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Abstract

A tightly coupled hybrid monocular visual SLAM system for unmanned underwater
vehicles (UUVs) is introduced in this paper. Specifically, we propose a robust three-step
hybrid tracking strategy. The feature-based method initially provides a rough pose estimate,
then the direct method refines it, and finally, the refined results are used to reproject map
points to improve the number of features tracked and stability. Furthermore, a tightly
coupled visual hybrid optimization method is presented to address the inaccuracy of the
back-end pose optimization. The selection of features for stable tracking is achieved through
the integration of two distinct residuals: geometric reprojection error and photometric error.
The efficacy of the proposed system is demonstrated through quantitative and qualitative
analyses in both artificial and natural underwater environments, demonstrating excellent
stable tracking and accurate localization results.

Keywords: visual SLAM; underwater optical; hybrid constrained; graph optimization;
odometry; unmanned vehicles

1. Introduction

Unmanned underwater vehicles (UUVs), including autonomous underwater vehicles
(AUVs) and remotely operated vehicles (ROVs), with their intelligent and convenient
characteristics, have significant potential in ocean engineering [1], marine science [2],
and underwater remote sensing [3]. The necessity for UUVs to ascertain precise position
estimates during deployment, operation, and recovery constitutes a pivotal safeguard for
the execution of missions. As the diversity of underwater missions continues to increase,
more advanced navigation and localization techniques are becoming a prime concern [4].

It has been established that electromagnetic signals experience a rapid attenuation
in water. As a result, radio positioning technology, which is widely used on land, faces
significant limitations in underwater environments. In recent years, rapid advancements
in artificial intelligence and the manufacturing industry have driven the development
of simultaneous localization and mapping (SLAM) technology, enabling autonomous
navigation of mobile robots. This has resulted in SLAM technology becoming a current
research trend in the field of UUV. The camera features a simple structure, low cost, and
high visibility, making it one of the essential sensors for UUVs [5,6]. However, in most
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underwater missions, the camera is used primarily for capturing images or video, with
its positioning capabilities underutilized. The visual SLAM technique, by analyzing the
information extracted from the camera images, allows the recovery of the camera’s motion
in a local map of its surroundings while constructing a map of the environment. Upon
revisiting a previously captured image area, the system identifies loop closures and rectifies
the accumulated drift error.

Visual SLAM is employed for remote sensing and perception of various unmanned
vehicles, as illustrated in Figure 1. It is most widely used in unmanned ground vehi-
cles (UGVs) [7], unmanned aerial vehicles (UAVs) [8], and unmanned surface vehicles
(USVs) [9], demonstrating superior performance. However, in harsh underwater environ-
ments such as turbidity, backscatter, and unstable illumination, the image quality captured
by the camera is significantly lower than in air, resulting in inaccurate positioning or even
failure of underwater visual SLAM.
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Figure 1. Visual SLAM is used for remote sensing and perception in different types of unmanned vehicles.

The front-end and back-end are the two parts that make up the visual SLAM system.
The front-end is also referred to as visual odometry (VO). The purpose of VO is to give
good initial values for the back-end by estimating the approximate camera motion based on
information obtained from the adjacent images. VO algorithms can be classified into two
primary groups. Feature-based (or indirect) methods minimize the geometric reprojection
error by matching previously estimated repeatable features to recover the camera pose and
scene structure. Image features (e.g., points, lines, edgelets) are robust to initial conditions
and can be tracked reliably under certain levels of illumination and viewpoint changes.
However, in low-texture scenes with sparse features, tracking can easily fail, which may
lead to system failure.

Conversely, direct methods leverage the entirety of the available data in an image by
operating on the original pixels. The method jointly estimates motion and correspondence
by minimizing the photometric error, i.e., the difference in intensity between corresponding
pixels in the image. However, direct methods suffer from a significant degree of non-
convexity [10], which limits the types of operations they can handle accurately when
predicting camera motion.

The feature-based VO method, with its advantages in stability and insensitivity to
light and dynamic objects, has long been considered the mainstream. However, direct VO
can use non-corner pixels and even smooth image regions as long as there is sufficient
gradient information, demonstrating better robustness, particularly when the image lacks
well-defined corner features [11]. Rolling shutter effects, sensor asynchrony, and calibration
errors are more problematic in direct methods than in feature-based ones. Furthermore,
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since the direct method does not rely on discrete features, performing correspondence
matching between images at different locations is difficult. Consequently, loop closure
detection is usually difficult.

The hybrid approach, a recently developed VO solution, leverages the benefits of both
direct and indirect formulations to achieve optimal performance. Given the challenges
posed by underwater scenes, we propose a new tightly coupled hybrid monocular visual
SLAM for UUVs. A three-step hybrid enhancement tracking method is proposed to address
the loss of underwater feature tracking. In summary, the feature-based method is first
employed to obtain an approximate pose estimate, followed by the direct method to refine
the pose. Ultimately, the refined pose is used to reproject the map points, enhancing the
number of tracked features. The combination of indirect methods’ resilience to large-
scale motion and direct methods’ sub-pixel accuracy and robustness to texture-deficient
environments has the potential to further enhance underwater VO stability. Furthermore,
a tightly coupled visual hybrid optimization method is proposed to address inaccurate
back-end pose optimization. In essence, the local window is used for optimization, with
stably tracked features selected to construct the reprojection residual and surrounding pixel
blocks used for the photometric residual. The hybrid optimization of these tightly coupled
residuals exploits the respective advantages of the feature-based and direct methods,
enhancing odometry accuracy. Overall, the contribution of this paper can be summarized
as follows:

1.  Arobust three-step hybrid tracking strategy is proposed. Feature tracking is used to
obtain an initial rough pose that converges, and the direct method is then employed
for rapid sparse refinement. The ultimate goal is to achieve accurate pose estimation
between adjacent frames and reproject the map points to enhance both the number
and stability of feature tracking.

2. Using reliably tracked features, a tight coupling hybrid visual optimization method is
proposed. Robust features are used to jointly optimize two residuals: the reprojection
error and the photometric error. This method tightly couples the hybrid VO and
mapping processes, improving localization and mapping accuracy.

3. A tightly coupled hybrid monocular SLAM framework for underwater scenes, named
UTH-SLAM, is constructed. The tracking stability and localization accuracy of the
system are demonstrated using publicly available high-precision underwater datasets
and natural underwater data.

2. Related Work

The feature-based method is considered the most prominent in VO, primarily using
corners, edges, and blocks in the image as features. It performs geometric bundle adjust-
ment (BA) to minimize reprojection error. Underwater scenarios introduce new challenges
for feature-based methods compared to their high performance on land. In underwater
visual SLAM, the fundamental matrix is used to improve feature matching robustness by
removing false matches that SIFT [12] does not detect [13]. To overcome the limited number
of descriptors extracted by SURF [14], Aulinas et al. [15] combined image processing tech-
niques to identify the region of interest and applied SURF feature extraction and matching
within this region. Salvi et al. [16] proposed extracting a mixture of SIFT and SURF features
from images to achieve a dynamic trade-off between the number of features, robustness,
and computational complexity.

