mutual nearest-neighbor relationships, this approach
effectively suppresses mismatches caused by descriptor ambiguity or structural repetition.
In practice, polar-coordinate sonar images frequently exhibit clusters of neighboring points
with highly similar descriptor features; bidirectional consistency aids in selecting the most
representative pair within such ambiguous matches. Additionally, this symmetric-matching
logic reinforces geometric consistency between images, providing a more stable and reliable
set of initial point correspondences for subsequent affine transformation estimation.

Even after applying the above filtering strategy to obtain a relatively reliable set
of matches, challenges remain in weak-texture regions and near the fan-shaped edges,
where minimal Hamming-distance differences among candidate points reduce descriptor
discriminability. As a result, matching outcomes are still prone to fluctuation among similar
candidates, preventing stable identification of optimal correspondences. Moreover, pixel-
level matching lacks sub-pixel precision control, often leading to misalignment or visible
seams in the mosaicking process, particularly near image edges.

To address these issues, an expectation-guided match refinement strategy is proposed
to replace traditional hard-decision matching. Specifically, for each query descriptor dZ, the

top K nearest candidate matches are selected, denoted as {(x;, d;) }lK: 1» and their distances
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are converted into a probability distribution. A softmax-based probability distribution is
constructed to model the matching confidence for each candidate point:

D — _exp(—ad;) 1)

! ]I‘<:1 exp(—ad;)

where d; is the Hamming distance of the i-th candidate, and & > 0 is a smoothing factor
controlling the concentration of the weight distribution. Formally, this distribution is
equivalent to a Boltzmann distribution with d; as the energy function, which is widely
used in probabilistic modeling of expected cost minimization. Thus, it not only provides an
interpretable confidence distribution for matching but also serves as a cost representation
in descriptor space. Based on the probability distribution, the matching-position estimation
problem is further formulated as a weighted least-squares minimization:

K
= angin ) il =il (12
i=
This objective seeks an optimal position that is, in a weighted sense, closest to all
candidate matches. The optimization problem admits a closed-form solution obtained
by differentiating the objective function with respect to x and setting the derivative to
zero, yielding
K
£=) pix (13)
i=1
The estimated position is continuous in coordinate space, achieving sub-pixel accuracy
without the need for interpolation or regression models. Furthermore, the approach exhibits
strong robustness by integrating the spatial-distribution information of multiple candidates,
enabling stable outputs even in ambiguous regions where descriptors lack clear minima.
This significantly reduces matching fluctuations. Additionally, the probability distribution
allows for the construction of an uncertainty measure for the matching point, defined as
the weighted variance of the candidate set:

K
o2 =Y pi|xi — 2| (14)
=

This uncertainty measure can be employed in weighted RANSAC frameworks as
a reliability indicator during subsequent geometric estimation, further improving the
accuracy of affine matrix estimation.

In summary, by introducing the above strategies into the traditional A-KAZE and
BFMatcher framework, the stability and accuracy of key-point matching in sonar images
are significantly improved. Bidirectional cyclic consistency filtering effectively eliminates
mismatches through symmetric validation, enhancing the geometric reliability of matched
pairs. Expectation-guided match refinement, through optimization-based soft estimation,
demonstrates notable advantages in weak-texture regions and under sub-pixel precision re-
quirements. These two enhancements provide a more robust foundation for high-precision
image registration and mosaicking in complex deep-sea sonar-imaging environments,
facilitating more reliable affine estimation and image fusion in subsequent stages.

3.4. Multi-Scale Registration and Stitching

After obtaining high-quality matching points, achieving accurate geometric registra-
tion across multiple FLS images is critical for high-quality mosaicking. Directly fitting a
geometric model to original-resolution images often leads to unstable RANSAC-based
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affine estimation due to the effects of speckle noise, viewpoint variations, and low-texture
regions. To address this, a multi-scale registration framework was adopted in this study,
incorporating the uncertainty-aware matching results proposed in Section 3.3 to enhance
the adaptability and robustness of the strategy for sonar-image mosaicking.

