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Abstract: The properties of light propagation underwater typically cause color distortion
and reduced contrast in underwater images. In addition, complex underwater lighting
conditions can result in issues such as non-uniform illumination, spotting, and noise. To
address these challenges, we propose an innovative underwater-image enhancement (UIE)
approach based on maximum information-channel compensation and edge-preserving
filtering techniques. Specifically, we first develop a channel information transmission
strategy grounded in maximum information preservation principles, utilizing the max-
imum information channel to improve the color fidelity of the input image. Next, we
locally enhance the color-corrected image using guided filtering and generate a series
of globally contrast-enhanced images by applying gamma transformations with varying
parameter values. In the final stage, the enhanced image sequence is decomposed into
low-frequency (LF) and high-frequency (HF) components via side-window filtering. For
the HF component, a weight map is constructed by calculating the difference between
the current exposedness and the optimum exposure. For the LF component, we derive
a comprehensive feature map by integrating the brightness map, saturation map, and
saliency map, thereby accurately assessing the quality of degraded regions in a manner that
aligns with the symmetry principle inherent in human vision. Ultimately, we combine the
LF and HF components through a weighted summation process, resulting in a high-quality
underwater image. Experimental results demonstrate that our method effectively achieves
both color restoration and contrast enhancement, outperforming several State-of-the-Art
UIE techniques across multiple datasets.

Keywords: underwater-image enhancement; maximum information-channel transmission;
guided filtering; gamma transformation; side-window filtering

1. Introduction
Since the beginning of the 21st century, the increasing competition for land and

resources has made the protection and sustainable management of marine resources
a strategic priority for the international community. Among them, underwater images are
a critical medium of ocean information and play an irreplaceable role in the performance
of ocean detection equipment. However, the distinct optical properties of underwater
environments often lead to technical challenges such as color casts, blurred textures, and
low contrast. These issues severely hinder the accurate extraction and analysis of im-

Symmetry 2025, 17, 725 https://doi.org/10.3390/sym17050725

https://doi.org/10.3390/sym17050725
https://doi.org/10.3390/sym17050725
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4626-6176
https://doi.org/10.3390/sym17050725
https://www.mdpi.com/article/10.3390/sym17050725?type=check_update&version=2


Symmetry 2025, 17, 725 2 of 27

age information. Consequently, the development of effective UIE techniques has become
a pressing necessity.

To address the challenges in UIE, researchers have extensively investigated the mech-
anisms of underwater imaging and developed advanced image degradation models. At
present, the existing UIE methods can be divided into three categories: physical model-
based methods, non-physical model-based methods, and deep learning methods [1–3].

Physical model-based approach: This method mainly focuses on restoring under-
water images by estimating model parameters and reversing the degradation process.
In 2006, Trucco et al. proposed a UIE based on the Jaffe–McGlamery model [4] for the
first time, but it performed poorly in color correction. Subsequently, the dark channel
prior (DCP) method developed by He et al. [5] was introduced into the underwater do-
main. This method effectively corrects color casts owing to its superior dehazing capabil-
ity, but its applicability is constrained by water’s selective light absorption. To address
this limitation, researchers have developed various DCP enhancements, including a de-
noising algorithm [6], contrast-enhancement techniques [7], integrated color-correction
approaches [8], and non-local prior-based restoration methods [9]. Although these ad-
justments have improved the quality of the image, several challenges persist, including
heavy reliance on priors, noise amplification, and limited dynamic adaptability. In recent
years, Zhuang et al. developed a retinal variation model inspired by the hyper-Laplacian
reflection prior [10], but its effectiveness may decrease under low-light or high-turbidity
conditions. The same limitation also exists in the optimized transmission map estimation
method proposed by Hou et al. [11]. In 2024, Li et al. proposed a combination of adaptive
optimization and particle swarm optimization algorithms [12], but its generalization is
insufficient. Liang et al. [13] adopted a distinct strategy of transmittance minimization for
contrast enhancement, but it introduced localized brightness inconsistencies. Until recently,
the adaptive color-correction framework proposed by Zhang et al. [14] and the variation
model developed by Yu et al. [15] have emerged as significant advances, demonstrating
notable improvements in both color naturalness and algorithmic stability. In summary,
the underwater-imaging mathematical models used in this kind of method are often too
idealized, with problems such as insufficient robustness, limited flexibility, and high time
costs for solving model parameters, which seriously limit their practical applications.

Non-physical model-based approach: The approach enhances underwater-image qual-
ity by performing pixel-wise value adjustments to improve color fidelity and visual clarity.
Currently, the common non-physical model-based methods mainly include histogram-
based methods, Retinex-based methods, and fusion-based methods. The histogram-based
method enhances contrast by reallocating pixel values in the image. The Rayleigh histogram
stretching introduced by Ghani et al. [16] significantly improves image quality but has been
criticized due to noise amplification in low grayscale areas and limitations of fixed models.
To address this issue, the adaptive global stretching algorithm [17] developed by Huang
et al. cleverly resolves this contradiction through a dynamic parameter mechanism. Peng
et al. proposed a staged processing method [18], which first restores colors through physical
modeling, and then applies histogram equalization to ultimately achieve a more balanced
enhancement effect. The Retinex-based method addresses color distortion by emulating
the human visual system’s mechanisms for perceiving light and color. Fu et al. were the
first to develop UIE based on Retinex [19], solving the typical problem of aquatic-image
degradation effectively. Building upon this foundation, Ghani et al. [20] enhanced both
chromatic accuracy and contrast through innovative integration of Rayleigh distribution
principles. However, there was a slight over-enhancement phenomenon. To overcome this
limitation, Zhuang et al. proposed the Bayesian Retinex algorithm [21], which ultimately
achieved good results in color fidelity and scene adaptability. The fusion-based method
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integrates the advantages of different enhancement algorithms to achieve more natural
underwater images. In 2018, Ancuti et al. developed Color Balance Fusion (CBF) [22],
which effectively suppressed oversaturation artifacts. In order to further improve the
visibility of underwater images, Zhang et al. [23] proposed a multi-channel convolutional
multi-scale Retinex model with a color-restoration function. At the same time, Zhang
et al. [24] adopted different methods and proposed a hybrid optimization approach by
integrating multiple enhancement techniques. Hu et al. coupled color correction with
brightness fusion [25] to make color more realistic. It is worth noting that Zhang’s team has
been continuously cultivating in this field and has proposed the UIE based on weighted
wavelet fusion [26], as well as the more advanced wavelet decomposition based on dom-
inant contrast fusion [27]. The latter effectively integrates the advantageous features of
various enhanced images, ultimately achieving better performance. Generally speaking,
UIE that relies on non-physical models aims to align the image more closely with subjective
visual perception. However, these methods often overlook the fundamental principles of
underwater imaging, which may result in distortion of the final output.

Deep learning-based approach: Currently, deep learning-based methods can be di-
vided into convolutional neural network (CNN) and generative adversarial network
(GAN) [28]. This type of method learns the complex color-distribution characteristics
of underwater images through massive data and has become a research hotspot in this
field [29,30], demonstrating excellent performance in image-enhancement tasks [31–34].