ORB [17] features are among the top-performing methods on land, with the ORB-
SLAM family [18-20] as the representative system. It enhances FAST [21] corners by adding
principal directions and rotationally invariant properties to the BRIEF [22] descriptors. It
is increasingly used in underwater VO due to its fast feature processing speed and more
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stable rotational invariance. Xu et al. [23] combined ORB features with object features to
improve the robustness of underwater navigation and generate a detailed semantic map.
An underwater stereo matching method combining ORB-based feature detection and curve
constraints further enhances the high-speed processing capability of underwater binocular
vision systems [24].

The direct method, based on the theory of greyscale invariance, has been studied. It
estimates camera motion based on pixel luminance, avoiding the computation of descriptors
and feature matching. Unlike most feature-based methods, the direct method analyzes the
entire image and can produce sparse, semi-dense, or dense maps, depending on the task
requirements. DSO [10] is one of the best-performing direct odometry systems, utilizing
photometric BA to co-optimize camera motion and inverse depth of sparse points in a
sliding window mode. This is the first investigation into the effect of photometric calibration
on the system using a direct approach. However, DSO suffers from drift over time. As a
pure odometry method, the resulting map points are not described, and therefore, cannot
be reused or incorporated into a closed-loop system. Xia et al. [25] proposed a scale-aware
monocular odometry system based on DSO and applied it to underwater environments.
They obtained the absolute scale by aligning the mesh model with a real fishnet, while
estimating the vehicle’s pose in the fishnet detection system.

The feature-based method is more challenging to track in low-texture scenes. The
greyscale invariance assumption in the direct method is highly sensitive to lighting and
less resilient to geometric distortion. Recent studies have explored the combination of
feature-based and direct methods in SLAM. However, these methods have typically been
loosely coupled at different stages of the pipeline. SVO [26] is a well-known hybrid method.
It tracks the aligned image with FAST corner features and minimizes photometric error
in the surrounding patches. The scene structure and motion are then jointly optimized
through reprojection errors. Gao et al. [27] introduced a loop closure pipeline to the DSO
system, termed LDSO. They proposed using both corners and pixels as direct factors,
contributing photometric residuals but not geometric residuals. Separate ORB descriptors
are computed exclusively for corners for loop closure detection. Yu et al. [28] proposed
combining reprojection and photometric residuals for joint optimization. However, these
two residuals are treated as independent entities, requiring separate processes to extract
and maintain each. Additionally, the optimization process does not incorporate key a priori
information of the residuals, and hybrid residuals are treated as a black box.

ORB-SLAM and DSO are loosely coupled [29], with DSO acting as a fast and robust
tracker, while ORB-SLAM further refines the marginalized keyframe poses. In their work,
the direct and feature-based methods run in two separate parallel threads, maintaining
respective global sparse feature mapping and local semi-dense mapping, which reduces
system efficiency to some extent. Additionally, geometric residuals are not used in real-time
odometry unless loop closure is detected, which further constrains the global consistency of
the system. This loosely coupled strategy benefits from the resilience of the direct approach
in low-texture scenes. It also benefits from a global map maintained through feature
modules. However, since the direct method operates independently, the feature-based
method’s ability to handle illumination changes and unsteady motion is not fully exploited.
For example, if there is a large change in illumination, the direct adjustment can severely
affect the pose estimation and the subsequent feature-based estimation cannot be recovered.

Feature-assisted direct monocular odometry, which invokes the indirect method only
when direct tracking fails to sustain the system, was proposed by Younes et al. [30].
In further research [31], they proposed simultaneously extracting two types of features,
i.e., salient corner features and pixel features, and coupling photometric and geometric
information into a unified formulation for robust tracking. Experiments show that this



J. Mar. Sci. Eng. 2025, 13,1216

5o0f 27

tightly coupled structure performs well on photometrically calibrated datasets. However,
this work does not reuse reconstructed maps and does not demonstrate performance on
general datasets, such as those with dynamic motion patterns or illumination changes.

In underwater environments, uneven illumination and low texture present severe
challenges to vision SLAM. Ding et al. [32] mitigated vision-only limitations by fusing IMU
and depth measurements and introducing hybrid visual residuals to improve the accuracy
of underwater multi-sensor fusion localization. Miao et al. [33] proposed a robust data
association and a unified optimization method to enhance the stability of visual-inertial
odometry in underwater scenes. However, computing projection and photometric errors
for all features of binocular images imposes significant computational overhead on the
system. Unlike the aforementioned underwater hybrid approach, this work focuses on
applying the hybrid approach to the tracking module and the tightly coupled optimization
of two types of residuals at the back-end. Additionally, to reduce computational overhead
when constructing the photometric error, we select only features tracked beyond a certain
threshold, rather than using all tracked features. This is because these features are more
stable, their depth information is known after multiple tracking optimizations, and they
can, therefore, play a greater role in the optimization process.

3. The Framework of UTH-SLAM

3.1. System Overview

Inspired by the current best-performing feature-based ORB-SLAM3 [20] and direct-
method-based DSO [10] systems, we combine them and introduce several modifications.
Figure 2 illustrates the framework of the proposed system, which consists mainly of three
parallel threads: the tracking thread, the local mapping thread, and the loop closing thread.
Based on both direct and indirect methods, the modules highlighted in the green box
represent the main contributions of this paper: the hybrid tracking strategy, the failure
recovery module, and the local hybrid optimization algorithm.
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Figure 2. Underwater tightly coupled hybrid monocular visual SLAM framework, named UTH-SLAM.

The frames captured by the monocular camera are initially fed into the system. While
extracting the ORB features, an image pyramid is constructed to increase their scale invari-
ance. The distribution of the features is then optimized using a quadtree-based feature
extraction algorithm. A three-stage hybrid tracking method is employed to enhance the
stability of continuous inter-frame tracking. If the track is lost, it enters the failure recovery
module, which attempts to recover the track in three distinct ways. Once the tracking pro-
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cess is complete, the frame with the best tracking performance is selected as the keyframe,
serving as the anchor frame for nearby frames. Keyframes play a crucial role in ensuring
trajectory accuracy; therefore, they are further optimized in the local mapping thread.

To ensure real-time performance, the local mapping thread runs only when a new
keyframe is entered. The local factor graph optimization window also enhances system
efficiency. BA is performed for multiple keyframes within the window and the map points
visible to the keyframes. Hybrid visual residuals are constructed using stable tracking
features, incorporating both reprojection and photometric residuals. This tight coupling
fully exploits both benefits to enhance the optimization accuracy. In the loop closing thread,
global map reuse is achieved by computing descriptors for ORB features. DBoW?2 [34] is
employed to accelerate the search for loop closure candidate keyframes. Upon completion
of loop verification, loop correction and global pose graph optimization are performed.