Specifically, a Gaussian pyramid Z°, Z ... Z", In was constructed for each input image
pair through Gaussian filtering and downsampling. Coarse registration was performed
at the lowest resolution layer 2", where key-point matching followed the bidirectional
consistency filtering and expectation-guided refinement algorithm described in Section 3.3.
Unlike traditional methods, the proposed approach introduces uncertainty weights into the
affine estimation model during coarse registration. The coarse affine matrix Ay, is obtained
through a weighted least-squares model:

2

x;— Axi| ) (15)

N
AL = argmj'nz wj-
i=1

where x; = [x;, i, 1]T represents the homogeneous coordinates, and wj is the reciprocal of
the matching uncertainty derived from the softmax-based confidence scores introduced in
Section 3.3. This design effectively mitigates the influence of low-texture regions or outlier
matches on the geometric estimation, enhancing the robustness of the fitting process.

The coarse affine result Ay is then used to initialize a fine registration process on the
original-resolution images Z°. For each predicted matching point x’, refined feature match-
ing is conducted within a local neighborhood window to achieve fine-grained matching.
The final affine matrix Ay is used to align the source image Z;,. with the reference image
Z,ef, following the transformation:

Xref = AO'strc (16)

After geometric registration, the newly transformed frame is mapped onto a global
canvas. The newly added regions relative to the current mosaic are cropped and merged,
implementing an incremental image fusion based on geometric relationships. The proposed
approach integrates the uncertainty-weighted feature matching strategy from Section 3.3
and further explores its practical effectiveness within a multi-scale registration system. Con-
sidering the high sampling rate of sonar data, frame-by-frame mosaicking can lead to image
blurring and redundancy. To address this, keyframes are selected at intervals of 5-15 frames
and are used as nodes to construct a pose-graph, incorporating distance constraints. A
graph optimization method is applied to jointly refine the pose relationships among all
nodes. This strategy significantly reduces computational load while effectively suppressing
cumulative registration drift caused by dramatic inter-frame viewpoint changes, sparse tex-
tures, and noise interference. It enhances robustness against outlier matches and achieves
superior registration stability and mosaicking accuracy, particularly in the low-texture and
high-noise conditions typical of FLS imagery. The key steps of the proposed process are
summarized in Algorithm 2.

To enhance the quality of image fusion, a radial adaptive fusion algorithm with
protected frames is designed. Specifically, several early keyframes in the mosaicking
sequence are designated as global reference frames. The pixels from these frames are
given priority in writing to the panoramic canvas and are subsequently protected from
being overwritten by later frames. For overlapping regions of subsequent frames, a set of
piecewise-smooth functions based on the radial distance from the image origin is introduced
as fusion weights. Lower weights are assigned to new frames near the center to strengthen
global consistency, while the weights gradually increase toward the periphery, thereby
preserving the edge texture details carried by the later frames.
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Algorithm 2: Uncertainty-aware multi-scale registration for FLS images.

Input : Sequential FLS images {Iy, Io, ..., IT}, sampling interval k,
softmax factor «, pyramid levels n
Output: Stitched panorama canvas C'

Initialize node set A/ < {I; | i mod k = 0};
Initialize pose-graph G = (N, €);
for each consecutive pair (I14,Ig) € N do
FA,DA — AKAZE(IA)
FB, DB — AKAZE(IB)
for each descriptor d;“ € Dy do
| fas(i) « argmin; dp(d], d});
end
for each descriptor df € Dp do
| fB—a(j)  argmin; dg (d2, d]B);

end
M {(i,5)| f—sa(fasp(i) = i};
; // Cycle-consistency filter
for each d(’l" in M do

Select top-K candidates {(z;,d;)}X ;

pi = exp(—ad;) :

Zj.‘zl exp(—ad;)’

b= 5K
end
Build Gaussian pyramid {I°,I',... I"};
for{=n,n—1,...,0 do
if / =n then
Estimate coarse affine A,, by weighted least squares:
A, < argming >, w;l|x] — Az;||%;
end
else
Refine affine A, using matches at level /;
A« argming >, w;|z} — AZ;||3;
end

end
Add edge e 4p with constraint Ay to pose-graph G;
end

Optimize pose-graph G to obtain globally consistent transforms {AI}
for each image I; € N do

‘ Warp I; into canvas C' using A;;
end
return C

This strategy balances the stability of early frames in maintaining the overall
panoramic structure with the richness of texture details provided by later frames. It
ensures that the central region retains clear structural information while significantly
improving texture quality in the outer areas. The fusion approach effectively enhances
boundary smoothness and detail preservation in the mosaicking results. The key steps of
the proposed fusion strategy are summarized in Algorithm 3.
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Algorithm 3: Protected-frame radial-adaptive blending algorithm.