CNN is widely used in UIE due to its ability to extract hierarchical features. In 2018,
Lu et al. pioneered the use of deep convolutional neural networks [35] to solve the scat-
tering problem of low-light underwater images, opening up a new direction in this field.
In 2020, Li et al. made significant breakthroughs on this basis and proposed an under-
water enhanced CNN based on scene statistics [36]. In the same year, Jiang et al. [30]
further optimized the network architecture and designed a lightweight cascaded network
to achieve efficient UIE processing. Yuan et al. [37] integrated multi-level wavelet transform
and Runge Kutta module to develop a refined sub network. NAIK et al. [38] proposed
a shallow neural network algorithm that can achieve advanced technology with only
a small number of parameters. Ma et al. developed a wavelet-based dual-stream net-
work [39] and achieved excellent performance. Recently, Tun et al. [40] solved the gradient-
vanishing problem by introducing skip connections and integrating parameter-free at-
tention modules into convolutional blocks. At the same time, Zhang et al. enhanced
multi-scale detail-processing capabilities by using intrinsic supervision and ASISF mod-
ules [41]. Recently, Tolie et al. [42] combined convolutional neural networks with attention
mechanisms to further improve the quality of UIE. GAN is a deep learning model that
synthesizes realistic data through adversarial training of generators and discriminators.
Anwar et al. [43] pioneered the application of generative adversarial networks to UIE in
2018, marking a paradigm shift in the field’s methodology. Subsequently, Guo et al. [44]
proposed a multi-scale dense generative network. To achieve superior enhancement perfor-
mance, Liu et al. [45] designed a target-driven dual-GAN architecture, but with increased
complexity. In the same year, Chao et al. [46] combined multi-color spatial features with
GAN framework, improving the quality of UIE significantly. Wang et al. [47] reduced
inter-domain and intra-domain differences from the perspective of domain adaptation.
In the latest progress, Zhou et al. [29] introduced a hybrid contrastive-learning strategy,
which not only improves the enhancement performance but also significantly enhances
the model’s generalization ability. In recent years, the application of symmetry theory in
UIE has shown great potential. A noteworthy example is the PIC-GAN model [48], which
includes a symmetric multi-level feature-extraction network based on the U-Net structure.
This symmetrical design ensures a balanced flow of spatial and semantic information,
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improving the network’s adaptability to complex underwater scenes. However, both CNN
and GAN require large-scale, high-quality datasets to effectively generalize, thus severely
limiting their development.

The performance of methods based on a non-physical model is usually superior to the
performance of the other two methods, as they are not limited by a physical model and
real underwater-image data. Therefore, we focus on studying UIE based on a non-physical
model along this technological route. Among non-physical model-based methods, the
CBF method [22] achieved outstanding performance for UIE. This method utilizes differ-
ent strategies to enhance color-correction results and integrates useful information from
each enhanced result using a Laplacian pyramid. However, the enhancement strategies
in the CBF method demonstrate limited robustness and scenario-dependent performance,
particularly when applied to diverse underwater conditions. In response to these issues,
this article proposes a novel UIE method aimed at achieving more efficient and robust
image-enhancement effects. Initially, we developed a channel information-transformation
mechanism grounded in maximum information-preservation principles. This mechanism
employs the information transfer channel to perform color rectification on input images.
Subsequently, we implement local enhancement of the color-adjusted images through
guided filtering. At the same time, we apply varying gamma values to optimize the
global contrast of the images. Ultimately, the processed image sequence undergoes de-
composition into LF and HF components via side-window filtering, with customized
fusion rules designed according to component characteristics to achieve high-quality
underwater imaging.

Our primary contributions can be encapsulated in the following four key points:

(1) We have developed a novel approach for UIE that demonstrates both efficiency and
robustness. Numerous experiments have shown that our method is comparable to the
latest UIE methods in qualitative and quantitative comparison, application testing,
runtime, and generalization testing.

(2) A maximum information channel for color correction is proposed. Specifically, we
derive a reference channel from the principle of maximum information retention
and utilize this reference channel to color-correct the input image. Compared with
conventional techniques, our method eliminates the need for supplementary reference
images while maintaining both efficiency and reliability.

(3) An effective strategy for enhancing image contrast is proposed. In detail, we employ
guided filtering to achieve local detail enhancement of color-corrected images while
utilizing gamma transformation with varying parameter values to achieve a global
contrast-enhancement effect.

(4) An image-fusion technique based on side-window filtering is proposed. We utilize
side-window filtering to decompose the pre-enhanced image sequence into LF and HF
components. These components are then integrated using different rules to produce
high-quality underwater images.

2. Preliminaries
2.1. Atmospheric Scattering Model

The quality deterioration observed in both atmospheric haze images and underwater
photographs primarily results from light absorption and scattering phenomena within their
respective transmission media. Therefore, the atmospheric scattering model [49], which
describes the optical imaging process on foggy days, can often be adapted to represent the
underwater optical imaging process under certain conditions roughly. Unlike atmospheric
haze images, underwater light transmission exhibits wavelength-dependent attenuation,
leading to varying degrees of color distortion in underwater images. Additionally, light
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scattering in water significantly degrades image quality. The Jaffe–McGlamery model [50]
proposes that the direct incident component refers to the portion of light reflected from
underwater objects that reaches the camera after undergoing attenuation through the
aquatic medium. The forward-scattering component represents the small-angle scattering
of reflected light from underwater objects before entering the camera, which causes the
halo phenomenon in underwater images. The backscattering component passing through
the underwater medium before entering the camera often causes blurring and contrast
degradation in underwater images.

Figure 1 shows an underwater-imaging model. When viewed from left to right, the
vertical coordinate of right 1 represents the light intensity (%), and the vertical coordinate of
right 2 represents the light-propagation distance (m). In addition, different colors represent
light of different wavelengths. As the water depth increases, the longest wavelength (red
light) disappears first. Blue light has a shorter wavelength and stronger penetration. This
is one of the main reasons why underwater images often exhibit blue–green tones.
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Following the Jaffe–McGlamery model [50], the simplified atmospheric scattering
model can be modeled using Equation (1):

Ac(x) = Jc(x)tc(x) + Bc(x)(1 − tc(x)), c ∈ {r, g, b}, (1)

In Equation (1), x is the pixel point coordinates; Ac(x) represents channel c of the
observed image; r, g, b represent the red, green, and blue channels of the color image; Jc(x)
represents the raw image; Bc(x) is the global background scattered light; and tc ∈ (0, 1)
transmission map is the medium transmittance of channel c. The simplified underwater
camera model (1) resembles Koschmieder’s atmospheric light-propagation model [51]
but does not account for the strong wavelength dependence of attenuation in under-
water environments, which is why our approach avoids explicit inversion of the light-
propagation model.

2.2. Side-Window Filtering

In practical image-processing applications, achieving a balance between noise reduc-
tion and edge preservation has been a long-standing challenge. To meet these challenges,
researchers have proposed some edge-preserving filtering algorithms with superior perfor-
mance, such as bilateral filtering [52], mutual structure joint filtering [53], and curvature
filtering [54]. When dealing with edge areas, these algorithms typically place the pending
pixel at the center of the operation window, potentially resulting in blurred edges. To
solve this problem, H. Yin et al. considered the symmetry of images and proposed an
effective filtering method in 2019—side-window filtering (SWF) [55]. SWF reduces noise
and preserves edges on the target image. SWF involves placing the pixels to be processed
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on the edges of eight windows: top, bottom, left, right, northeast, southeast, northwest,
and southwest. When filtering, the pixels to be processed are only linearly combined with
pixels in a certain direction of the window for calculation. Considering the requirements
of edge preservation and minimizing the spacing between input and output at the edges,
the filter will select a certain window containing the target pixel. It prevents the selection
of regions with noise as the window. This approach helps cut down noise interference,
achieving noise reduction while preserving edges.