Throughout this paper, matrices are represented by bold uppercase letters and vectors
by bold lowercase letters. (-)* and (-)° represent values in the world and camera coordinate
systems, respectively. SE(3) and SO(3) denote the special Euclidean and orthogonal groups,
respectively. As shown in Equation (1), the transformation from the camera frame to the
world frame is represented by the transformation matrix T¥ € SE(3), where RY € SO(3)
is the rotation matrix and t¥ € R3 is the translation vector. A rigid transformation with
scale is also indicated by S € Sim(3). The intensity image is indicated by I : Q) — R, with
Q C R? denoting the image domain. The camera projection function is represented by
7(+) : R3 = Q, and the back-projection by 7=1(+) : QO x R +— R3,

w w
R c tC

T =
¢ 0 1

e RV (1)

3.2. Tracking Thread
3.2.1. Feature Extraction

To improve the scale invariance of the features, the underwater images are scaled by a
fixed percentage after acquisition. As shown in Figure 3, the original underwater image
is used as the base layer, which is then progressively scaled to construct the image scale
pyramid. ORB features are extracted at each pyramid level. As the number of pyramid
layers increases, the resolution decreases, the corresponding image area becomes smaller,
and fewer features need to be extracted.

A quadtree-based feature extraction algorithm is used for each layer, and its segmenta-
tion process is shown in Figure 4. First, an initial node division is performed based on the
aspect ratio of the image, assuming that the image is divided into 12 nodes in the first step.
If a node has more than one feature, it is split into four new nodes, as shown in the second
step. This process is repeated, with quad splitting performed continuously. If there are no
features within a node, the node is deleted, as illustrated by the top-right corner in step 3.
If there is only one feature within a node, as shown by the bottom-left corner in step 3 and
the top-right corner in step 4, the node is marked as unsplittable, and this single feature is
extracted. When the total number of nodes reaches or exceeds a predetermined threshold,
no further segmentation is performed. If multiple features remain within a node, as seen in
the bottom-left corner of step 4, only the feature with the largest response value is retained.

Using this feature selection method, clustering can be avoided and features are evenly
distributed. By reducing feature accumulation in local areas, the image’s information
representation is improved, which is crucial for feature tracking, pose estimation, and loop
closure detection.
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Figure 4. The splitting process of the quadtree-based feature extraction method.

Figure 5 shows that in the proposed UTH-SLAM system, only ORB features are ex-
tracted. Using this single feature type, a hybrid tracking approach combining feature-based
and direct methods is proposed. This strategy reduces the complexity of simultaneously ex-
tracting two feature types while improving system stability. During the local optimization
process, reprojection and photometric errors are minimized simultaneously using robust
features. Localization accuracy is improved by tightly coupling two distinct visual residu-
als. Another key function of ORB is mapping. The proposed system describes features to
enable global map reuse, facilitating loop closure detection.
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Figure 5. Application process of ORB features.

3.2.2. Hybrid Tracking Algorithm

The initialization of the monocular odometry system starts with matching 2D features
between two images, completing pose estimation using polarimetric geometry, and then
using the pose to triangulate 3D map points. There is some scaling ambiguity in the
information provided by the monocular odometer, as the monocular system is unable to
estimate the depth of the map points accurately. Once initialization is complete, 3D-2D
tracking, and pose estimation commence.

Stable tracking between adjacent frames is critical to ensure the continuous operation
of the system. Feature-based tracking is more stable for large movements and lighting
changes, but is prone to tracking loss when encountering low-texture scenes. Direct
alignment techniques compensate for this shortcoming. Therefore, we propose a three-
stage hybrid tracking strategy, which combines the advantages of feature-based and direct
methods to improve tracking performance.

(1) Feature alignment

Assuming that the camera moves at a constant velocity between adjacent frames, the
pose T and velocity v¢’ of the reference frame i at a specific time step can be used to
estimate the pose of the current frame j. Based on the estimated pose, the 3D map points
of the previous frame are projected onto the current frame, and the search for matching
features within a small range is accelerated. The camera pose is optimized by minimizing
the geometric reprojection error relative to the positions of a set of 3D points on the map.
For the current frame j, the reprojection error between the features and a 3D map point [
projected onto frame j can be defined as:

Ej = uy — n(Tg]%,l) )

where u;; is the pixel coordinate of the feature pair obtained by matching the map point / to
frame j. 71(-) is the pixel coordinate obtained by projecting ! onto frame j using the known
camera pose Tff/’ and the coordinates of the map point I.

Thus, the total reprojection error can be found under the cluster L of map points
observed in the current frame j:

w — 2
where p(+) is the robust kernel function used to mitigate the effect of mismatched features
and Pj; denotes the covariance matrix of the reprojection error, derived from the measure-
ment error and noise model. The information matrix, being the inverse of the covariance
matrix, quantifies the confidence level of the observations and directly influences the
weight of each observation in the optimization process. More detailed explanation of the
covariance matrix can be found [35]. TZ‘]’, represents the pose of the current frame, which is
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the optimization objective in this step. The constant velocity model tracking provides a
rough pose estimate. This estimate is used directly for feature depth estimation, as well as
for pose estimation in the next frame, which is not further optimized until a new keyframe
is generated. The rough pose also negatively impacts stable feature tracking.

(2) Direct refinement

We perform fast direct sparse refinement on the rough estimates provided by the
feature-based tracker. Notably, in the system’s implementation, direct refinement is applied
to every frame and is not limited to keyframes. This approach enhances tracking stability
and improves pose estimation accuracy between adjacent frames. We believe that the
previous step’s results provide an initial estimate, which enables the direct formulation to
converge quickly. Additionally, pixels that violate the photometric invariance assumption
due to occlusion or illumination changes can be easily identified as outliers. This strategy
allows the direct method to converge in fewer iterations and helps avoid local optima.

For every feature p with known depth d, on reference frame i, its predicted location p,
on current frame j can be calculated by the following equation.

p=r(Tdm (e dy) @

where 7771(+) denotes the corresponding 3D map point coordinates in the reference frame,
given the known pixel position of feature p and its inverse depth. The transformation from
frame i to frame i is represented by TE{ = (Tg‘/’) ' (Tg’) .

The photometric residual pattern is obtained from previous research [10]. N, repre-
sents the local pixel block, consisting of eight pixels as shown in Figure 6. The current
feature is highlighted in green, while the seven neighboring pixels are shown in black.
These eight pixels are arranged in a slightly dispersed row and share depth information.

Figure 6. Photometric residual pattern.