Input : Canvas C, warped image W, canvasMask M, framelndex 1,
seamWidth W, protectedFrames Ny, origin (¢, ¢, ), innerRadius
R;y,, outerRadius R,y
Output: Updated canvas C' and mask M
Init maskl < (W > 0);
Init overlap < maskI A (M > 0);
Init newArea < maskI A (M = 0);
ClnewArea) + WnewAreal;
if i < Nj then
| // Protect first Ny frames: skip blending
else
// Compute overlap blending weights invMask < —newArea;
distM ap «+ DistanceTransform(invMask);
wNew « clip(distMap/Ws, 0, 1);
// Old weight is zero in overlap wOld + 0 for all (x,y) in overlap;
// Radial factor r(z,y) ¢ /(2 — c2)? + (y — ¢)%
ar(z,y) < clip((r(z,y) — Rin)/(Rout — Rin),0,1);
// Final blending weight
wFinal(z,y) + (1 — a,(z,y)) wOld + o, (x,y) wNew(x, y);
// Blend overlapping pixels foreach pizel (x,y) in overlap do
C(z,y) + (1 —wFinal(z,y)) C(z,y)
+wFinal(x,y) W(z,y)
// Update mask M < M V masklI;
return C, M

4. Experiments and Discussion
4.1. Experimental Platform and Dataset

The experimental data used in this study were collected during a sea trial conducted
in the western Pacific Ocean using the DSMV Pioneer 1I, developed by Shanghai Jiao
Tong University. The platform is equipped with an inertial navigation system, electronic
compass, an ultra-short baseline system, a Forward-Looking Sonar, an underwater camera,
and lighting systems, enabling it to perform deep-sea mineral extraction tasks under
complex ocean conditions. To obtain high-resolution images of the seafloor mining area, a
BlueView M900 D6-Mk2 FLS (Teledyne BlueView, Bellevue, WA, USA) was mounted on the
front of the DSMV. The performance specifications of the FLS are summarized in Table 1.
This imaging system is particularly suited for low-visibility underwater environments and
can effectively detect seafloor contours and obstacles ahead. The appearance of the DSMV
Pioneer 1I and sonar system, along with the imaging principles and example images, are
shown in Figure 6.

During the data-preparation phase, several representative FLS image sequences were
selected from the raw sea trial data for algorithm validation. The dataset covers various typ-
ical seafloor terrains, including rocky areas, gullies, and fine sediment regions, exhibiting
sonar-imaging characteristics such as sparse textures, repetitive structures, and strong noise.
These features provide a challenging testbed for algorithm evaluation. Unlike commonly
used public synthetic datasets, the data used in this study are entirely derived from real
sea trial measurements, offering a more realistic reflection of practical performance. It is
noteworthy that although the Pioneer II is equipped with multiple onboard sensors, factors
such as water turbulence, unstable environmental conditions, and the extreme pressures
and low temperatures at depths of several thousand meters introduce significant drift and
cumulative errors in sensor measurements. Consequently, some sensor data cannot serve
as reliable ground truth during practical operations. To enhance the robustness and gener-
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alization capability of the proposed registration and mosaicking methods for engineering
applications, all processing is conducted purely based on image content without relying on
external pose-sensor information.

Table 1. Key performance parameters of the BlueView M900 D6-MKk2 sonar.

Parameters Value
Operating Frequency 900 kHz
Field of View 130°
Maximum Detection Range 100 m
Optimal Detection Range 2-60 m
Horizontal Beamwidth 1°
Vertical Beamwidth 20°
Maximum Number of Beams 768
Beam Spacing 0.18°
Range Resolution 1.3 cm
Update Rate Up to 25 Hz
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Figure 6. Overview of the DSMV Pioneer II platform and Forward-Looking Sonar system used in
this study.

