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Abstract: Autonomous underwater vehicle inspection in 3D environments presents signif-
icant challenges in spatial mapping for obstacle avoidance and motion control. Current
solutions rely on either 2D forward-looking sonar or expensive 3D sonar systems. To
address these limitations, this study proposes a cost-effective 3D reconstruction method
using an oscillatory forward-looking sonar with a pan-tilt mechanism that extends percep-
tion from a 2D plane to a 75-degree spatial range. Additionally, a polar coordinate-based
frontier extraction method for sequential sonar images is introduced that captures more
complete contour frontiers. Through bridge pier scanning validation, the system shows
a maximum measurement error of 0.203 m. Furthermore, the method is integrated with
the Ego-Planner path planning algorithm and nonlinear Model Predictive Control (MPC)
algorithm, creating a comprehensive underwater 3D perception, planning, and control
system. Gazebo simulations confirm that generated 3D point clouds effectively support
the Ego-Planner method. Under localisation errors of 0 m, 0.25 m, and 0.5 m, obstacle
avoidance success rates are 100%, 60%, and 30%, respectively, demonstrating the method’s
potential for autonomous operations in complex underwater environments.

Keywords: underwater vehicle; oscillatory forward-looking sonar; 3D reconstruction;
autonomous obstacle avoidance

1. Introduction

Underwater vehicle technology has seen growing applications in marine resource ex-
ploration, underwater infrastructure inspection and maintenance, marine scientific research,
and related domains [1]. In particular, for underwater structural inspection tasks involving
bridge piers, dock piles, and offshore wind power foundations [2], autonomous underwa-
ter vehicles (AUVs) and Remotely Operated Vehicles (ROVs) need to accurately perceive
their surroundings and navigate autonomously to avoid obstacles, thereby ensuring safe
and efficient task execution. However, in contrast to terrestrial and aerial environments,
underwater perception technologies face significant challenges such as severe light attenu-
ation and low visibility [3,4], which substantially limit the effectiveness of conventional
sensor-based environmental perception methods.

Currently, underwater environmental perception predominantly depends on sonar.
Three-dimensional sonar can directly provide high-precision 3D point cloud data; however,
its high cost and large size render it unsuitable for small underwater robotic platforms.
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Two-dimensional forward-looking sonar (FLS) offers the advantages of lower cost and
smaller size, making it widely adopted in underwater robots. However, its perception
range is confined to the scanning plane, preventing it from acquiring three-dimensional
spatial information, which is inadequate for autonomous obstacle avoidance in complex
underwater environments.

To address the limitations of existing technologies, researchers have developed various
3D reconstruction methods based on two-dimensional sonar systems. Tang et al. [5] pro-
posed an algorithm that reconstructs 3D height information from a single two-dimensional
sonar image by analysing acoustic shadow patterns and echo distances to extract object
height data. Although simple and effective, this method requires a relatively flat seafloor
and prior knowledge of the sonar-to-seafloor distance. Sadjoli et al. [6] introduced the
Orthogonal Multi-beam Sonar Fusion (OMSF) technique, which enables real-time 3D point
cloud reconstruction using two orthogonally arranged multi-beam sonars. This method
has demonstrated strong performance in reconstructing solid surface objects; however, its
reconstruction accuracy for frame-like structures remains limited. Kim et al. [7] proposed
a multi-perspective scanning method based on AUVs, which generates 3D point clouds
of target objects by analysing sonar geometry and temporal variations in sonar images.
This method not only generates 3D point clouds in real time but also adaptively plans
subsequent scanning paths based on the 2D distribution of the point cloud, thereby en-
hancing reconstruction quality. However, this method relies on precise AUV positioning
and attitude data, as any inaccuracies in these measurements will compromise the 3D
reconstruction quality.

This paper presents a three-dimensional reconstruction approach utilising an oscilla-
tory forward-looking sonar to overcome the limitations of existing methods. By mounting
a conventional two-dimensional forward-looking sonar on a vertically adjustable pan-tilt
mechanism, the perception range is expanded from a two-dimensional plane to a spa-
tial range of up to 75 degrees. In contrast to traditional methods, this approach enables
the acquisition of three-dimensional spatial information without relying on the robot’s
own movement, offering benefits such as a simple structure, low cost, and high adapt-
ability. Additionally, a frontier extraction technique based on polar coordinates is intro-
duced for sonar images captured at sequential angles, which can capture complete contour
frontier information.

The primary contributions are as follows:

(1) Propose a three-dimensional reconstruction method based on an oscillatory forward-
looking sonar, which extends the perception range of two-dimensional sonar into
three-dimensional space.

(2) Design a frontier extraction algorithm based on polar coordinates for sonar images,
enhancing the completeness and accuracy of frontier extraction.