Based on the photometric invariance assumption, the photometric residual is con-
structed by:
!/
Eipi= ) wp (Ij (P ) - Ii(P)) )
peN,

2
= % (6)
A+ [|vLp)la

wp:
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where I(-) denotes the luminance function. In the context of grayscale image processing
by the algorithm, luminance is defined as the grayscale value of a specific pixel. wy is a
gradient-dependent weight that uses a constant c to decrease the weight of high gradient
pixels. Therefore, for a set of features P; in a reference frame i, the photometric residuals
between adjacent frames can be derived:

2
(1) 10, = T p(IEnl, ) ”

where P;,; is the covariance matrix of the photometric error. The pose TE‘]’_ of current frame
is refined in this step.

(3) New projection for tracking

An important step is proposed. For features in the reference frame i from the first step
that have not yet been matched, if they are successfully tracked in the second step, ORB
features and descriptors are extracted for the tracked pixels in the current frame j. This
step increases the number of potential matching features. Finally, using the refined pose
from the second step, the 3D map points from the reference frame are re-projected onto
the current frame to obtain more matches. This strategy increases the number of tracked
features, thereby improving tracking stability.

Although the proposed hybrid tracking algorithm inevitably increases the tracking
time, the second step of direct refinement benefits from a reliable initialization, which allows
the direct method to converge with fewer iterations and better control of the computational
cost by limiting the features to sparse alignment on the optimal image plane. Using
estimates from direct refinement provides better initial values for local optimization and
also leads to more matches between adjacent frames. This strategy naturally preserves
the robustness of salient features against scene differences and motion patterns while
improving tracking accuracy through sub-pixel alignment.

3.2.3. Tracking Failure Recovery Module

As demonstrated in the preceding section, the direct method is used to refine the
pose estimates and increase the number of matched features, thereby enhancing tracking
stability. Unlike previous studies [29,31] that treated the direct method as a standalone
tracking technique, our approach is sensitive to untextured scenes. To maintain the system'’s
operation, the following recovery strategy is applied in case of feature tracking failure.

(1) First, fast sparse optical flow tracking is performed.

The present study is based on the principles of the Lucas—Kanade optical flow the-
ory [36]. The objective is to determine the correspondence of features from the latest
reference frame i to the lost current frame j. Assuming the coordinate of a feature in the
frame is denoted by p = (x, y), the image constraint equation can be obtained according to
the assumption of grayscale invariance:

I(x,y,t) = I(x + Ax,y + Ay, t + At) 8)

In this formula, I(x,y, t) denotes the luminance value of point p at time f. After time
At, the feature is displaced by Ax and Ay distances along the two axes, respectively. The
function I(x + Ax,y + Ay, t + At) at point (x,y, t) is expanded using Taylor’s formula:
ol ol ol
I+ Dx,y+ Ay, b+ A = 1(x,y,1) + 5= Ax+ % Ay+o ARyt (9)
The final term constitutes the higher-order residual term of Taylor’s formula, which
can be assumed to be 0. Equations (8) and (9) are obtained by means of association:
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ol Ax 9ol Ay 9l

xnt Tayar a0 (19
where % and % represent the velocity components of the pixel point along the x and y
directions, denoted u and v, respectively. g—i, g—;, and % represent the gradients of lumi-
nance, denoted Iy, I, and I, respectively. Consequently, Equation (10) can be expressed
as follows:

Lu+Lo+1 =0 (11)

Iy and [, can be calculated from the current frame and I; from the difference between
the two frames. This leaves only the unknown u and v. The pixel coordinates of multiple
feature points are used to determine the velocity vector of the optical flow. This is achieved
by applying the least squares method to establish the correspondence between the reference
frame and the current frame. If a sufficient 3D-2D correlation is found, a motion-only
photometric bundle BA is performed. Upon successful pose estimation, the system switches
back to its standard tracking mode.

(2) If the previous step fails, keyframe tracking is activated.

Due to the significant temporal discrepancy between the final keyframe and the current
frame, both the constant velocity model and the photometric invariance assumption are no
longer valid. The current frame undergoes feature extraction and descriptor computation,
and the bag-of-words (BoW) algorithm is employed to accelerate the 2D feature matching
between the current and reference frames. If the number of matches exceeds a threshold, the
correspondence between the keyframe’s 2D features and 3D map points is used to establish
the matching relationship between the current frame’s 2D features and the keyframe’s 3D
map points. The pose of the previous frame serves as the initial estimate, and the 3D-2D
reprojection error is minimized to optimize the current frame’s pose. If more inliers remain
after optimization, keyframe tracking is considered successful.

(3) If the previous step fails, the re-localization module is activated.

A group of candidate keyframes similar to the current frame is selected based on
the BoW feature vector of the current frame. The matching relationship between the
candidate keyframes and the current frame is determined using BoW. The random sample
consensus (RANSAC)-based algorithm [37] employs the MLPnP [38] principle to estimate
the initial position of the current frame, discarding erroneous keyframes. The estimated
initial position is then used to perform optimization through geometric reprojection BA
and update the inliers. The efficacy of the re-localization is ultimately determined by the
number of optimized inliers.

If all these strategies are exhausted and normal tracking has not resumed, the tracking
fails, and the system is interrupted.

3.3. Local Mapping Thread

The local mapping thread is responsible for processing keyframes received from the
tracking thread and passing them through a series of steps to the loop closing thread.
During this process, several tasks need to be completed, including the deletion and creation
of local map points, BA optimization, and rejection of redundant keyframes. The following
discussion will focus on the proposed hybrid optimization method.

The system contains a large number of keyframes and map points, and optimizing
all the data requires significant computational resources. To address this, the concept of
co-visibility keyframes was introduced. These keyframes are defined as those that can
observe the map points of the current keyframe. Consequently, together with the current
keyframe, they form a group of keyframes for local optimization. Notably, all map points
observed by keyframes in this group are considered local map points.
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In the local optimization process, a hybrid residual approach is proposed, incorporat-
ing a direct and feature-based methodology. Furthermore, in the context of underwater
applications, robust features are selected instead of employing all tracked features. Robust
feature points tend to be those that have been tracked multiple times. It is evident that
the number of selected points is approximately half that of when only reprojection errors
are used, since two different types of residuals are constructed simultaneously. The se-
lected features are then utilized to construct both photometric and reprojection errors. This
strategy effectively couples the two types of residuals, thereby requiring fewer features
in the hybrid optimization model to achieve better localization accuracy while saving
computational cost.

A hybrid visual residual optimization window, which is tightly coupled, is constructed,
and the corresponding factor graph relationships are illustrated in Figure 7. The positions
of keyframes and map point coordinates within the optimization window are used as
nodes, and the reprojection residual, the photometric residual, and the priori residual are
used as constraint edges of the nodes.

O Camera Pose

O Map Points
B Reprojection Factor
[l  Photometric Factor

[ ] Prior Factor

Figure 7. Factor graph of the proposed hybrid optimization model.