Figure 2 shows the window for side-window filtering. Assuming that the target pixel
is k, let the filter kernel that is applied to the filter window be F. The result of SWF [55] is
given in Equation (3):

I′θ,ρ,rd
k = F(Ik, θ, ρ, rd), (2)

ISWF = arg min
∀I′θ,ρ,rd

k

∥∥∥Ik − I′θ,ρ,rd
k

∥∥∥2

2
(3)

where ISWF is the filtered result; Ik denotes the pixel value of input image I at location k;
rd is the radius of the filter window; ρ denotes the position of the target pixel, k; and θ

represents the direction of the filter window. By utilizing Equations (2) and (3), we were
able to minimize the distance between the input and the output at the edge. The filtered
result can approximate the input as closely as possible at the edge. Consequently, SWF has
a strong ability to maintain the edge. Figure 2 shows the windows for SWF. In Figure 2,
pixel k is in the side-window position when ρ = 0, and it is in the top corner position when
ρ = rd, and θ = i × π/2, i ∈ [0, 3] denotes the eight window orientations.
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3. Proposed Method
First, we propose a channel information-transformation mechanism based on max-

imum information-preservation principles, utilizing the maximum information channel
to perform color correction on input images. Next, we apply guided filtering to locally
enhance the color-adjusted images, followed by gamma transformation with varying pa-
rameters to generate a globally contrast-optimized image sequence. Finally, the enhanced
image sequence is decomposed into LF and HF components via side-window filtering,
with distinct fusion rules applied to integrate them into a high-quality underwater image.
The overall workflow is illustrated in Figure 3.
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3.1. Color Restoration of Underwater Images Based on Maximum Information Transfer

Recently, statistical-based color correction [10] and segment-based color correction [56]
have performed well in UIE. However, these corrections introduce some color cast, resulting
in unrealistic image colors. To solve these problems, we propose a channel information-
transformation mechanism grounded in maximum information-preservation principles,
employing the maximum information channel for input-image color correction. In
Figure 4, we show the flowchart of maximum information transfer for color correction.
This section comprises two essential steps: defining reference channels and executing
color compensation.
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The Gray-World Hypothesis [57] proposes that the three primary color channels
maintain similar mean gray values and histogram distributions. However, each channel of
an underwater image has a different degree of attenuation. Thus, there will be a situation
where color correction will be performed according to the grayscale-world hypothesis. To
solve this problem, we need to determine the specific attenuation value for each channel.
First, we separate the raw image into red, green, and blue channels and compute their pixel
values, respectively. In Figure 4, the image with the highest pixel values among the three
channels retains the most information, that is, the least image attenuation. Based on the
above findings, we propose the principle of maximum information retention. According
to this principle, the channel with the highest signal fidelity is selected as the reference
channel to compensate for the color distortion in the other two severely attenuated channels.
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For a raw image, I, the reference channel is defined as IRef, and its calculation formula is
provided in Equation (4):

IRef(i, j) = max{Ir (i, j), Ig(i, j), Ib(i, j)
}

, (4)

By leveraging Equation (4), we can obtain the channel with the richest information
content, so it can be used as a reference channel for the attenuation-channel compensation.
Subsequently, the other two color channels are segmented and adjusted based on the
reference channel, as illustrated in Equation (5):{

Ic
CR = IRef + α ×

(
Ic − Ic

)
, IRef < Ic

Ic
CR = IRef − β ×

(
Ic − Ic

)
, IRef ≥ Ic

, (5)

In Equation (5), α = max
c

(
255

Ic
Max−Ic

Min

)
, β = max

c

(
Ic

255

)
, and these values serve as the

gain adjustment coefficients for their respective channel components; Ic
Max, Ic

Min, and Ic

are the maximum, minimum, and average values of channel c; and ICR represents the
color-restoration image. We can see from Equation (5) that when IRef < Ic, the intensity
range of each color channel is normalized to the [IRef, 255] interval through linear stretching.
Analogously, when IRef ≥ Ic, each channel’s gray level distribution is scaled to span the
[0, IRef] range using value stretching. Ultimately, the color-compensation procedure can be
mathematically expressed using Equation (6):

Ic
CR = IRef + max

c

(
255

Ic
Max − Ic

Min

)
×
(

Ic − Ic
)
, IRe f < Ic

Ic
CR = IRe f − max

c

(
Ic

255

)
×
(

Ic − Ic
)
, IRe f ≥ Ic

(6)

By using Equation (6), we can adaptively compensate for the attenuation channels
and stretch the pixel distribution. This color-correction operation effectively mitigates the
color distortion present in underwater images. Figure 5 shows the histograms of pixel
distributions for the three channels before and after color correction. The images are shown
above the histograms. As can be seen in Figure 5, after implementing our color-restoration
method, the curve distributions of the three channels are approximately consistent, and
the image is more realistic and natural. However, the obtained image still faces the issues
of insufficient contrast and blurry detail enhancement. Therefore, in the next section, we
employ guided filtering and gamma correction to enhance the local and global contrasts of
the image, respectively.

3.2. Acquisition of Global Contrast and Detailed Image Enhancement

As demonstrated in the previous section, the proposed color-restoration method
achieves quantitatively validated improvements. However, as the depth of the water
increases, optical absorption becomes more pronounced. This depth-dependent attenua-
tion disproportionately affects red and green wavelengths, leading to significant spectral
imbalance. Although color-compensation algorithms can mitigate these effects, residual
information loss persists throughout the image, with the most severe degradation occurring
in deeper water layers. To address this problem, we obtain a globally enhanced image
sequence by applying gamma transformation to the color-corrected image using different
parameters. Although gamma correction is effective in improving the global contrast of an
image, some details may still be lost due to image exposure or underexposure. Thus, we
simultaneously sharpen the color-corrected image by employing unsharp masking based
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on guided filtering to obtain our other input image, that is, enhancement of the image by
blending with blurred images.
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3.2.1. Acquisition of Exposure Image Sequence via Gamma-Corrected Transformation

We introduced gamma correction to further improve the image quality and solve
the problems that remain after color correction. Gamma correction [22,58] can change the
brightness and contrast of the image, which is given in Equation (7):

IG(x) = α × ICR(x)γ, (7)

In Equation (7), IG is the gamma-corrected result; ICR(x) is the pixel value of the
color-restoration image at location x; α is a constant, which regulates the overall luminance;
and γ is the gamma value, which governs the luminance contrast properties of the image.
When γ < 1, the darker image components are intensified, and the brighter portions
are reduced, whereas when γ > 1, the bright parts are enhanced, and the dark parts are
compressed. Figure 6 shows the gamma-correction results using different parameters. It
can be seen from Figure 6 that gamma transformation effectively improves the visibility of
local details in low-light areas and the clarity of occluded areas. This method can effectively
restore some lost details, especially in areas with deep water. Therefore, we set different
values of γ to obtain a globally enhanced sequence, {IG,n}, by using Equation (7).
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1.8; (e) exposure image processed with α = 1, γ = 2.5; and (f) exposure image processed with
α = 1, γ = 4.

3.2.2. Obtaining Detail-Enhanced Images Based on Guided Filter

Image sharpening is a common image-processing technique designed to enhance
the details and edges of an image to make it look sharper. A common technique used in
the sharpening process is unsharp masking [20,58], which implements sharpening effects
by integrating the difference map between the input image and its Gaussian-smoothed
equivalent. The typical formula for image sharpening is given by Equation (8):

IL = ICR + β(ICR − FGaussian ∗ ICR), (8)

where IL represents the detail-enhanced result, FGaussian ∗ ICR denotes the result of the
image processed by a Gaussian filter, and parameter β regulates the degree of sharpening
intensity applied to the image. This sharpening process significantly improves image-
appearance detail, particularly within the HF components of the image spectrum. However,
unsharp masking by using Equation (8) has some problems in practical application, mainly
in regard to two aspects. First, if the β parameter is too small, the sharpening effect will be
insufficient, and the image details will not be effectively enhanced. On the contrary, if the β

is too large, the image in the highlighted region will be too bright, and the shadow region
will be too dark, resulting in color distortion. In addition, unsharp masking also tends to
amplify HF noise, particularly at the edges of the image or in areas with more complex
textures. The most significant issue is the “gradient reversal” artifact at the edges of the
image. Gaussian filtering often cannot smooth this out, resulting in unnatural halo effects
in the image.

For the first problem, to avoid selecting a parameter β that is too large or too small,
resulting in poor image enhancement, we adaptively select the β value based on the image
brightness. The parameter β is given by Equation (9):

β = 2
(
0.5 + L

)
, (9)
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where L is the average brightness of ICR, which is a good indicator of the image-brightness
appearance. It can be seen from Equation (9) that the value of parameter β is correlated with
the average luminance of the image. Therefore, the selection of β has strong adaptability.