(3) Integrate the three-dimensional reconstruction method with the Ego-Planner path
planning algorithm and MPC algorithm to establish a comprehensive underwater
three-dimensional perception, planning, and control system.

(4) Verify the effectiveness and robustness of the proposed method through outdoor bridge
pier scanning experiments and obstacle avoidance tests in simulation environments.

2. System Design
2.1. Hardware Architecture

An ROV equipped with a pan-tilt mechanism serves as the experimental platform,
as illustrated in Figure 1. It is equipped with six thrusters, enabling 5 degrees of freedom
in motion, and a GPS module for receiving satellite signals to determine positioning at
the water surface. An edge computing module is installed in the electronic compartment,
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enabling the ROV to perform autonomous navigation. The pan-tilt mechanism is equipped
with LED lights, a camera, and a forward-looking sonar. Connected to the main body by
an underwater motor, the pan-tilt mechanism offers a pitch angle range of 75 degrees when
the motor operates. It should be noted that due to spatial constraints in the mechanical
design, the pan-tilt mechanism is driven by only one motor. Consequently, it can adjust the
pitch angle but cannot modify the yaw angle.
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Figure 1. Graphical representation of ROV coordinate systems and sensor placement.

To accurately describe the motion state of the ROV in space, two right-handed coordi-
nate systems are defined according to the specifications recommended by the International
Towing Tank Conference (ITTC) and the Society of Naval Architects and Marine Engineers
(SNAME), the fixed coordinate system and the motion coordinate system. These coordinate
systems enable a comprehensive description of the ROV’s motion characteristics in space.
Specifically, the ROV’s attitude is represented by the Euler angles (i.e., attitude angles)
between the fixed and motion coordinate systems, while the velocities, angular velocities,
forces, and moments acting on the ROV are expressed in the motion coordinate system.
The motion parameters of the ROV are provided in Table 1.

Table 1. Motion state variables of ROV.

Degree of Displacement and Velocities and Angular  Forces and Moments
Freedom (DOF) Angles (Fixed Velocities (Motion (Motion Coordinate
Coordinate System) Coordinate System) System)
Surge X u X
Sway y v Y
Heave z w z
Roll ¢ P K
Pitch 0 q M
Yaw P r N

2.2. Software Architecture

The proposed algorithm is developed on the ROS distributed robot operating system,
as illustrated in Figure 2. The estimated ROV odometry, pan-tilt angle, sonar images, and
global waypoints serve as inputs to the algorithm, which, together with the data preprocess-
ing module, 3D point cloud generation module, and planning and control module, form the
underwater three-dimensional spatial perception—planning—control system. Additionally,
the focus of this paper does not extend to researching underwater localisation methods.
Different underwater localisation methods rely on various sensors and consequently ex-
hibit different localisation errors [8]. Therefore, rather than adopting a specific underwater



J. Mar. Sci. Eng. 2025, 13,943

40f19

localisation method, this study investigates the impact of different localisation errors on
the proposed perception—planning—control system. This approach enhances the broader
applicability of our research.
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Figure 2. Framework diagram of the 3D underwater spatial perception—planning—control algorithm.

The estimated ROV odometry data first undergo Gaussian filtering to reduce fluctu-
ations and then are combined with the pan-tilt mechanism’s angle and position relative
to the body coordinate system to calculate the sonar’s odometry data. To improve the
accuracy of three-dimensional reconstruction, a time synchronisation mechanism filters
sonar images and odometry data within a specified time range, which are then input into
the 3D point cloud generation module. In the 3D point cloud generation module, sonar
image frontiers are first scanned using the polar coordinate system, then the frontier points
are converted from polar coordinates to Cartesian coordinates. Next, the sonar odometry
data are combined with coordinate transformation to generate a single-frame point cloud
in the world coordinate system. Due to the relatively small number of sonar points, the
generated single-frame point clouds are continuously integrated to ultimately form the
3D point cloud of the spatial environment. At this stage, the generated point cloud may
contain outlier noise, and statistical filtering is applied to remove these outliers. In the
planning and control module, the Ego-Planner algorithm integrated in the planning and
control module processes spatial 3D point cloud data and generates real-time trajectories by
fusing ROV odometry data. This optimisation-based planner computes collision-free path
points that constitute the reference trajectory for the ROV’s subsequent motion tracking.
Based on the ROV’s current state and position commands, the nonlinear MPC algorithm
generates control signals for the six thrusters through rolling optimisation. By continuously
executing the above algorithm, the ROV can perceive the surrounding 3D environment,
identify obstacle positions and sizes, and navigate around obstacles during global path
planning to successfully complete operational tasks.