The total cost function is defined as:

0= 18l + £ To(lEl, )+ 2 T T p(uﬂj,,ku )

€KfleL ]6Kfp€73 keobs(p

where x denotes the set of states to be estimated within the optimization window, including
the 6 degrees of freedom (DoF) pose of keyframes, the 3D coordinates of map points, and
the 1D inverse depth of features. The term E,,, denotes the a priori residual, representing
the additional constraints of the keyframes and map points that are moved out of the
optimization window. The purpose of E,;;,, is to ensure that historical observations still
have an impact on the current optimization, thus avoiding drift. P, is the covariance
matrix of the a priori error. E; and Ej, are used to denote the reprojection error and
photometric error, respectively, as illustrated in Equations (2) and (5). Kf and L represent
all keyframes and map points within the optimization window, respectively. obs(p) denotes
all keyframes where the feature p can be seen. The g2o library [39], an open-source
optimization toolkit, is employed to solve graph optimization problems.

As previously stated, the geometric reprojection error and the photometric error are
tightly coupled within a single cost function, which further improves the localization
accuracy and robustness of the system by using only one type of feature to play the role of
different residuals.
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3.4. Loop Closing Thread

Accurate loop closures have a significant impact on reducing the system’s time-
dependent trajectory drift. The feature-based approach enables the front-end to extract
ORB features and their descriptors for all frames, facilitating global map reuse. In the
loop closing thread, DBoW?2 [34] is used to search for loop candidate keyframes. The
module in the tracking thread converts the descriptors into vectors using the BoW model.
The highest-scoring keyframes are selected as loop candidates by quickly matching these
vectors with the keyframe vectors already stored in the database.

Candidate keyframes may contain inconsistencies and need to be verified to avoid
incorrect optimization affecting the global map consistency. Therefore, we check the
geometric and temporal consistency of the identified candidate keyframes with the image
pairs composed of the current keyframe. Initially, the geometric consistency of the candidate
keyframe is verified using the co-visibility keyframes of the current keyframe, based on
the RANSAC scheme. In the event that a sufficient number of co-visibility keyframes are
available to complete the verification process, the candidate frame is successfully verified.
Subsequently, the geometric consistency of the candidate keyframe is verified for new
keyframes that are temporally consecutive. If multiple consecutive new keyframes are
successfully verified, the temporal consistency of the candidate frame is also deemed
successful. Subsequent to this, the system attains the ultimate loop closure pair and
commences the loop correction.

Upon successful detection of the loop closure, the error distributed along the loop
is corrected through pose graph optimization. The global pose graph is illustrated in
Figure 8, where map points are excluded from the BA process compared to the factor graph,
and only the poses are treated as nodes. The method has been shown to significantly
reduce the computational complexity of the pose graph. The pose nodes are responsible for
representing the state variables that are to be optimized, while the connections between the
nodes are responsible for representing the constraints between the individual poses. These
constraints include the odometry constraints and the newly formed loop constraint.

Camera ® Odometry o Loop
Pose Constraints Constraint

Figure 8. Global pose graph model for loop correction.

X, denotes the current node, while X3 represents the loop node it identifies. As
illustrated in Figure 8, it is evident that the constraint edges are binary, and the nodes
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correspond to camera poses. The residuals of a binary edge, using Sim(3) constrained [40]
pose graph optimization, are defined as:

Ejo = 1Ogsim(?)) (S{)S;U(S(z)u)fl) (13)

where S{; is the relative Sim(3) transformation with the scale factor set to 1, computed
between the two keyframes from the SE(3) pose prior to pose graph optimization. The
logsim(3) transforms to the tangent space, so the error is a vector belonging to R”. The total
loop closure cost function is defined as:

En= T (IEl,) a4

(jo)€Edges

The pose of the keyframes to be optimized is denoted by «. In the algorithm imple-
mentation, the first keyframe is fixed, while all other keyframe poses within the map are
optimized. Edges denotes the set of edges in the pose graph, and Pj, is the covariance matrix
of the corresponding edge. The Levenberg-Marquardt algorithm is employed for non-linear
optimization. After the optimization of the keyframe pose, the corresponding map points
adjust their locations based on the relative relationships before and after optimization.

4. Experiments and Results

In order to validate the effectiveness of the proposed UTH-SLAM system, an exten-
sive evaluation of two publicly available real underwater datasets, AQUALOC [41] and
HAUD [42], from different scenarios was collected. Given the superior performance demon-
strated by ORB-SLAM3 [20] in recent studies compared to earlier visual SLAM systems,
its monocular mode was used as the benchmark. Additionally, to assess the proposed
hybrid method, DSO [10] (based on the direct method) and LDSO [27] (based on the hybrid
method with loop closing) were also compared. It is important to note that the cameras
used in both datasets were not photometrically calibrated; therefore, calibrated camera
internal data was employed in these tests.

Since monocular visuals cannot estimate the true scale, we aligned the evaluated
trajectory with the ground truth using the Sim(3) transformation in the evo [43] evaluation
tool, in accordance with standard practice. Each sequence was executed ten times. The
global consistency and local accuracy of the trajectory were then assessed by computing
the root mean square error (RMSE) of the absolute trajectory error (ATE) and the relative
positional error (RPE), respectively. All experiments were performed on the same laptop,
which had an Intel Core i7-9750H CPU at 2.6 GHz and 16 GB of RAM, without utilizing
the GPU.

4.1. HAUD Experiments

The HUAD dataset was collected in an artificially constructed underwater scene.
Rocks, sand, and aquatic plants were placed in the pool, as illustrated in Figure 9. The
dataset under scrutiny comprises a total of 10 sequences; the initial 5 sets of sequences for
the left images have been selected for evaluation in the present study. These sequences
were collected around the whole pool and contain three different regions.

For systems with a loop closure strategy, results were provided for two versions: one
in which the loop closure thread is disabled (w/o LC) and the other in which the loop
closure detection function is enabled (w/LC). In some setups, even when the loop closure
process was active, the system failed to detect the loop closure.
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Figure 9. Images collected from three regions in the HAUD dataset [42]. (a) Rocks. (b) Aquatic plants.
(c) Sand.

4.1.1. Global Consistency

The RMSE results for the ATE of the systems tested on the HUAD dataset are presented

in Table 1. The following conclusions can be drawn from the quantitative analysis:

1.

For systems without a loop closing thread, LDSO and UTH-SLAM demonstrate
superior performance in comparison to the other two systems, which are based on a
hybrid method. This finding serves to verify the hypothesis that hybrid features or
residuals have the capacity to enhance the accuracy of localization by introducing new
constraints to the pose estimation in visual scenes of superior quality. Our proposed
hybrid approach still outperforms LDSO, obtaining an average ATE reduction of
11.11% compared to it. This is primarily attributable to the fact that the proposed
hybrid approach leverages the strengths of both strategies, which are employed not
only in the tracking process but also play a pivotal role in the optimization. This leads
to enhanced accuracy in keyframe pose estimation within the local map.