The guided filtering [59] is a non-local linear model that enhances image detail more
accurately by leveraging the non-local similarity of the guided image. Unlike the Gaussian
filter, the guided filter avoids the amplification of noise, as well as the generation of edge
artifacts, by guiding the transfer of information from similar regions in the image. This
method allows the guided filter to preserve finer image details during enhancement while
effectively suppressing high-frequency noise interference. The optimized sharpening
algorithm is formally represented by Equation (10):

IL = ICR + 2
(
0.5 + L

)
(ICR − FGuided ∗ ICR), (10)

In Equation (10), FGuided ∗ ICR is the result of the image processed using the guided
filter. The sharpening method defined in Equation (10) boasts the advantage of necessitating
no parameter tuning and demonstrates effectiveness in enhancing sharpness, as evidenced
by the example in Figure 7.
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Figure 7 shows the image enhancement results using different filters. Compared with
Figure 7c, the edge of Figure 7b exhibits obvious “gradient reversal” artifacts, especially in
high-contrast areas. In Figure 7c, the sharpening effect of the image edges is smooth and
natural, without a halo effect, and details are better preserved. Leveraging non-local image
similarity as guidance, the guided filter simultaneously improves global image quality
and local detail representation. This approach effectively eliminates the gradient-reversal
artifacts inherent to Gaussian filtering while maintaining natural image appearance during
detail enhancement. This indicates that the guided filter can effectively avoid the drawbacks
of traditional methods, especially in edge regions, where it performs better. Following the
preceding analysis, this paper specifically employs Equation (10) to enhance the details of
color-corrected images.

The abovementioned process generates two vital components. One is a sequence
of gamma-adjusted exposure images, which accentuate details in dark areas and refine
image contrast. The other is an image that has been sharpened through guided filter
processing, effectively boosting overall sharpness, especially evident in edge contours and
fine textures. To obtain better enhancement results, we perform a multi-scale fusion of
these two important inputs.
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3.3. Multi-Scale Fusion

Single-scale fusion methods often have limitations in capturing comprehensive in-
formation, as they fail to fully consider the diverse details and context at various resolu-
tions [27]. In contrast, multi-scale fusion methods are capable of extracting and integrating
global and local features of an image at multiple scales, enabling clear and detailed image
reconstruction. Thus, this paper employs a multi-scale approach to fuse different enhanced
images. The method is divided into three main steps: extraction of LF and HF layers,
construction of weight maps, and image fusion.

3.3.1. Enhanced Image Decomposition

LF components are designed to preserve the global structural information and object-
boundary characteristics of an image. The choice of technique is particularly important
when it comes to image-edge protection. Gaussian filtering, a classic and extensively used
linear filtering technique, excels in enhancing image quality. It achieves this by eliminating
random noise from the image through a convolution operation. However, this process
inevitably blurs the boundaries, leading to the loss of edge information.

To overcome this limitation, SWF [55] has been developed as an advanced edge-
preserving smoothing technique. Based on its demonstrated performance, we employ
SWF to decompose the image into LF and HF components. The j-th enhanced image,
I j
enhanced ({IG,n} and IL), undergoes sequential blurring operations to generate a base layer

and multiple detail-enriched layers. Concretely, we set different values of rd to generate
variably blurred images with differing intensity levels. The base layer, I j,i

B , is mathematically
represented as Equation (11):

I j,i
B = SWF

(
I j,i−1
B , rdi

)
, i = 1, 2, . . . , K, (11)

where I j,0
B = I j

enhanced, SWF(·) is the SWF function, rdi is the window radius of the i-th SWF,
and K is the decomposition level. Using Equation (11), we can obtain base layers with
different blur levels by changing the radius value, rd. This processing pipeline facilitates
the acquisition of an artifact-free base image while ensuring the preservation of crucial
detail and edge information.

On the other hand, the HF image focuses on preserving information about details in
small regions of the image that are crucial for object-recognition and image-understanding
tasks. To achieve optimal results, we integrate the enhanced components with the base
image through a fusion process that maintains both structural integrity and fine-detail
preservation. Once the base layers are obtained, the detail layer is derived by subtracting
the base layer of adjacent scales, which is given in Equation (12):

I j,i
D = I j,i−1

B − I j,i
B , i = 1, 2, . . . , K, (12)

where I j,i
D is the HF image. This decomposition process is designed to divide each source

image into a base layer, which encompasses the large-scale variations in intensity, and
a series of detail layers, which capture the fine-scale details. After generating the LF
image, I j,K

B , and the HF images, I j,i
D , i = 1, 2, . . . , K for j-th enhanced image, I j

enhanced, we
construct weight maps for the image fusion process for effective detail preservation and
structure synthesis.

3.3.2. Weighting-Map Construction

After acquiring LF and HF images, we need to construct weight maps for image fusion.
Most weight map-construction methods utilize a unified feature map extracted from the
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source image to guide the fusion of LF and HF components [22,60]. Due to the different
characteristics of LF and HF components, the fusion rules based on a unified feature map
make it difficult to fully preserve the useful information of the source images, resulting in
a limited fusion effect. In order to improve fusion performance, this article fully considers
the different characteristics of LF and HF components, and constructs their respective
feature maps. The fusion process employs an adaptive weighting scheme that dynamically
adjusts according to regional exposure characteristics. Specifically, we construct pixel-
wise weight maps based on the distinct exposure responses of LF and HF components to
precisely control the multi-scale image fusion. HF images are concerned with the local
details of the image. For the HF image, I j,i

D , we measure its exposure by calculating the
average brightness of the local region to construct a weight map. The specific calculation
process is as follows: for each pixel position (x, y) in I j,i

D , we first use an average filter with

7 ∗ 7 to convolve the image block in I j,i
D to calculate its exposure feature, φD

j,i(x, y), and

subsequently calculate the weights, WD
j,i , according to Equation (13):

WD
j,i = exp

(
−

φD
j,i(x, y)− 0.52

2σ2
D

)
, (13)

where σ2
D controls the steepness of the weight function. As is evident from Equation (13),

when certain pixel values deviate significantly from the optimal exposure value of 0.5, their
corresponding weights approach zero. Essentially, this weight function guides the pixel-
wise fusion process to select the desired intensity levels, which are directly proportional to
those in the HF images.

The LF image primarily captures the fundamental structure information in an image.
Therefore, for the LF image, I j,K

B , we design three weight maps to assess brightness, color
saturation, and saliency. These weight maps are derived from the local characteristics of
each pixel to preserve important information.

The luminance weight map is used to evaluate the visibility of each pixel. We utilize
the well-established property that more saturated colors result in elevated values in one
or two of the color channels. Concretely, we determine the significance of each pixel in
the image by calculating the deviation of its luminance value from its RGB channel. The
formula for the brightness weight map, WL

k , is represented in Equation (14):

WL
j =

√√√√(
Br

j − BL
j )

2 +
(

Bg
j − BL

j )
2 +

(
Bb

j − BL
j )

2

3
, (14)

where Br
j , Bg

j , Bb
j , and BL

j are the red, green, blue, and luminance channels of I j,K
B . The

brightness weight acts as an identifier of the degradation induced in the enhanced image.
The disparity outlined in Equation (14) results in higher values for pixels with high contrast
and are presumed to belong to the initial clear regions. On the contrary, in colorless and
low-contrast image regions, the value of this indicator will be smaller. The fusion result
derived from the brightness map often leads to a decrease in colorfulness. To mitigate
these effects, our framework introduces two additional weight maps: a saturation map and
a saliency map.

The saturation weight map is inspired by the general preference among humans for
images that exhibit a high degree of saturation. We calculate the saturation value of each
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pixel and compare it with the maximum saturation to generate the corresponding weights.
The formula for saturation weight map, WC

j , is given in Equation (15):

WC
j (x) = exp(−

(Sj(x)− Smax
j )2

2σ2
s

), (15)

where Sj and Smax
j are the saturation and maximum saturation values of I j,K

B , and σs is the
standard deviation. In Equation (15), pixels with decreased saturation are assigned smaller
values, whereas those with the highest saturation receive larger values. As a result, this
map guarantees that the initial saturated regions will be more accurately depicted in the
fused output.