3. Materials and Methods
3.1. Three-Dimensional Point Cloud Generation

In the ROV structure, the sonar is rigidly mounted to the pan-tilt mechanism, which
is in turn fixedly connected to the main body. The pan-tilt mechanism drives the sonar to
swing up and down, achieving a wider detection range. For the sonar frontier extraction
algorithm, processing is typically performed on the echo intensity of each beam based
on the sonar’s raw data [9-11]. However, not all sonars provide raw data, while sonar
images are a more widely used display method, and image data are easily obtainable.
Therefore, targeting the fan-shaped imaging characteristics of sonar, an angle-by-angle
scanning frontier extraction algorithm based on the polar coordinate system is proposed,
as shown in Figure 3, where the yellow lines represent the contours of the structure, the
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blue bars illustrate angle-by-angle scanning, and the green lines represent the extracted
frontier points.

Structure contours Sonar image
[N Frontier points
[ Angle-by-angle

scanning process

3

, [

Figure 3. Polar coordinate sonar processing: angle-wise frontier detection.

The 3D point cloud generation algorithm has two components: the sonar pose esti-
mation algorithm and frontier point extraction algorithm. In the sonar pose estimation
algorithm, the position transformation equation is

world _ _ world world  gsonar
Psonar = Pbase +Rbase base (1)

The attitude transformation equation is

world __ _world sonar
sonar — Ybase ® Tbase (2)

q

where p¥old ¢ R3 represents the position of the sonar in world coordinate system,

pm‘;reld € R3 represents the position of the base coordinate system in world coordinate

system, R}‘;’a‘;reld € SO(3) is the rotation matrix of the base coordinate system derived from

quaternion q{)‘g;reld through the Rodrigues formula, %" € R® represents the translation
from the base coordinate system to sonar coordinate system, and ® denotes quaternion
multiplication. This transformation unifies the coordinate systems by combining the rela-
tive pose from the body coordinate system to the sonar coordinate system with the global
pose provided by the body odometry, thereby obtaining the position and attitude of the
sonar point cloud in the world coordinate system. In the position transformation equation,

the rotation matrix Rﬁ‘;‘;’gd calculation employs

Go+ a5 — 45— a2 2-(9xdy — Gudz)  2-(924z + qoiy)
RO = | 2:(qeqy +9udz) G5 — 2+ 05— G2 2:(qy9: — Jolx) 3)
2:(9x4z — Gudy)  2-(9yd: + qodx) G — 9% — 4y + 42

In the angle-by-angle scanning frontier extraction algorithm based on the polar coordi-
nate system, further point cloud generation processing is performed based on the images
returned by sonar. The relationship for the frontier points between the polar coordinate
system (rsp, 95}7) and Cartesian coordinate system (xs., ys.) can be expressed as

{xsc =cx+7s, cosGSp @)
Ys, = Cy — rspsinf)sp

where (cy, ¢ ) represents the scanning origin in the sonar image coordinate system, defined as
(cx,¢y) = ((W/2),H — 1), where W and H are the width and height of image, respectively.



J. Mar. Sci. Eng. 2025, 13,943

6 of 19

The frontier points are filtered according to the following conditions:
F={(x,y) | Ir<H,O € Oscan, I(x,y) > Iy A\Vr <1, 1(x,y") < Iy} (5)

where Ogcan represents the set of valid scanning angles, and I, represents the threshold
value. It should be noted that the CFAR method is not employed in this study. Since the
CFAR approach involves multiple computational steps, the direct thresholding method
is more suitable for meeting the real-time requirements essential for obstacle avoidance
manoeuvres.

The specific scanning process for frontier points is shown in Algorithm 1.

Algorithm 1 Polar Frontier Detection

Input: Sonar image I € NAXW “threshold I;;, = 180
Output: Frontier points set 7
Parameters:

c+ ((W/2),H —1)//Scan origin

© + {25°,26',...,155" } // Azimuth angles

Initialise F < &

For each 0 € © do:

For =1to H do:

p « Polar2Cartesian(r, #) //Coordinate conversion:

L

Xs, = Cx + I’SPCOSQSP
Ys. = Cy — rspsinﬂsp
If I(x,y) > Iy, then:
F+— FU{(x,y)}
Break/ /Terminate current radial search
End For
End For
10. Return F

R N

After completing the extraction of frontier points, further calculations are performed
to obtain the point cloud. The coordinates p'°a! = (xp, y,,zp) of frontier points in local
coordinate system of the underwater robot are calculated as follows:

Xp = (H —ys.)-dy
Yp = (W/2—x5,.)-Ar (6)

where z is the initial depth value of the sonar. The radial resolution A, is defined as
Ar = Ryax / H, where Ry, represents the maximum range of sonar.