4.2. No-Reference Quantitative Evaluation of Denoising Results

Given these constraints, two commonly used metrics from the current No-Reference
Image Quality Assessment (NR-IQA) framework, namely the Naturalness Image Qual-
ity Evaluator (NIQE) [26] and the Blind /Referenceless Image Spatial Quality Evaluator
(BRISQUE) [27], were adopted for the comparative analysis of images before and after
denoising. It should be noted that both NIQE and BRISQUE are designed based on the
statistical properties of natural optical images, relying heavily on assumptions regarding
texture, brightness distribution, and noise characteristics that differ significantly from those
of Forward-Looking Sonar images. FLS imagery is characterized by strong speckle noise,
low contrast, and polar coordinate distortions, limiting the applicability of these metrics
for sonar-image denoising evaluation [28].

Currently, there is no widely accepted NR-IQA standard specifically designed for FLS
images [29]. Nonetheless, the NIQE and BRISQUE scores for multiple deep-sea scenes,
including rugged rocky terrains and fine sediment areas, are reported before and after
denoising to provide a reference. The experimental results are summarized in Figure 7
and Table 2. Although both the NIQE and BRISQUE scores increased after denoising,
visual inspection revealed that the stripe noise along the fan-shaped radial direction was
significantly suppressed. Moreover, key regions such as highlights and shadows, which
are crucial for obstacle-height estimation and three-dimensional mapping [7], showed
enhanced edge and detail features. The effective delineation of the FLS detection range was
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also improved, substantially increasing the reliability of subsequent image matching and
mosaicking tasks.

@ (®)

Figure 7. Visual comparison of denoising results across different deep-sea scenes. From top to
bottom: S1 to S4. Each row shows (a) the original image and (b) the denoised result. The approximate
detection ranges of S1-54 are 40 m, 50 m, 80 m, and 80 m, respectively, with a horizontal field of view
of ~130°.

Table 2. Quantitative comparison of image quality before and after denoising across four deep-sea
scenes using NIQE and BRISQUE metrics. Lower scores indicate better perceptual quality.

Scene ID NIQE (Before) BRISQUE (Before) NIQE (After) BRISQUE (After)

S1 5.138 43.451 6.016 54.147
52 4.665 38.006 5.609 53.102
S3 4.987 40.441 5.477 46.230
S4 4914 37.371 5.555 50.392

Previous studies have pointed out the limitations of existing NR-IQA methods for
sonar-image evaluation and have highlighted the need for further research in sonar-imaging
quality assessment [30]. Therefore, in subsequent sections, practical performance metrics
from the mosaicking tasks are employed as supplementary validation for denoising effec-
tiveness. In the future, there are research plans to develop FLS-specific NR-IQA methods
tailored to deep-sea mining tasks, aiming to establish more scientifically rigorous and
application-oriented evaluation standards for sonar-image denoising algorithms.

4.3. Performance Evaluation of Two-Frame Feature Matching and Registration

To systematically evaluate the performance of the proposed method, multiple pairs
of adjacent FLS images with overlapping regions were selected. The effectiveness of the
proposed method was compared with that of SuperPoint [22], SIFT [31], A-KAZE [32], and
the Midline Template Matching (MTM) method [33] on the image mosaicking task. First,
each algorithm was applied to extract and match features on the same pair of adjacent
frames, and the number of matching points was recorded to assess the feature-extraction
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capability on denoised images. Subsequently, RANSAC was used to fit an affine model to
the matching points, and the inlier ratio was calculated to evaluate the spatial consistency
of the matches. Furthermore, based on the estimated affine transformation, the matching
points from the source image were projected onto the target image, and the reprojection
error was computed as the mean Euclidean distance over all inliers to quantify registration
accuracy. The reprojection error is calculated as

1.
E= N; |2 — x|, (17)
where #; denotes the transformed source feature point using the estimated affine matrix,
and x] represents the corresponding ground-truth matching point in the target image.

To further analyze the robustness of the algorithms under different RANSAC thresh-
olds, the number of inliers was recorded as a function of the threshold, as shown in Figure 8.
This metric reflects the stability of the matching performance under varying tolerance levels.
The results indicate that traditional algorithms such as SIFT and A-KAZE are sensitive to
noise under low threshold conditions, resulting in sparse matches. Although their inlier
counts increase with higher thresholds, they tend to saturate. SuperPoint maintains a
certain number of matches under high thresholds but suffers from insufficient accuracy.
In contrast, the proposed method consistently maintains the highest inlier growth curve
across the entire threshold range, demonstrating superior error tolerance and stability. This
performance is particularly advantageous under challenging deep-sea imaging conditions
characterized by strong speckle noise and weak feature responses.