For systems with a loop closing thread, ORB-SALM3 and LDSO have been shown to
perform comparably. LDSO stores all keyframes along with their associated indirect
features and depth estimates in memory for loop closure. However, due to its lack of
feature matching for detecting redundant keyframes, it is unable to apply the keyframe
culling strategy, leading to relatively large memory consumption. In contrast, ORB-
SALM3 has been demonstrated to be more effective in managing redundant keyframes
and co-visibility between keyframes. The proposed system leverages this advantage
to achieve superior positioning accuracy. UTH-SLAM reduces the Avg. ATE by 20.31%
and 22.72% compared to ORB-SALM3 and LDSO, respectively.

All three systems tested with loop closing threads utilized BoW to detect loops. If
the loop closure can be effectively detected, the trajectory accuracy is significantly
improved after the loop correction. The global localization accuracies of ORB-SALM3,
LDSO, and UTH-SLAM are improved by 32.63%, 26.67%, and 36.25%, respectively,
after enabling loop closing threads. This also demonstrates how well loop closure
works in reducing system drift. The feature-based approach is more convenient than
the direct method, as feature descriptors can be used not only for tracking but also for
finding the loop closures.
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Table 1. Performance comparison results on HAUD (RMSE of ATE in meters).
- b - c

DSO « ORB-SLAM3 LDSO UTH-SLAM
Seq. (Monocular) (Ours)

w/o LC w/o LC w/ LC w/o LC w/ LC w/o LC w/ LC
Seq01 0.033 0.023. 0.020 0.037 0.025 0.012 0.012
Seq02 0.113 0.125 0.056 0.106 0.076. 0.090 0.032
Seq03 0.070 0.102 0.103 0.071 0.064 0.069 0.070
Seq04 0.130 0.104 0.052 0.119 0.070 0.101 0.059
Seq05 0.157 0.120 0.091 0.117 0.097 0.127 0.083
Avg. 0.100 0.095 0.064 0.090 0.066 0.080 0.051

“ The system uses the direct method. ’ The system uses the feature-based method. ¢ The system uses the
hybrid approach. Bolded numbers are the best results, solid underlined numbers are the second-best results, and
dashed underlined numbers are the third-best results.

Figure 10 shows the results of UTH-SLAM compared to the ground truth for Seq02
and Seq04 in HAUD. This includes 3D trajectories, x—y-z axis tracking performance, and
ATE over time. Qualitatively, the following points can be observed from these figures:

1.  Figure 10a,b show the estimated trajectories made by UTH-SLAM compared to the
ground truth. The estimated trajectories are depicted by colored lines, each represent-
ing the ATE at that location. In some regions, fluctuations in the error occur due to
changes in image texture and motion. As shown in Figure 10c,d, tracking is more
accurate along the x—y axes than along the z-axis, especially near the inflection point
in the trajectory. The main cause of this is the sudden change in the z-axis movement.
In the first step of the proposed hybrid tracking method, the assumption of constant
velocity motion for the carrier fails to align with the actual motion at the inflection
point, leading to increased error. Overall, UTH-SLAM demonstrates good tracking
performance across all three axes.

2. The ATE exhibits a more uniform fluctuation over time, as shown in Figure 10e f. The
error distributions of the estimated trajectories show no large deviations, and the
RMSE, mean, and median values remain closely aligned. This also demonstrates that
the proposed system can maintain a relatively stable working state over extended
periods, avoiding error accumulation and drastic fluctuations.

4.1.2. Local Accuracy

Table 2 presents the RMSE results of RPE with respect to translation for the tested
systems. The interval for RPE is set to 0.1 m. Unlike ATE, which reflects the global
consistency of the trajectory, RPE measures local motion accuracy by calculating the relative
translation between the estimated trajectory and the ground truth over successive frame
distances, i.e., the pose error within a segment of the sub-trajectory. Compared to ATE, RPE
is less sensitive to the specific time at which the error occurs [44].

The results show that UTH-SLAM performs better in terms of local accuracy. Com-
pared to DSO, ORB-SLAM3, and LDSO, our system reduces the Avg. RPE by 37.84%,
23.33%, and 25.81%, respectively. This is mainly because the proposed hybrid tracking
strategy refines the poses between adjacent frames, while the tight coupling of two different
residuals in local optimization further constrains drift. It is worth noting that when compar-
ing two different versions of the same system, w/o LC and w/ LC, the RPE does not change
significantly. Since the RPE only calculates the relative error of a small sub-trajectory, the
effect of runtime is significantly reduced. As a result, trajectory drift due to increasing time
has a limited effect on the RPE, and the influence of the loop closure thread on it is reduced.
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Figure 10. Results of UTH-SLAM on Seq02 and Seq04 in HAUD. (a) 3D trajectory on Seq02. (b) 3D
trajectory on Seq04. (c) The x-y-z axis tracking effect on Seq02. (d) The x-y-z axis tracking effect on
Seq04. (e) ATE over time on Seq02. (f) ATE over time on Seq04.
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Table 2. Performance comparison results on HAUD (RMSE of RPE in meters).
- b - c

DSO « ORB-SLAM3 LDSO UTH-SLAM
Seq. (Monocular) (Ours)

w/o LC w/o LC w/ LC w/o LC w/ LC w/o LC w/ LC
Seq01 0.034 0.020 0.020 0.032 0.030 0.018 0.018
Seq02 0.035 0.030 0.029 0.023 0.025 0.023 0.022
Seq03 0.031 0.035 0.037 0.033 0.030. 0.026 0.027
Seq04 0.044 0.031. 0.031. 0.037 0.037 0.027 0.025
Seq05 0.040 0.033. 0.034 0.035 0.033 0.023 0.022
Avg. 0.037 0.030 0.030 0.032 0.031 0.023 0.023

“ The system uses the direct method. ’ The system uses the feature-based method. ¢ The system uses the
hybrid approach. Bolded numbers are the best results, solid underlined numbers are the second-best results, and
dashed underlined numbers are the third-best results.

The RPE results from ten trials of the tested systems are shown in box plots in Figure 11.
The comparison shows that UTH-SLAM results exhibit good stability and fewer outliers
across the trials. This further demonstrates the effectiveness of the proposed hybrid tight
coupling strategy in enhancing local accuracy.

{ I DO

I ORB-SLAM3(w/o LC) [ ]ORB-SLAM3(w/ LC
0.06 4[] LDSO (w/0 LC) [ LDSO (w/ LC)
UTH-SLAM (w/o LC) [ UTH-SLAM(wW/ LC)

E 004 : Ve
" éi j‘ 'ﬁéia iEff Tféfﬁ
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| i I2 Sequlsence ‘Il IS

Figure 11. The boxplot of RPE on HAUD.