Then, rigid body transformation applied to map the point cloud p'°@! in the local coor-
dinate system to the point cloud p*°"' in the world coordinate system can be expressed as

pworld — Rs ((Ps’ 95, lle) .plocal + (7)

where t; € R3 is the translation vector, representing the sonar’s position in the global frame.
The rotation matrix can be constructed in Z-Y-X order as

Rs = RZ(¢S)Ry(95)Rx(¢s) (8)
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The rotation matrices of each axis can be expressed as

cosps —sings 0 cosfs 0 sinby 1 0 0
R; = |[sinyps cosps O ,Ry = 0 1 0 |,Ry= 1|0 cosp, —sing, 9)
0 0 1 —sinfs 0 cosOs 0 sing, cosp,

Due to noise in the sonar image, several outlier points may appear in the generated
point cloud within the world coordinate system. A denoising algorithm based on local
density analysis (i.e., statistical filtering algorithm) is used to filter the generated point cloud.
Firstly, the algorithm constructs a fixed-radius neighbourhood for each point and counts
the number of other points in that neighbourhood as a local density value. Subsequently,
by setting a density threshold, points with density lower than normal data are filtered out
as outliers, thereby removing noise data while preserving the overall structure and key
features of the data. The formula related to statistical filtering algorithm is as follows:

1
d; = % Z | pi—p ||2 (10)
JEN(i)
Pﬁltered = {pi | di < Y4+ O“Td} (11)

where || p; — P H2 represents the Euclidean distance (L2 norm) between points p; and
P Ni (i) represents the k-nearest neighbour set of point p;, i.e., the k points closest to
p;, d; represents the average neighbourhood distance of point p;, used to measure the
distribution of that point with its neighbouring points. If d; is large, it indicates that the
distance between point p; and its neighbourhood points is far, leading to its classification
as an outlier. Additionally, y; is the mean of the average neighbourhood distances d; of all
points, 0, is the standard deviation of the average neighbourhood distances d; of all points,
and « is an adjustable parameter used to control the strictness of outlier determination.
The larger « is, the more lenient the determination condition should be; the smaller «
is, the stricter the determination condition should be. Therefore, y; + a0, serves as the
determination threshold for outliers. If d; is less than this threshold, p; is considered a
normal point; otherwise, it is considered an outlier. Further filtering is applied to points
greater than a certain depth value to filter out points that do not conform to environmental
structural features, as described by the following formula:

Pfinal = {p < Pfiltered | Pz Z pzthreshold} (12)

where Pgp, is the final processed point cloud, Prjtereq is the point cloud after statistical
filtering, p; is the z-axis coordinate of the point cloud in the world coordinate system, and
Pziresiors 18 the depth value threshold.

3.2. Motion Control Strategy

In this study, the Ego-Planner path planning algorithm [12] is employed to plan local
paths among global waypoints, while a nonlinear MPC algorithm is utilised to track the
planned paths.

Ego-Planner is a 3D spatial trajectory planning framework designed to generate
safe, smooth, and dynamically feasible trajectories in complex environments. In contrast
to conventional planning methods, Ego-Planner eliminates the need for Environmental
Signed Distance Field (ESDF) maps. Instead, it directly performs collision detection and
obstacle avoidance using point cloud data, significantly reducing computational com-
plexity and improving system real-time performance and robustness. The core philos-
ophy of this framework lies in its phased optimisation strategy, which progressively
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generates trajectories that satisfy smoothness, static obstacle avoidance, and dynamic
feasibility requirements.
The Ego-Planner planning workflow comprises the following steps:

e Initial Trajectory Generation: A minimum-jerk or minimum-snap trajectory connecting
the start and goal points is initially generated without considering obstacles, satisfying
only boundary state constraints.

e  Collision Detection and Penalty: Using point cloud data, the A* algorithm iden-
tifies collisions between the initial trajectory and obstacles. A refined collision
penalty cost function is formulated to ensure effective obstacle avoidance during
subsequent optimisation.

e  Trajectory Optimisation Model: The trajectory is parameterised using B-spline curves,
and an optimisation model incorporating smoothness, static obstacle avoidance, and
dynamic feasibility is established. Iterative optimisation produces collision-free,
smooth trajectories.

e Temporal Reallocation and Trajectory Refinement: When dynamic feasibility con-
straints are violated in specific trajectory segments, Ego-Planner reallocates temporal
parameters and reconstructs the optimisation model to incorporate smoothness, dy-
namic constraints, and curve fitting, thereby generating executable trajectories.

In nonlinear MPC algorithms [13-15], future state predictions are based on the estab-
lished kinematics and dynamics models of the ROV along with system inputs. The core
principle of this approach involves integrating three fundamental components—predictive
modelling, receding horizon optimisation, and feedback correction—to achieve effective
control of complex systems.