The saliency weight map is used to assess the degree of saliency of objects in an image.
We use a saliency detection algorithm based on a biological vision model to calculate the
contrast of each pixel with respect to its surrounding pixels. The formula for the saturation
weight map, WS

j , is given in Equation (16):

WS
j (x) =

∣∣∣∣∣∣Bwhc
j (x)− Bsur

j

∣∣∣∣∣∣, (16)

where Bwhc
k and Bsur

k are the central pixel and the surrounding pixel values of I j,K
B at location

x. The saliency map prevents the introduction of unwanted artifacts in the result image
obtained through our method, as neighboring comparable values are assigned similarly
on the map. Furthermore, the map we utilize emphasizes large regions and estimates
consistent values across the entire salient areas. Thus, this weighting map is effective in
identifying important regions in the image and ensures that these regions are given more
attention during the fusion process.

By using these three weight maps, WL
j , WC

j , and WS
j , we can achieve finer control to

ensure that important image features are preserved, and that artifacts and distortions are
retained in the final result. Finally, we normalize these weight maps to ensure that their
sum adds up to 1, resulting in overall brightness and color consistency of the image during
the fusion process.

3.3.3. Integration Process

Once the estimation and normalization of the weight maps of all the enhanced images
are completed, the enhanced images are merged into the fused image, Iout, as shown in
Equation (17):

Iout =
J

∑
j=1

WB
j Bj

K +
J

∑
j=1

K

∑
i=1

WD
j,i Dj

k, (17)

In Equation (17), WB
j and WD

j,k are the normalized weight maps of the LF and the i-th
HF images of the j-th enhanced image, and J is the total number of enhanced images. By
employing an independent fusion process at each scale level, we can minimize potential
artifacts arising from the abrupt transitions in the weight maps. Through multi-scale
decomposition-based fusion, we effectively integrate important information from different
enhanced images and avoid the appearance of blending artifacts. This method not only
preserves global structural information but also enhances local detail information, thereby
generating more natural and realistic underwater images.

The proposed maximum information-channel correction and edge-preserving filtering
process is presented in Algorithm 1.
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Algorithm 1. UIE based on maximum information-channel correction and
edge-preserving filtering

Input: Original underwater image, I.

1. Obtain Ic
CR through the color-restoration method based on maximum information

transmission using Equations (4) and (6).
2. Perform gamma correction transformation on Ic

CR to obtain the exposure-image
sequence {IG,n} (refer to Equation (7)).

3. Apply guided filtering with an adaptive value assignment to Ic
CR to obtain the

sharpening image, IL (refer to Equation (8)).
4. For each enhanced image, I j

enhanced ({IG,n}, and IL), perform the following:

5. Decompose I j
enhanced to obtain the LF image, I j,K

B , and the HF images,

I j,i
D , i = 1, 2, . . . , K, respectively (refer to Equations (10) and (11)).

6. End for
7. For the HF images, perform the following:

8. Measure the exposure, φD
j,i(x, y), of the local region of I j,i

D by its average luminance

and then construct the weight, WD
j,i (refer to Equation (13)).

9. End for
10. For the LF images, perform the following:

11. Calculate the local feature maps, WL
j , WC

j , and WS
j , for I j,i

B from the aspects of
luminance, color saturation, and saliency, respectively, and then comprehensively
use these three feature maps to obtain the normalized weight map, WB

j (refer to
Equations (14)–(16)).

12. End for
13. Obtain the final enhanced image, Iout, through multi-scale fusion (refer to

Equation (17)).

Output: The enhanced underwater image, Iout.

4. Results
This section starts with an introduction to the setup of the experiment, and then it

covers how we designed and implemented five sets of comparative tests to analyze. Due to
the limited space, more experimental results can be found in the Supplementary Material.

4.1. Setup of the Experiment

Benchmark dataset: We used six widely used datasets for evaluation: BRUD [61],
OD [62], RUIE [63], SAUD [2], UIDEF [64], and UIEB [49]. The BRUD dataset encompasses
100 images of varying ocean depths, such as depths less than 1 m, 1–2 m, and 2–3 m. The
OD dataset captured 183 underwater images under dark conditions. The RUIE dataset is
composed of nearly 7000 underwater images divided into three subsets: image color cast,
visibility, and advanced detection. The SAUD dataset includes 100 real-world raw under-
water images and 100 representative UIE algorithms that generate enhancement results.
The UIDEF dataset consists of over 9000 images captured from real-world underwater
scenarios, covering a wide array of underwater scenes and objects, such as coral reefs, fish
schools, shipwrecks, etc. The UIEB dataset includes 950 real underwater images of different
water quality, lighting conditions, and depths. Among them, 890 are enhanced images, and
the remaining 60 are considered challenging image sets.

Evaluation metrics: Metric evaluation of underwater images can be classified into
full-reference assessment and non-reference image-assessment metrics. In this study, we
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use Peak Signal-to-Noise Ratio (PSNR) [65] and Structural Similarity (SSIM) [66] for full
reference evaluation. The higher these two assessment values are, the higher the similarity
between the two images. In addition, we used the Underwater Image Quality Measure
(UIQM) [67], Underwater Color Image Quality Evaluation (UCIQE) [68], Color Cast Factor
(CCF) [69], and Average Gradient (AG) [70] for non-reference image-evaluation metrics,
where higher values of these metrics represent better images. PSNR reflects the ratio of peak
signal to average energy through maximum error and mean square error. SSIM measures
similarity through brightness, contrast, and structure, with higher values representing
better image quality. UIQM comprehensively considers the three dimensions of image color,
clarity, and contrast and calculates the overall quality through weighted averaging. UCIQE
is used to quantify non-uniform color cast, blur, and low-contrast issues in underwater
images. CCF is mainly used to measure the degree of improvement in color richness
of enhanced images. The AG index is an indicator that measures the clarity and detail
preservation of an image.

Comparison methods: To scientifically and comprehensively verify the robustness
and progressiveness of our methods, we selected nine advanced UIE methods, cate-
gorizing them into broad groups of recovery-based methods—BR [21] and HLRP [10];
and enhancement-based methods—CBF [22], CBLA [60], EUICCCLF [25], MCLLAC [70],
PCDE [56], TEBCF [71], and WWPF [26]. BR and HLRP are based on Bayesian Retinex
theory and the Retinex variation model, respectively. CBF, CBLA, EUICCCLF, MCLLAC,
PCDE, and TEBCF are very advanced methods that use different enhancement strategies
for UIE. WWPF is based on weighted wavelet visual perception fusion technology. These
methods have their own characteristics and jointly promote the development of underwater
image-processing technology.

Experimental environment and parameter settings: All the experiments are tested
using MATLAB 2020a software on a 2024 Redmi Book Pro 16 computer configured with
Ultra 5 3.1K 165Hz DCI-P3 32G 1T. With this experimental environment established, we
now turn to the parameter settings of our method. Taking into account both the image-
enhancement effect and computational efficiency, the primary parameter settings for our
method are outlined as follows: the transformation coefficient is γ = {0.8, 1.8, 2.5, 4}, and
α is fixed to 1 in Equation (7) to produce the globally enhanced sequence; the guided filter
parameter is set to r = 25, ε = 0.005 in Equation (10) to obtain the detail-enhanced image;
the decomposition level is K = 3, and the radius is rd = {5, 11, 17} for the SWF-based
multi-scale decomposition in Equation (11) to produce the LF image and HF images; the
parameter σD is set to 0.12 in Equation (13); the parameter σs is set to 0.3 in Equation (15);
and the size of patch Bsur

k is 5 × 5 in Equation (16). Using the aforementioned parameters,
the proposed method exhibits good enhancement effects across a diverse array of real-world
underwater scenarios.