—®— SuperPoint
g0 4 —®— SIFT
—8— A-KAZE
—— MTM
—®— Improved(ours)
60
=
3
3
8
= 40 1
20 A

2 4 6 8 10
RANSAC threshold (px)

Figure 8. Effect of RANSAC threshold on inlier count across matching algorithms.

Furthermore, Figure 9 presents a comparison of the average reprojection error and
matching accuracy across four typical scene pairs for each algorithm. The results show
that the proposed method consistently achieves lower reprojection errors across multiple
scenarios, while maintaining a matching accuracy exceeding 70%, outperforming traditional
feature-based and template-matching methods. In particular, in challenging scenes such as
52 and S3, which exhibit significant local repetitive structures or shadow interference, the
proposed method maintains good precision and consistency. These outcomes highlight the
effectiveness of the uncertainty modeling incorporated into the algorithm. This is because
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the proposed matching strategy effectively handles repetitive textures and shadow-induced
ambiguities through uncertainty-aware refinement and geometric consistency filtering. It
is also worth noting that the performance on S3 is slightly lower than in other scenarios,
which aligns with its nature as a feature-sparse flat sediment terrain. This reflects the
inherent difficulty of such environments and highlights the potential for further enhancing
adaptability in future work.
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Figure 9. Comparison of average reprojection error and matching accuracy of different

feature-matching algorithms on four neighboring FLS frame pairs.

In addition to matching accuracy, we also evaluated the runtime performance of the
algorithm. The results show that the proposed method offers a slight advantage in per-
frame processing time compared to other approaches, with the matching stage achieving
an average reduction of approximately 4-10 milliseconds. The overall average processing
time per frame is 42 milliseconds across different scenarios, which meets the real-time
requirements of DSMV operations.

To further compare the matching quality from a visual perspective, Figure 10 presents
the visualization of matching lines generated by various methods under different seafloor
terrains. It can be observed that traditional methods suffer from dense mismatches and
missing matches in texture-sparse regions. In contrast, the proposed method produces
more uniform and concentrated matching lines, with key-points accurately aligned along
structural edges or salient regions, demonstrating good adaptability across complex back-
grounds such as rocks, gullies, and sediments.

In summary, the experiments in this section validate the effectiveness of the proposed
strategy for adjacent-frame mosaicking tasks in sonar imagery. Compared with traditional
methods, the proposed approach achieves higher matching robustness and geometric regis-
tration accuracy without relying on any external-sensor information. This is particularly
important in practical deep-sea operations, where sensor drift and signal degradation often
render external pose estimates unreliable. The image-driven design of our method en-
sures greater robustness and stability, providing a more reliable foundation for subsequent
multi-frame mosaicking.
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Figure 10. Visualization of matching results under different deep-sea scenes. From top to bottom:
A-KAZE, SIFT, SuperPoint, template matching method, and the proposed improved method.

4.4. Demonstration of Deep-Sea Image Stitching Using Multi-Frame Matching

After validating the local registration accuracy in Section 4.3, large-scale multi-frame
mosaicking experiments were conducted to further evaluate the generality and robustness
of the proposed framework on two different datasets. The first dataset consists of the Barrel
Roll sonar-image dataset, captured in a water tank using the ARIS Explorer 3000 system
(Sound Metrics [34]); the second dataset comprises the real-world FLS image sequences
from the deep-sea mining area described in Section 4.1.

The water-tank dataset poses typical challenges such as prominent acoustic shadows,
blurring, and echo interference. Figure 11a,b show examples of raw frames and the corre-
sponding mosaicking results, respectively. As observed, even in the noisiest regions, the
stitching boundaries are naturally aligned, and local details are well preserved. No notice-
able misalignments or discontinuities are found in texture-sparse areas, indicating that the
proposed fusion and mosaicking strategy effectively suppresses brightness non-uniformity
and striping noise, maintaining a smooth and coherent panoramic image. Subsequently,
the same mosaicking process was applied to multiple real-world FLS sequences collected
from the deep-sea mining area. It is noteworthy that due to constraints such as tether drag
and water currents, the DSMV typically scans slowly with minimal amplitude, resulting
in a concentric fan-like overlay structure in most mosaicking results. Figure 12 illustrates
several typical mosaicking examples. It can be observed that the outermost pixels of the
initial frame, representing the first detection, are strictly preserved, and the seafloor terrain
features are largely matched correctly with continuous and complete details. These results
demonstrate the framework’s excellent noise suppression and seamless fusion capabilities,
consistent with the outcomes observed in the water-tank experiments.