The Model Predictive Control framework primarily consists of the following key components:

e  Predictive Model: As the foundation of MPC, the predictive model characterises the
system’s dynamic behaviour. It utilises the current state and future control inputs to
forecast output states over a defined prediction horizon.

e  Receding Horizon Optimisation: Unlike conventional global optimal control strategies,
MPC employs a receding horizon approach. At each sampling instant, it computes the
optimal control sequence over a finite prediction window by minimising a predefined
cost function, subject to the current system state and imposed constraints.

e  Feedback Correction: Discrepancies between predicted and actual system outputs may
result from model inaccuracies, external disturbances, or system nonlinearities. To mit-
igate these effects, MPC integrates real-time feedback by measuring output errors and
adjusting subsequent predictions accordingly. This mechanism improves robustness to
uncertainties and ensures reliable performance across varying operational conditions.

The kinematic and dynamic models of the ROV are established as follows. The trans-
formation relationships between linear and angular velocities and the spatial orientation
are given as follows:

wl [¢

_ p
=R| v |, |0]| =T|g (13)
z w 1/; 7

where matrices R and T represent the transformation of ROV from the vehicle-fixed coordi-
nate system to the inertial reference frame, which can be formulated using Euler angles as

cosOcosyp  —cospsiny + singsinfcosyp  singsiny + cosgpsindcosyp
R = |cosOsinyp  cospcosy + singsinfsinyp  —singcosyp + cos¢psinbsinip (14)
—sinf singcos0 cos¢pcosh
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1 sing-tand  cos¢p-tand
T=1|0  cos¢ —sing (15)
0 sing/cos cos¢/cosd
Since the pitch and roll angles remain unregulated during motion and are assumed to

be stabilised through initial trim adjustments, the aforementioned model can be simplified
to derive the ROV kinematic model:

X cos sinp 0 Of |u

: y singg cosp 0 O |v

=] | o o 1 ollw (16)
¥ 0 0 0 1] |r

where 7 = [x,y,z,9]T, v = [u,0,w,r]T, and J(y7) represents the transformation matrix.
Following the dynamic model established by Fosson et al. [16] for underwater vehicles,

the ROV dynamics can be expressed as
Mo+ C(v)v+D(v)v+g(y) =T (17)

where M denotes the inertia matrix (including added mass), C(v) represents the Coriolis
and centripetal matrix, D(v) is the hydrodynamic damping matrix, g(#) contains restoring
forces from buoyancy and gravity, and 7 defines the generalised force vector generated
by thrusters. The added mass matrix M4 is related to the acceleration of the ROV during
motion and can be determined using empirical formulas established in submarine design
methodology. The Coriolis and centripetal matrix C(v) is dependent on both the physical
parameters of the ROV and the added mass matrix M4. The hydrodynamic damping
matrix D(v), which characterises the fluid resistance forces and moments acting on the ROV,
is determined through computational fluid dynamics (CFD) simulation software. Due to
the relatively small volume and mass of the pan-tilt mechanism compared to the overall
ROV system, its rotational effects are reasonably neglected in the modelling process, thereby
simplifying the dynamic model while maintaining sufficient accuracy for control purposes.
In this study, u serves as the control input, with its components defined as
u = [ul, up, us,uy)’, where uy, uy, and u3 indicate control forces along the body-
fixed axes, and uy represents control moments about the corresponding axes. Let
t= [tl, to, t3,t4,t5,t6]7 denote the input force signals of eight thrusters, and the thruster

allocation can be formulated as

-1 1 0 1
-1 -1 0 -1
P L (18)
1 -1 0 1
0 0 -1 0
0 0 -1 0

The relationship between 7 and the individual thrusts from the six thrusters can be
derived using positional vector analysis relative to the ROV’s body-fixed origin, as follows:

[0.707 0.707 —0.707 —0.707 0 O

0.707 —0.707 0.707 —0.707 0 0
e—ki— | O 0 0 0 11, 19)

0 0 0 0 0 0

0 0 0 0 0 0

0294 —0294 —0294 0294 0 0
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where K denotes the thrust allocation matrix for the ROV.

Next, the objective function for the MPC algorithm is constructed. During reced-
ing horizon optimisation, the future motion states of the ROV are predicted using the
formulated objective function in conjunction with the established ROV dynamics model.
The objective function balances position error (i.e., the deviation between the current and
target states) and control effort, with their relative contributions regulated by predefined
weighting coefficients. The objective function is mathematically represented as

Np N-1
J(k) = Y llnCk +ilt) = malk+il#)lIG + Y lluk+il6) | (20)
i=1 i=0
where 4 = [x,y,z,¢]T represents the real-time position and yaw angle of the ROV,

4 = (X4, V4,24, %a)T denotes the reference waypoints generated by the Ego-Planner local
path planner for tracking, and Q and R are the weighting coefficients for positional error
term and control input term, respectively. The dynamic performance and steady-state
stability of the ROV motion can be adjusted by tuning the weight ratio.

4. Experimental Validation
4.1. Three-Dimensional Reconstruction Experiment in Stationary Mode
To evaluate the effectiveness of the three-dimensional reconstruction method based

on the oscillatory forward-looking sonar, experiments were conducted in a river beneath a
bridge, as shown in Figure 4.