Experiment categories: To fully assess the effectiveness of the proposed method, we
conducted five categories of experiments: qualitative comparison, quantitative comparison,
application testing, complexity analysis, and limitation analysis.

4.2. Experimental Analyses
4.2.1. Qualitative Comparison

We used different methods to process images from six datasets: BRUD, OD, RUIE,
SAUD, UIDEF, and UIEB. From these, we selected representative images for qualitative
analysis. Figures 8–10 show the results processed using the different methods.



Symmetry 2025, 17, 725 17 of 27

Symmetry 2025, 17, x FOR PEER REVIEW 17 of 28 
 

 

in Equation (16). Using the aforementioned parameters, the proposed method exhibits 
good enhancement effects across a diverse array of real-world underwater scenarios. 

Experiment categories: To fully assess the effectiveness of the proposed method, we 
conducted five categories of experiments: qualitative comparison, quantitative compari-
son, application testing, complexity analysis, and limitation analysis. 

4.2. Experimental Analyses 

4.2.1. Qualitative Comparison 

We used different methods to process images from six datasets: BRUD, OD, RUIE, 
SAUD, UIDEF, and UIEB. From these, we selected representative images for qualitative 
analysis. Figures 8–10 show the results processed using the different methods. 

 
(a) Raw (b) BR (c) CBF 

 
(d) CBLA (e) EUICCCLF (f) HLRP 

 
(g) MCLLAC (h) PCDE (i) TEBCF 

 
            (j) WWPF          (k) Ours 

Figure 8. Comparison of enhancement results of different UIE methods using the UIEB dataset. Figure 8. Comparison of enhancement results of different UIE methods using the UIEB dataset.



Symmetry 2025, 17, 725 18 of 27

Symmetry 2025, 17, x FOR PEER REVIEW 18 of 28 
 

 

Figure 8 shows two images selected from the UIEB dataset with blue distortion and 
image blur. The images obtained using our method have more natural and realistic col-
ors, and they significantly enhance contrast. This improvement makes details such as 
fish and conch clearly visible, as shown in Figure 8k. In contrast, the PCDE and TEBCF 
methods are relatively poor at correcting natural colors and even introduce some noise, 
affecting visual quality seriously, as shown in Figure 8h,i. CBF eliminates color cast, but 
it performs poorly in contrast enhancement, as shown in Figure 8c. While CBLA and 
HLRP address color cast and improve global contrast effectively, these methods exhibit 
localized over-enhancement artifacts, leading to detail loss, as demonstrated in Figure 
8d,f. Figure 8b shows that BR restores vivid and realistic colors to the scene and enhanc-
es contrast, but the overall brightness improvement is not as effective as that achieved 
using our method. 

 
(a) Raw (b) BR (c) CBF 

 
(d) CBLA (e) EUICCCLF (f) HLRP 

 
(g) MCLLAC (h) PCDE (i) TEBCF 

Symmetry 2025, 17, x FOR PEER REVIEW 19 of 28 
 

 

 
                   (j) WWPF          (k) Ours 

Figure 9. Comparison of enhancement results of different UIE methods using the BRUD dataset. 

Figure 9 shows images with severe yellow distortion taken from different angles 
selected from the BRUD dataset. Figure 9b–f all have poor performance in terms of color 
correction. Due to excessive correction, the enhanced image even introduces purple 
tones, affecting the visual effect seriously, as shown in Figure 9d,f. Figure 9h,j show 
roughly removed color cast, but there is still insufficient contrast. Figure 9g shows that 
MCLLAC achieved natural colors and good contrast, similar to the effect produced by 
the proposed method. 

(a) Raw (b) BR (c) CBF 

(d) CBLA (e) EUICCCLF (f) HLRP 

Figure 9. Comparison of enhancement results of different UIE methods using the BRUD dataset.



Symmetry 2025, 17, 725 19 of 27

Symmetry 2025, 17, x FOR PEER REVIEW 19 of 28 
 

 

 
                   (j) WWPF          (k) Ours 

Figure 9. Comparison of enhancement results of different UIE methods using the BRUD dataset. 

Figure 9 shows images with severe yellow distortion taken from different angles 
selected from the BRUD dataset. Figure 9b–f all have poor performance in terms of color 
correction. Due to excessive correction, the enhanced image even introduces purple 
tones, affecting the visual effect seriously, as shown in Figure 9d,f. Figure 9h,j show 
roughly removed color cast, but there is still insufficient contrast. Figure 9g shows that 
MCLLAC achieved natural colors and good contrast, similar to the effect produced by 
the proposed method. 

(a) Raw (b) BR (c) CBF 

(d) CBLA (e) EUICCCLF (f) HLRP 

Symmetry 2025, 17, x FOR PEER REVIEW 20 of 28 
 

 

(g) MCLLAC (h) PCDE (i) TEBCF 

 
                  (j) WWPF            (k) Ours 

Figure 10. Comparison of enhancement results of different UIE methods using the OD dataset. 

Figure 10 shows the images selected from the OD dataset under low and uneven 
lighting conditions. Figure 10d,f demonstrate that CBLA and HLRP achieve luminance 
enhancement in challenging low-light conditions with non-uniform illumination, though 
with incomplete dynamic range recovery. The downside is that they may cause previ-
ously bright areas to become overly bright. Figure 10e shows that EUICCCLF increases 
image brightness without causing overexposure. However, its color reproduction effect 
is very poor, even introducing a hint of purple. Figure 10c achieves excellent con-
trast-enhancement but cannot truly restore the color of the scene. Compared with all 
methods, our method accurately reproduces the true color of the image while effectively 
suppressing the amplification effect caused by light-source interference, as shown in 
Figure 10k. Specifically, this method significantly improves the clarity of areas with in-
sufficient brightness. 

4.2.2. Quantitative Comparison 

To objectively evaluate the effectiveness of our method, we selected UCIQE, UIQM, 
CCF, and AG as non-reference indicators for evaluation. In addition, due to the inclusion 
of reference images in the UIEB dataset, we added the full-reference metrics PSNR and 
SSIM. All the evaluated metrics exhibited a positive correlation with image quality, in-
dicating that higher metric values corresponded to superior performance. Specifically, a 
higher UCIQE score signifies a more optimal balance among chroma, saturation, and 
contrast. Regarding UIQM, its value directly correlated with the overall quality of an 
image across three key dimensions: color, clarity, and contrast. For the CCF, a larger 
value denotes a more substantial enhancement in color richness. A higher AG value in-
dicates that the enhanced image offers improved visual clarity and detail discernibility. 
In terms of PSNR, a higher score implies a closer match between the processed image 
and the ground-truth color. Meanwhile, SSIM measured the similarity in brightness, 
contrast, and structural elements between the processed image and the reference image; 

Figure 10. Comparison of enhancement results of different UIE methods using the OD dataset.

Figure 8 shows two images selected from the UIEB dataset with blue distortion and
image blur. The images obtained using our method have more natural and realistic colors,
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and they significantly enhance contrast. This improvement makes details such as fish and
conch clearly visible, as shown in Figure 8k. In contrast, the PCDE and TEBCF methods
are relatively poor at correcting natural colors and even introduce some noise, affecting
visual quality seriously, as shown in Figure 8h,i. CBF eliminates color cast, but it performs
poorly in contrast enhancement, as shown in Figure 8c. While CBLA and HLRP address
color cast and improve global contrast effectively, these methods exhibit localized over-
enhancement artifacts, leading to detail loss, as demonstrated in Figure 8d,f. Figure 8b
shows that BR restores vivid and realistic colors to the scene and enhances contrast, but the
overall brightness improvement is not as effective as that achieved using our method.

Figure 9 shows images with severe yellow distortion taken from different angles
selected from the BRUD dataset. Figure 9b–f all have poor performance in terms of
color correction. Due to excessive correction, the enhanced image even introduces purple
tones, affecting the visual effect seriously, as shown in Figure 9d,f. Figure 9h,j show
roughly removed color cast, but there is still insufficient contrast. Figure 9g shows that
MCLLAC achieved natural colors and good contrast, similar to the effect produced by the
proposed method.