In terms of overall coverage performance, the proposed method maintains natural
alignment and detailed preservation even in areas with significant structural variations or
strong echo interference, for both water-tank and deep-sea datasets. It also demonstrates
good geometric consistency and texture fidelity in weak-texture or high-noise regions,
highlighting the robustness of the global optimization framework under multi-interference
conditions. It should be noted that due to inherent sonar speckle noise and inter-frame
brightness variations, the boundary smoothing method currently employed can still leave
faint striping artifacts along the seams. Future work will consider incorporating more
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sophisticated brightness compensation methods or multi-band fusion strategies to further
suppress noise discrepancies.

(b)

Figure 11. Stitching results of the ARIS Explorer 3000 Barrel Roll water-tank experiment: (a) raw
fan-shaped frames; (b) stitched sonar panorama. Each frame covers a horizontal field of view of
~130°, with an effective range of approximately 3-5 m.

Figure 12. Stitched panoramas of DSMV deep-sea mining site sonar data.

To quantitatively evaluate the system’s stability and perception range extension capa-
bility, the Stitching Success Rate (SSR) and the Perception Range Extension Factor (PRE)
were introduced as evaluation metrics, defined in the following way:

SSR = Nouceess 100% (18)
Ntotal
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where Njccess is the number of successfully fused node pairs with registration errors
below a predefined threshold, and Ny, is the total number of node pairs involved in the
mosaicking process.

Astitched
PRE = stitche 19
e (19)
where Agineq Tepresents the effective coverage area of the resulting panoramic image.
The theoretical coverage area of a single sonar frame, Ap, is calculated based on the
horizontal field of view 6, and the maximum and minimum detection ranges R;,x and
Ryuin, respectively, as
1 2 2
AO = Egh (Rmax - Rmin) (20)
The stitching success rate and perception range extension factors across different
deep-sea scenarios are summarized in Table 3. The proposed method achieves an average
SSR of 93% across various complex environments, with only a small number of mismatches
or missed matches occurring in extremely noisy or textureless scenes, which remains within
acceptable limits. Meanwhile, an average PRE of 297% is achieved, indicating significant
perception range enhancement.

Table 3. Evaluation of stitching stability and perception expansion across typical DSMYV trajectories.

Scene ID Trajectory Type Frame Count SSR(%) PRE(%)
S1 Non-loop 16 93.8 383
52 Loop 27 92.6 247
S3 Loop 31 90.3 256
S4 Non-loop 25 92 303

Both the qualitative and quantitative analyses demonstrate that the proposed mo-
saicking framework not only produces high-quality panoramic images under controlled
conditions but also maintains excellent performance in real-world, complex marine environ-
ments. These capabilities provide strong support for large-scale deep-sea terrain mapping
and DSMYV path planning.

5. Conclusions

This study addresses the challenges of strong noise interference, brightness inconsis-
tency, and cumulative positioning errors in FLS imagery for deep-sea mining operations.
A robust FLS image registration and mosaicking framework is proposed, operating in-
dependently of external-sensor assistance. The system integrates a two-stage preprocess-
ing strategy—combining physical modeling with multi-frame fusion—for effective noise
suppression and brightness normalization. With an uncertainty-aware feature matching
mechanism and a multi-scale weighted registration process, the framework significantly
improves matching robustness and geometric consistency. Experimental results demon-
strate that the proposed method consistently achieves over 70% matching accuracy with
reduced reprojection error across multiple terrain types, and it reaches a 93% stitching
success rate and a 297% perception range extension on real-world deep-sea datasets.

Future work will focus on developing FLS-specific NR-IQA metrics to improve the
scientific rigor of image-quality evaluation. Such metrics are expected to leverage the
unique imaging principles of FLS and provide more accurate and application-relevant
image-quality evaluation by capturing its statistical and structural characteristics, which
are not well-represented by existing metrics designed for natural images. Moreover, ef-
forts will be made to further optimize computational efficiency to meet the increasing
demands for real-time performance in practical engineering applications. The results
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confirm that the proposed framework successfully achieves the intended objective under
realistic deep-sea conditions.
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