Forward sonar image|
)

Ll

o gy
L L% ) - |

- 'ﬁ-u-k
Pan-tilt uhit)
¥ W

Figure 4. Experimental scene and sonar image for 3D reconstruction.

The sonar system employed in the experiment features a 10 m range, with a 70-degree
horizontal field of view and a 12-degree vertical field of view. The system comprises
512 beams, achieving an angular resolution of 0.6 degrees. During the experiment, the
ROV scanned the bridge piers with position and attitude control enabled to ensure that its
position remained fixed and its attitude unchanged. The pan-tilt angle was varied within a
range of —30 degrees to 5 degrees, while the forward-looking sonar continuously produced
sonar images. A laser rangefinder was used from the shore to measure the diameter of the
bridge piers and the distance between them, serving as a reference for comparison with the
three-dimensional reconstruction results.

Figure 5 presents the three-dimensional reconstruction results of the bridge piers.
The gridded surface denotes the water level, with each cell corresponding to a defined
spatial resolution. The point cloud is colour-coded to represent variations in depth. The
reconstruction successfully captures all three bridge piers included in the scan. By fitting
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the point cloud data, the diameter of each pier and the inter-pier distances can be estimated,
as shown in Table 2.

l = — = .
| = =X = |
: I I:l m
| - : m a
Figure 5. Three-dimensional graphical representation of bridge pier 3D reconstruction.
Table 2. Comparison between measured and estimated values for pier diameters and inter-
pier distances.
Measured Values (m)
Item Estimated Values (m) Error (m)
a b c Average Value
Pier diameter 1.981 1.961 1.978 1.973 2.112 0.139
Distance between I and II 6.231 6.115 6.187 6.178 6.300 0.122
Distance between II and III 6.658 6.736 6.712 6.702 6.499 0.203

The diameters of the bridge piers were measured three times using a laser rangefinder.
The average pier diameter was 1.973 m, with the average distances between Pier I and
Pier II and between Pier II and Pier IIIl measuring 6.178 m and 6.702 m, respectively. The
pier diameter estimated from the point cloud data was 2.112 m, with distances between
Pier I and Pier II and between Pier II and Pier IIl measured as 6.300 m and 6.499 m, respec-
tively. The corresponding errors were 0.139 m, 0.122 m, and 0.203 m. These results indicate
that the maximum experimental error was 0.203 m. In the Ego-Planner path planning
algorithm, incorporating an obstacle expansion margin can mitigate the impact of three-
dimensional reconstruction errors. Consequently, the oscillatory forward-looking sonar
demonstrates effectiveness in three-dimensional structural reconstruction and mapping,
with the generated point cloud data suitable for obstacle avoidance and motion control.

4.2. Three-Dimensional Reconstruction of Water Tank Environment and Autonomous Obstacle
Avoidance Experiments

To assess the autonomous obstacle avoidance and motion control capabilities of the
ROV based on 3D reconstruction point cloud, simulation experiments were conducted in
the ROS Gazebo environment. The simulation experiments were conducted on a system
running Ubuntu 20.04, equipped with an AMD Ryzen 9 5900HX CPU, 32 GB of RAM,
and an NVIDIA GeForce RTX 3080 GPU. The sonar plugin was developed based on the
work of Choi et al. [17,18]. During runtime, the proposed algorithm exhibited CPU load
fluctuations around 70%. The fundamental parameters of the ROV used in the ROS Gazebo
environment are listed in Table 3.

Table 3. ROV rigid-body parameters.

Parameter Value Parameter Value

m 68 kg Height 0.55m
Length 0.61 m g 9.81 m/s?

Width 0.73m Net buoyancy 0.20 kg




J. Mar. Sci. Eng. 2025, 13,943

12 of 19

The parameter settings of the Ego-Planner local path planner are summarised in Table 4.

Table 4. Ego-Planner algorithm parameters.

Parameter Value (m) Parameter Value (m)
map_size_x 30 obstacles_inflation 0.6
map_size_y 30 local_map_margin 10
map_size_z 15 ground_height -10

max_vel 0.45 lambda_smooth 1.0
max_acc 0.2 lambda_collision 0.7
planning_horizon 30 lambda_feasibility 0.1

The parameter settings of the MPC algorithm are summarised in Table 5.

Table 5. MPC algorithm parameters.