Figure 10 shows the images selected from the OD dataset under low and uneven
lighting conditions. Figure 10d,f demonstrate that CBLA and HLRP achieve luminance
enhancement in challenging low-light conditions with non-uniform illumination, though
with incomplete dynamic range recovery. The downside is that they may cause previously
bright areas to become overly bright. Figure 10e shows that EUICCCLF increases image
brightness without causing overexposure. However, its color reproduction effect is very
poor, even introducing a hint of purple. Figure 10c achieves excellent contrast-enhancement
but cannot truly restore the color of the scene. Compared with all methods, our method
accurately reproduces the true color of the image while effectively suppressing the amplifi-
cation effect caused by light-source interference, as shown in Figure 10k. Specifically, this
method significantly improves the clarity of areas with insufficient brightness.

4.2.2. Quantitative Comparison

To objectively evaluate the effectiveness of our method, we selected UCIQE, UIQM,
CCF, and AG as non-reference indicators for evaluation. In addition, due to the inclusion of
reference images in the UIEB dataset, we added the full-reference metrics PSNR and SSIM.
All the evaluated metrics exhibited a positive correlation with image quality, indicating
that higher metric values corresponded to superior performance. Specifically, a higher
UCIQE score signifies a more optimal balance among chroma, saturation, and contrast.
Regarding UIQM, its value directly correlated with the overall quality of an image across
three key dimensions: color, clarity, and contrast. For the CCF, a larger value denotes a more
substantial enhancement in color richness. A higher AG value indicates that the enhanced
image offers improved visual clarity and detail discernibility. In terms of PSNR, a higher
score implies a closer match between the processed image and the ground-truth color.
Meanwhile, SSIM measured the similarity in brightness, contrast, and structural elements
between the processed image and the reference image; a larger SSIM value indicates
a greater degree of similarity between them. Note that all existing underwater image-quality
evaluation metrics are not sufficiently accurate: the scores of non-reference indicators
cannot accurately reflect the visual quality of enhanced underwater images in some cases.
Therefore, we need to take multiple indicators into comprehensive consideration instead
of focusing on a single one. Table 1 shows the quantitative results of the six datasets we
used. The top three results in each row are highlighted in bold with red, green, and blue,
respectively. As shown in Table 1, compared with the raw image, our method has achieved
significant improvement in objective measures. In almost all the evaluation indicators, it
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has obtained the highest score or ranked in the top three. For the OD dataset specifically,
our method obtained the best or second-best results for all reference evaluation metrics.
This is mainly because the study uses multiple gamma-correction algorithms with varying
parameters, effectively reducing the impact of poor lighting in the OD dataset. The data
presented in Table 1 further substantiate the superior performance of our approach in
quantitative assessment.

Table 1. Quantitative analysis of the six datasets (the three highest results in each row are highlighted
in red, green, and blue, in that order).

Datasets Evaluation
Indicators RAW BR CBF CBLA EUICCCLF HLRP MCLLAC PCDE TEBCF WWPF Ours

BRUD

UCIQE↑ 0.4771 0.5293 0.5081 0.6226 0.5286 0.6179 0.5490 0.5346 0.5986 0.5627 0.6525

UIQM↑ 0.5608 1.5996 2.3498 1.8802 2.2973 0.8871 1.3528 1.6008 3.0276 2.1006 2.4853

CCF↑ 7.0239 8.9571 12.4251 32.5024 15.8290 30.7032 11.5647 9.6594 18.7826 14.8584 23.5303

AG↑ 0.4903 1.3282 2.1335 1.5617 2.3326 1.7720 1.2305 1.4690 3.5599 1.4802 1.8273

OD

UCIQE↑ 0.5448 0.5048 0.5429 0.5851 0.5626 0.5837 0.5736 0.5697 0.5826 0.5722 0.5857

UIQM↑ 1.6521 2.7976 3.6059 2.8214 3.9658 1.9674 2.8909 3.1364 3.8627 3.2448 3.9371

CCF↑ 16.0485 12.4852 15.8014 37.9957 24.2443 33.2820 23.0568 17.6160 24.1926 22.3759 26.6672

AG↑ 2.0742 3.8000 4.2889 4.4963 7.1771 4.6306 5.0316 4.6067 7.1694 4.3705 5.9752

RUIE

UCIQE↑ 0.4426 0.5879 0.4967 0.6512 0.5849 0.6129 0.5798 0.6012 0.5992 0.5906 0.5982

UIQM↑ 1.4014 4.7738 4.4384 3.6542 4.7768 4.4168 3.7840 4.1530 4.5404 4.2304 4.4431

CCF↑ 14.8171 29.9310 22.4360 67.0771 41.4597 45.4739 43.7170 40.8603 35.3210 40.5169 51.9562

AG↑ 3.8684 11.2836 7.1045 15.7547 18.1507 10.3605 14.6243 14.6483 14.1612 12.1179 19.0216

SAUD

UCIQE↑ 0.4936 0.5840 0.5389 0.6663 0.6178 0.6226 0.6007 0.5942 0.6162 0.6080 0.6165

UIQM↑ 2.2963 4.5812 4.3738 3.9400 4.1509 3.8113 3.6067 4.1854 4.3300 3.7913 4.2164

CCF↑ 18.2524 27.8821 22.0191 62.1944 41.0468 43.9144 40.2121 34.7226 32.0605 38.1954 47.4861

AG↑ 4.4179 10.2349 7.0800 13.0537 16.1383 9.1150 14.0151 11.8745 12.3647 11.2709 17.5946

UIDEF

UCIQE↑ 0.4716 0.5755 0.5162 0.6561 0.6017 0.6690 0.5887 0.5774 0.6128 0.5982 0.6137

UIQM↑ 0.8966 3.6178 3.5155 3.1145 3.7646 2.3918 2.8769 3.6624 3.8275 3.1984 3.5438

CCF↑ 13.2506 21.4098 17.6090 54.0158 31.7678 54.8675 28.7093 24.7086 28.9761 29.3680 35.0384

AG↑ 2.1640 5.8809 4.2782 6.9314 8.6566 7.0359 6.9952 6.4011 8.6170 6.2606 8.9121

UIEB

UCIQE↑ 0.5202 0.5888 0.5542 0.6709 0.6209 0.6387 0.6059 0.6107 0.6230 0.6146 0.6258

UIQM↑ 1.9872 4.4717 4.2675 4.0843 4.1072 3.5465 3.5115 4.4360 3.9668 3.6801 4.0857

CCF↑ 20.7391 28.7898 22.8915 61.1990 41.2880 47.1944 41.6458 37.0206 31.6361 39.0492 48.7332

AG↑ 4.3722 9.6317 6.6850 12.3722 15.2100 9.0808 13.0143 11.2251 11.2649 10.7014 16.2836

PSNR↑ 24.3871 29.7296 33.6080 27.9169 28.6511 29.5428 29.5392 29.6949 32.0655 29.8646 33.0964

SSIM↑ 0.5232 0.6596 0.6152 0.6578 0.6633 0.6984 0.7010 0.5910 0.7385 0.7586 0.7430

4.2.3. Application Testing

Underwater-image feature-point matching: We analyzed our algorithm using the
Harris corner detection method [72] and the SIFT feature-detection method [73].