4.2. AQUALOC Experiments

The AQUALOC dataset consists of two sub-sets: harbor and archaeological sites. The
completion of the purely visual system was higher on harbor sequences, so this sequence
was chosen for testing. The harbor sequences were collected in 3 to 4 m of water. The
sun illuminated this shallow environment, but a lighting system was also used in the
experiment. In these sequences, images are affected by uneven lighting, backscatter, low
texture, and dynamic seagrass, as illustrated in Figure 12a-d. Furthermore, Figure 12e f
illustrate how visual information is rapidly lost due to the collision of the vehicle with
surrounding objects. Additionally, the ROV experiences disturbance from waves and cables,
resulting in severe movement changes.

In addition, most trials involved only a few loops, precluding an analysis of loop
closure in this dataset. Consequently, experiments were conducted using the original
systems. In contrast to the HUAD dataset, the harbor sequences were collected from real
natural underwater environments, which posed a greater challenge to the system.
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(d)

(b)

Figure 12. Recording data from the ROV and some image frames in harbor sequences [41]. (a) Uneven
lighting. (b) Backscattering. (c) Weak texture. (d) Dynamic seagrass. (e) Exposure. (f) Blocked.

4.2.1. Quantitative Analysis

The RMSE of ATE results for six sequences in the harbor sequences are shown in
Table 3. It should be noted that the dataset contains a total of seven sequences; however,
when testing the systems on the fourth and seventh sequences, all systems failed to complete
the task. Consequently, these results have not been included in the report. This failure
was primarily due to ROV collisions with objects, which caused occlusion of the field of
view and exposure to the illumination system, as illustrated in Figure 12e,f. This situation
has catastrophic consequences for systems relying solely on vision for localization. By
analyzing the quantitative results in Table 3, we can obtain the following conclusions.

1.  Innatural underwater scenes, the effect of light variations becomes more pronounced,
and both DSO and LDSO perform poorly. The tracking approach, which assumes
photometric invariance, results in poor pose estimation between adjacent frames,
which negatively affects the localization results. Furthermore, in Seq01, the ROV
experiences large-scale motion, which poses a challenge for the direct method tracking
approach. The DSO and LDSO were shown to produce drastic drifts, bringing the
ATE to 0.933 m and 0.709 m, respectively, while the result obtained in this study is
only 0.129 m. The proposed hybrid tracking strategy uses a feature-based method
to estimate the rough pose, followed by direct refinement and a new projection of it.
This approach is not only more robust to large geometric distortions but also enhances
estimation accuracy. The effectiveness of the proposed approach is evident in the
substantial reduction in Avg. ATE, with UTH-SLAM achieving a 76% and 71.6%
reduction compared to DSO and LDSO, respectively.

2. In the context of harbor sequences, ORB-SLAMS3 has been shown to outperform
its counterparts, DSO and LDSO, due to its enhanced underwater camera internal
parameter calibration and advanced processing algorithms. However, the perfor-
mance of feature-based tracking is unstable in low-texture sequences, as illustrated
in Figure 12c. The proposed system has been demonstrated to improve location ac-
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curacy by 47.25% compared to ORB-SLAMS3. This improvement can be attributed to
the hybrid approach we employ, which fully leverages both the feature-based and
direct methods by refining the pose at the front-end and tightly coupling the two
residuals at the optimization stage. This enables UTH-SLAM to generate more precise
keyframe pose estimates.

The proposed hybrid tracking method is further validated by the results of experi-
ments. As shown in Figure 13, the number of features tracked over time for ORB-SLAM3
and UTH-SLAM on Seq02 is presented. Results from five experiments are shown for each
system. It is evident that the system rapidly matches a substantial number of features
through pairwise polar geometry within the first ten seconds, completing the initialization
process and resulting in a significantly higher number of features being tracked. ORB-
SLAM3 employs the constant velocity model for rough pose estimation. The proposed
hybrid strategy refines the rough estimation by using the direct method along with a new
projection. As shown in the figure, the number of tracked features is significantly increased,
thereby enhancing the system’s tracking stability. A comparative analysis reveals that the
number of features tracked by UTH-SLAM increases by 31.41% on average compared to
ORB-SLAMS.

Table 3. Performance comparison results on harbor sequences (RMSE of ATE in meters).

ORB-SLAM3 ® UTH-SLAM ¢
Seq. DSO* (Monocular) LDSO ¢ (Ours)
Seq01 0.933 0.280 0.709 0.129
Seq02 0.288 0.364 0.558 0.142
Seq03 0.207 0.034 0.051 0.033
Seq05 0.499 0.185 0.336 0.151
Seq06 0.073 0.048 0.036 0.026
Avg. 0.400 0.182 0.338 0.096

“ The system uses the direct method. ? The system uses the feature-based method. ¢ The system uses the hybrid
approach. Bolded numbers are the best results and solid underlined numbers are the second-best results.
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Figure 13. Comparison of the number of features tracked over time between ORB-SLAM3 and
UTH-SLAM on Seq02.

Furthermore, a comparison was made of the time costs of the ORB-SLAM3 and
UTH-SLAM systems when processing each frame, as demonstrated in Table 4. It was
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observed that the time required for the tracking thread increased significantly. This was
primarily due to the proposed hybrid tracking strategy, which imposed further constraints
on the tracking pose, thereby increasing the computational load. The judicious selection
of robust feature points led to a marginal alteration in the number of residuals in the
local optimization, thereby ensuring that the computational cost of the local mapping
thread remained relatively unchanged. UTH-SLAM and ORB-SLAMS utilize the same loop
closing thread, thus resulting in analogous consumption patterns. It is evident that the
parallelization of these three threads is instrumental in ensuring the real-time capability of
the proposed method, despite its concomitant increase in consumption.

Table 4. The computation time cost of ORB-SLAM3 and UTH-SLAM (ms/frame).

Threads Tracking Local Mapping Loop Closing
ORB-SLAM3 12.81 6.83 3.76
UTH-SLAM 15.52 7.68 3.51

The memory and CPU power consumption of all tested systems was recorded on the
laptop used, as shown in Table 5. It is evident that DSO exhibited the most minimal memory
consumption, a consequence of its accelerated tracking strategy. The LDSO augmented
the memory usage by incorporating closed-loop threads, feature extraction, and descriptor
calculation. In comparison with ORB-SLAMS3, the proposed hybrid strategy also resulted in
increased memory consumption. A comprehensive evaluation of the data reveals that there
is no statistically significant difference in CPU power consumption among the systems that
have been tested. Subsequent testing of the UTH-SLAM system on an onboard computer
will be conducted in order to validate its performance.

Table 5. Comparison of memory and power consumption of the tested system.