Parameter Value
Prediction horizon length 1s
Number of steps 100
State weighting matrix (200, 200, 300, 0, 0, 150, 0, 0,0, 0,0, 0)
Control weighting matrix (0.008, 0.008, 0.001, 0.008)
Control input constraints (lower bound) (—100, —100, —200, —150)
Control input constraints (upper bound) (150, 150, 200, 150)
Numerical integration method Explicit Runge-Kutta (ERK)

Real-time Sequential Quadratic

Nonlinear optimisation method Programming (SQP-RTI)

In the simulation environment, a pool was constructed with dimensions of 20 m
(length), 10 m (width), and 10 m (depth). Two square-section pillars, each with a side length
of 1 m, were placed in the pool as obstacles, as illustrated in Figure 6. The underwater
robot started from the initial point and completed its cruise by sequentially following
predefined global waypoints. A rectangular trajectory with three distinct depth variations
was designed for the simulation experiment. Odometry data with standard deviations
of 0 m, 0.25 m, and 0.5 m were used for three-dimensional reconstruction to validate
the robustness of the proposed 3D spatial perception, planning, and control system. It is
important to note that since the depth sensor and electronic compass provide high-precision
depth and yaw measurements, no noise was added to these values. Instead, noise was
introduced only to the x and y position coordinates. Additionally, an acoustic model,
such as multi-path reflection, was not incorporated during simulation experiments. This
decision was based on empirical observations from physical experiments, where shadow
artefacts caused by multi-path reflection appeared behind obstacles when the pan-tilt
mechanism was in a horizontal position. These reflection-induced shadows exhibited lower
intensities compared to actual shadows. Since the proposed method only processes the
frontier points, multi-path reflection did not affect the three-dimensional reconstruction
results. Furthermore, when the pan-tilt mechanism was tilted downward, the influence
of multi-path reflections was further diminished. Based on these considerations, acoustic
modelling (mainly multi-path reflection) was not incorporated for the sonar simulation.
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Figure 6. Schematic diagram of the simulation test environment.

Figure 7 panels (a), (d), and (g) illustrate the ROV motion trajectories under varying
levels of standard deviation noise. Green spheres represent the ROV’s starting position, red
spheres denote predefined global waypoints, and red dashed lines connect the command
positions generated by the Ego-Planner path planning algorithm. Blue lines trace the ROV’s

actual trajectory.

— Actual Trajectory
--- Command Trajectory

Initial Position
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Z Position (m)

my 4 w0

(a)
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Figure 7. Results with odometry ¢ = 0/0.25/0.5 m: (a,d,g) trajectories; (b,c,e,fh,i) 3D point clouds.
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The results demonstrate that the ROV successfully followed the rectangular trajectory
at three different depths. When the oscillatory forward-looking sonar detected obstacles
ahead, it promptly planned alternative paths to avoid them. The nonlinear MPC effectively
tracked the command positions, enabling successful task completion.

An examination of the three-dimensional reconstruction point cloud reveals that as
odometry noise increases, the point cloud becomes increasingly disordered. This indi-
cates a gradual decline in the accuracy of estimated obstacle positions and dimensions,
necessitating larger obstacle expansion margins in the Ego-Planner algorithm to prevent
potential collisions.

Figures 8-10 illustrate the ROV state information under different odometry standard
deviations. The odometry curves demonstrate the ROV'’s effective tracking of command
positions. During trajectory turns, minor overshoots occur; however, the system stabilises
quickly. The velocity curves indicate that the ROV’s maximum velocity is approximately
0.45 m/s. Notably, as the odometry standard deviation increases, neither the maximum nor
the average velocity exhibit significant variation. This stability is attributed to the robust
state estimation and control capabilities of the Ego-Planner path planning algorithm and
the MPC algorithm.
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Figure 8. Time-series plots of ROV state variables under perfect odometry assumption (o = 0 m).
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The error curves were obtained by subtracting noisy odometry values from the com-
mand positions, and these differences were incorporated into the objective function of the
nonlinear MPC controller. The error curves show that X, y, and z position errors and yaw
angle errors fluctuate around zero, indicating the controller’s ability to promptly correct
position deviations. It is worth noting that at the initial time, y, z, and yaw errors appear
larger, as the task has not yet started, and the differences are computed between odometry
and the origin coordinates. This approach simplifies program implementation and does
not affect algorithm performance.

The control input curves demonstrate that as odometry noise increases, control inputs
exhibit greater oscillations, which may lead to increased energy consumption. However, no
filtering algorithm was applied in order to preserve critical state information and maintain
the effectiveness of obstacle avoidance and motion control.

In the simulation experiments, ten trials were conducted for each level of odometry
standard deviation to evaluate the impact of localisation errors on obstacle avoidance
success rates. The results are summarised in Table 6. When the standard deviation was 0 m,
the obstacle avoidance success rate was 100%; in contrast, it dropped to 30% at a standard
deviation of 0.5 m.

Table 6. Statistical analysis of avoidance success rates vs. odometry uncertainty (o = 0-0.5 m).