Figures 11–13 show the results of processing images with color distortion and those
captured in dark scenes. Additionally, for the images with color distortion, we also compare
our method with the deep learning-based enhancement approaches UWCNN [3] and
Water-net [49].
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Figure 12 shows the image-processing results under dark scenes and uneven artifi-
cial lighting. The two methods in Figure 12b,c suffer from overexposure in bright areas, 
while the enhancement effect in dark areas is insufficient. Compared with conventional 
approaches, our method demonstrates superior performance in both feature 
point-detection quantity and spatial distribution. Notably, it achieves balanced feature 
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Figure 11 shows the processing performance of the Harris corner detector and three
mainstream UIE methods. The results indicate that all the UIE methods significantly
increase the number of corners compared to the raw image. It is worth noting that our
method demonstrates superior feature-extraction capability, achieving the highest angular
density among all compared techniques. In terms of spatial distribution, Figure 11b–d
show relatively concentrated distributions, while the generated corner points in this study
also have a wide spatial distribution, covering key structural areas of the image, as shown
in Figure 11e. This characteristic indicates that our method effectively preserves richer
global features while enhancing image contrast.

Figure 12 shows the image-processing results under dark scenes and uneven artificial
lighting. The two methods in Figure 12b,c suffer from overexposure in bright areas,
while the enhancement effect in dark areas is insufficient. Compared with conventional
approaches, our method demonstrates superior performance in both feature point-detection
quantity and spatial distribution. Notably, it achieves balanced feature distribution across
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various illumination regions, including shadow edges, mid-tone areas, and highlight zones.
This wide distribution characteristic overcomes the shortcomings of traditional methods
in local feature aggregation, providing more reliable input data for visual tasks such as
underwater SLAM, long-term feature tracking, and 3D reconstruction.

Figure 13 shows the results of SIFT detection on images obtained using different
methods. Figure 13a shows the raw degraded images, with only 533 and 13 feature
matches detected for the top and bottom images, respectively. This demonstrates severe
feature degradation due to underwater conditions. The number of matches increased after
processing the image using HLRP and WWPF, as shown in Figure 13b,c. However, the most
significant performance was achieved using our method, with 979 and 55 feature-point
matches, respectively. These values are approximately 83.7% and 323% higher than those
of the original image, as shown in Figure 13d. This result demonstrates the significant
advantage of our algorithm in feature preservation.

4.2.4. Complexity Analysis

In this study, images of different sizes were used to demonstrate the computational
complexity and advantages of our proposed method in terms of acceleration performance.
To analyze the acceleration performance, we compared our method with other UIE methods
using the RUIE and OD datasets. The size of images in the RUIE dataset is 400 × 300, and
in the OD dataset, the size is 1280 × 720. Tables 2 and 3 show the average running times of
the different methods. The HLRP method demonstrates the highest efficiency, while the
TEBCF method is the least efficient, mainly because the use of Contour Bougie morphology
for image enhancement decreases the algorithm’s efficiency. Our method has a slightly
lower average running time than the CBLA, EUICCCLF, and MCLLAC methods. However,
the difference is not significant, and our method is relatively better based on qualitative
and quantitative analysis and application testing.

Table 2. Comparison of average running times of different underwater image-processing methods
(image size = 400 × 300).

Methods BR CBF CBLA EUICCCLF HLPR MCLLACPCDE TEBCF WWPF Ours

Average running time (s) 0.70 0.64 0.06 0.18 0.004 0.06 0.38 1.63 0.50 0.24

Table 3. Comparison of average running times of different underwater image-processing methods
(image size = 1280 × 720).

Methods BR CBF CBLA EUICCCLF HLPR MCLLAC PCDE TEBCF WWPF Ours

Average running time (s) 2.90 2.08 0.43 0.49 0.03 0.54 2.54 12.79 1.91 1.89

4.2.5. Limitation

We have shown that the quality of the raw image can impact the results. Figure 14
gives some examples of failure cases using our method. For images with significant loss of
some details, the restoration effect is not ideal, and the clarity is insufficient, as shown in
the second column of Figure 14. Enhancement of a low-brightness scene (the first column
in Figure 14) results in color distortion, and the details of the enhanced image of a turbid
scene (the third column in Figure 14) are unclear. In addition, information loss is severe in
all channels of turbid and low-brightness images. Moreover, in highly turbid and blurry
scenes, the edge texture information of the raw image is not clear. These issues render
the global and detail-enhancement strategies ineffective, limiting the performance of our
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method. These remain major challenges for most current algorithms and may be solved by
incorporating scene-depth information in future research.

Symmetry 2025, 17, x FOR PEER REVIEW 24 of 28 
 

 

column in Figure 14) results in color distortion, and the details of the enhanced image of 
a turbid scene (the third column in Figure 14) are unclear. In addition, information loss is 
severe in all channels of turbid and low-brightness images. Moreover, in highly turbid 
and blurry scenes, the edge texture information of the raw image is not clear. These is-
sues render the global and detail-enhancement strategies ineffective, limiting the per-
formance of our method. These remain major challenges for most current algorithms 
and may be solved by incorporating scene-depth information in future research. 

 

Figure 14. Some examples of the limitations of our method. In the first row, from left to right, are 
the original images with low brightness, blurred images, and turbid scenes; the second row shows 
the results of image enhancement using our method. 

5. Conclusions 
In this study, we propose a UIE algorithm based on maximum information-channel 

correction and edge-preserving filtering. We first obtain a reference channel based on the 
principle of maximum information retention and use the reference channel to correct the 
color of the raw image. Unlike existing approaches, the proposed method achieves effec-
tive and robust performance without requiring reference images. Next, we use guided 
filtering to accomplish local enhancement of the color-corrected image and gamma 
transform with different parameter values for global contrast enhancement. Finally, we 
utilize side-window filtering to decompose the contrast-enhanced image sequence into 
LF and HF components and integrate the LF and HF components using different rules, 
thus generating high-quality underwater images. Numerous experiments have shown 
that our method is equally effective, or even better, than the latest UIE methods in terms 
of qualitative and quantitative comparisons, application testing, and runtime. 

Although our method performs well, it is limited when it comes to enhancing some 
turbid and low-brightness scenes. In future work, we plan to optimize the algorithm to 
expand its application to more scenarios with image-enhancement requirements and 
continuously explore its application potential in different visual tasks, thus bringing 
more innovative possibilities to the field of computer vision. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/doi/s1. Reference [74] is cited in the supplementary materials. 

Author Contributions: Conceptualization, W.L., and P.Q.; Methodology, W.L., J.X., S.H., H. S. and 
P.Q.; Software, J.X., S.H. and Y.C.; Validation, J.X., Y.C. and X.Z.; Investigation, P.Q.; Writ-
ing—original draft, W.L., J.X., S.H., Y.C. and X.Z.; Writing—review & editing, W.L. and H.S.; Vis-
ualization, X.Z.; Funding acquisition, W.L. and P.Q. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This work was supported by the Key Project of Natural Science Research in Anhui 
Province (Grant No.2022AH051750), in part by the Excellent Innovative Research Team of univer-
sities in Anhui Province (Grant No.2023AH010056), and in part by the Fundamental Research 
Funds for the Tongling University (Grant No. 2022tlxyrc11). 

Figure 14. Some examples of the limitations of our method. In the first row, from left to right, are the
original images with low brightness, blurred images, and turbid scenes; the second row shows the
results of image enhancement using our method.

5. Conclusions
In this study, we propose a UIE algorithm based on maximum information-channel

correction and edge-preserving filtering. We first obtain a reference channel based on the
principle of maximum information retention and use the reference channel to correct the
color of the raw image. Unlike existing approaches, the proposed method achieves effective
and robust performance without requiring reference images. Next, we use guided filtering
to accomplish local enhancement of the color-corrected image and gamma transform with
different parameter values for global contrast enhancement. Finally, we utilize side-window
filtering to decompose the contrast-enhanced image sequence into LF and HF components
and integrate the LF and HF components using different rules, thus generating high-
quality underwater images. Numerous experiments have shown that our method is equally
effective, or even better, than the latest UIE methods in terms of qualitative and quantitative
comparisons, application testing, and runtime.

Although our method performs well, it is limited when it comes to enhancing some
turbid and low-brightness scenes. In future work, we plan to optimize the algorithm
to expand its application to more scenarios with image-enhancement requirements and
continuously explore its application potential in different visual tasks, thus bringing more
innovative possibilities to the field of computer vision.
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