Computational Cost Memory (MB) CPU Power (W)
DSO 434 84.3
ORB-SLAM3 573 81.9
LDSO 604 84.0
UTH-SLAM 637 81.5

4.2.2. Qualitative Analysis

The operation of these systems is shown in Figure 14. The proposed system is shown
in Figure 14d. In the lower left image frame, the green point represents the selected robust
feature, which was used to construct the hybrid visual residuals. As shown in Figure 15,
a comparative analysis was performed on Seq02 and Seq05 from several perspectives,
including trajectory tracking along the x-y axis, the violin plots of the ATE, and individual
ATE statistics. The following conclusions can be drawn from these figures:

1.  Asshown in Figure 14a,c, both DSO and LDSO use a large number of pixel features
to generate denser maps with better visibility compared to sparse maps. LDSO also
uses corners as direct features and contributes photometric residuals. These corners
are extracted using ORB descriptors, enabling loop closure detection. The system
also constructs sparse maps, as shown in Figure 14d. The key distinction is that
UTH-SLAM integrates geometric and photometric residuals more robustly by using
stable features, providing stronger constraints for pose estimation and mapping.

2. The trajectories assessed by DSO, ORB-SLAM3, and LDSO showed significant pose
errors, especially in the initial phase, as shown in Figure 15a,b. In contrast, UTH-
SLAM demonstrated precise tracking throughout the entire trajectory. This superior
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performance can be primarily attributed to the efficacy of the proposed hybrid tracking
strategy, which refines the pose estimation from the initial phase of the trajectory and
reduces the instability of the system.

3. Asshown by the violin plots in Figure 15¢,d, the proposed system estimates trajectories
with a higher concentration of ATE and fewer outliers. The hybrid strategy discussed
here has been shown to exhibit greater stability and robustness than other methods.
The maximum, minimum, standard deviation, median, and mean values of the ATE
obtained by UTH-SLAM all show a similar trend to the RMSE of ATE across two
sequences, as shown in Figure 15e,f. This finding underscores the consistent and

reliable performance characteristics of our system.

() (b)

(o) (d)

Figure 14. Demonstration of the running window of the test systems on Seq01 of harbor sequences.
(a) DSO. (b) ORB-SLAMS. (c) LDSO. (d) UTH-SLAM.



J. Mar. Sci. Eng. 2025, 13,1216

23 of 27

—== Ground-truth

y (m)

-== Ground-truth —— DSO
—— DSO 3 ORB-SLAM3
ORB-SLAM3 A —— LDSO
—— UTH-SLAM

y (m)

-10 -8

1.75

1.50

1.25

1.00

m)

0.75

ATE (

0.50

0.00

-0.25

1.4

12

1.0

0.8

0.6

ATE (m)

0.4
0.2 ‘
¢ 0.0

-0.2

DSO

ORB-SLAM3 LDSO UTH-SLAM DSO ORB-SLAM3 LDSO UTH-SLAM

(o) ()

min

std

median

mean

rmse

median

0.0

== DSO mean == DSO
mem ORB-SLAM3 mem ORB-SLAM3
mm [ DSO mmm LDSO
= UTH-SLAM rmse = UTH-SLAM
0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0
ATE (m) ATE (m)
(e) )

Figure 15. The tested systems were compared on Seq02 and Seq05 of harbor sequences. (a) Trajectories
on Seq02. (b) Trajectories on Seq05. (c) Violin plot of ATE on Seq02. (d) Violin plot of ATE on Seq05.
(e) Various statistics of ATE on Seq02. (f) Various statistics of ATE on Seq05.

4.3. Discussion

As shown in Tables 1 and 3, a comparison of these systems shows that the tested
ones perform better in artificially generated scenarios. Natural underwater environments,
characterized by uneven lighting, lack of texture, and water current interference, present
greater challenges for these visual localization systems.

Furthermore, in certain extreme cases, as illustrated in Figure 12e,f, when the camera
is obstructed or severely overexposed, there is a paucity of visual features, resulting in
inaccurate pose estimates. All systems that were subjected to rigorous testing were found
to be incapable of accurately tracking images during the specified period. This ultimately
resulted in the failure of the system. Consequently, the use of a solitary visual sensor within
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the context of a harsh underwater environment is not advised. In certain limited cases, the
fusion of the camera with other heterogeneous sensors can offer significant advantages.

Photometric calibration has not been performed on either of these two open-source
datasets. For DSO and LDSO, which directly utilize photometric information, they can run
using only the camera’s internal calibration results. Nevertheless, they may perform better
with photometric calibration. A comparison of the HAUD and harbor datasets reveals that
the HAUD dataset provides sufficient and uniform lighting during recording, enabling DSO
and LDSO to perform better. However, in natural underwater environments, the lighting is
intricate, and photometric calibration becomes challenging. The UTH-SLAM system was
developed to address these challenges by leveraging the strengths of the direct method,
which is based on feature-based techniques. The efficacy of the system is demonstrated by
its favorable performance on both datasets.

5. Conclusions

In this paper, a tightly coupled hybrid monocular SLAM system, named UTH-SLAM,
designed for underwater environments, is proposed. This system is characterized by the
integration of both feature-based and direct methods. The direct strategy is utilized to refine
the inter-frame estimates obtained by feature matching. Direct sparse optical flow is used
to handle tracking failures. Furthermore, robust features are employed to tightly couple the
photometric residual and geometric reprojection residual in the local optimization model
concurrently. From the comparative experiments, the following conclusions are drawn:

1.  In comparison with ORB-SLAMS3, which uses the feature-based method, and DSO,
which uses the direct method, the proposed tightly coupled hybrid system utilizes
the distinct strategies to their fullest potential. The efficacy of both global consistency
and local accuracy is demonstrated in underwater scenario tests.

2. The employment of a hybrid tracking strategy has been shown to further improve
the reliability of pose estimation between adjacent frames and the stability of track-
ing. A comparison of UTH-SLAM with ORB-SLAMS3 reveals a 31.41% increase in
the number of feature tracks. This enhancement in adaptability is particularly sig-
nificant in low-texture underwater environments, where it can substantially impact
system performance.

3.  The proposed tightly coupled optimization strategy has demonstrated the ability
to accomplish two different residual constraints using a single type of feature. The
experimental findings demonstrate the superior localization accuracy of the pro-
posed method. In the challenging natural underwater environment, UTH-SLAM
reduces the ATE by 76%, 47.25%, and 71.6% compared to DSO, ORB-SLAM3, and
LDSO, respectively.

The visual localization system described in this paper shows good performance in
both artificial pools and natural underwater environments. The experimental findings
demonstrate that employing a single vision camera is inadequate to address the intricate
challenges posed by field-of-view occlusion. Subsequent research endeavors will concen-
trate on multi-sensor fusion technology, which integrates vision with IMU and DVL to
enhance the robustness and stability of underwater localization.
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