Standard Deviation Success Rate
c=0m 100%
0=025m 60%
o=05m 300/0

The data demonstrate that obstacle avoidance success rates progressively decline as
the standard deviation increases. This degradation is primarily attributed to the adverse
influence of highly inaccurate localisation information on the nonlinear MPC algorithm.
Excessive positioning errors may cause the ROV to deviate from its intended trajectory,
ultimately resulting in potential collisions with obstacles. It is also worth noting that
although the positioning error has an impact on the results of 3D reconstruction, the path
can be generated by setting a suitable obstacle expansion distance, which also shows the
robustness of the proposed system to positioning errors.

5. Conclusions and Future Perspectives

This paper presents a three-dimensional reconstruction method for underwater en-
vironments based on an oscillatory forward-looking sonar, which is integrated with the
Ego-Planner path planning algorithm and nonlinear MPC algorithm to form a comprehen-
sive underwater 3D spatial perception—planning—control system. The primary conclusions
are as follows:

(1) The oscillatory forward-looking sonar extends the perception range of traditional two-
dimensional sonar to a 75-degree pitch angle through a pan-tilt mechanism, enabling
effective 3D underwater environment perception at a significantly lower cost than
professional 3D sonar systems.

(2) The polar coordinate-based sonar image feature extraction method captures com-
plete contour frontier information, thereby enhancing the accuracy and reliability of
3D reconstruction.

(3) Validated through outdoor bridge pier scanning experiments, the proposed method
achieves a maximum measurement error of 0.203 m, enabling effective 3D reconstruc-
tion and mapping of underwater structures such as bridge piers.
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4)

®)

(6)

Obstacle avoidance experiments conducted in the Gazebo simulation environment
show that the 3D point cloud generated by the oscillatory forward-looking sonar
provides effective environmental input for the Ego-Planner path planning algorithm,
enabling autonomous obstacle avoidance and motion control for underwater vehicles.
The system demonstrates robustness to localisation errors, achieving obstacle avoid-
ance success rates of 100%, 60%, and 30% under localisation errors of 0 m, 0.25 m, and
0.5 m, respectively.

As localisation errors increase, control inputs exhibit significant oscillations, energy
consumption rises, and obstacle avoidance success rates decline significantly, high-
lighting the strong dependence of system performance on localisation precision.

In summary, the proposed three-dimensional reconstruction method and underwater

3D spatial perception—planning—control system provide a novel technological solution for

autonomous operations in complex underwater environments. This approach offers advan-

tages such as a simple structure, low cost, and high reliability and presents broad application

prospects in underwater infrastructure inspection and marine environmental monitoring.

Despite the promising experimental results, several challenges and opportunities

for improvement remain in practical applications. Future research directions include

the following:

)

@)

®)

4)

Point Cloud Registration: The current system relies on accurate pose information for
point cloud integration. Future work will focus on advanced point cloud registration
algorithms, such as Iterative Closest Point (ICP) and Normal Distributions Transform
(NDT), to reduce dependence on external localisation systems. Considering the sparse
and noisy characteristics of underwater sonar point cloud, the study will explore
feature extraction and matching techniques tailored to underwater environments, with
the goal of developing robust registration algorithms to enhance 3D reconstruction
accuracy and reliability, particularly under low-precision localisation conditions.
Point Cloud Storage and Management: Efficient point cloud storage and management
are critical for maintaining system performance. Future work will explore large-scale
3D environmental mapping, employing data structures such as KD trees, octrees,
and voxel grids in underwater settings. It will also develop compression algorithms
for sparse point clouds to reduce memory usage and computational overhead. Ad-
ditionally, incremental environmental modelling methods will be investigated to
enable real-time map updates and optimisation, supporting long-term, large-scale
underwater autonomous operations while addressing the computational efficiency
limitations of current systems.

Optimisation of the Model Predictive Control Algorithm: Continued tuning of MPC
parameters aims to reduce motion oscillations and improve 3D reconstruction perfor-
mance. In response to underwater disturbances such as currents and waves, the study
will incorporate disturbance observers and compensation mechanisms into the MPC
framework to enhance its robustness against environmental disturbances. In addition,
learning-based MPC methods will be explored, leveraging historical control data to
optimise prediction models and control parameters, thus laying the foundation for
high-quality 3D environmental reconstruction.

Acoustic Modelling: Virtual simulation experiments are efficient for rapidly validating
proposed methods. However, current simulation approaches do not fully capture
acoustic characteristics. This represents a significant challenge in terms of both
hardware performance and algorithmic complexity. Future work will explore efficient
acoustic modelling methods to further enhance the fidelity of simulation experiments
and improve the efficiency of algorithm development.
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Through continued research in these directions, significant improvements in perfor-
mance and broader applicability of the underwater 3D spatial perception—planning—control
system based on oscillatory forward-looking sonar are expected. This advancement will
facilitate the practical deployment of the technology in complex underwater environments,
offering more reliable and efficient technical support for underwater infrastructure inspec-
tion, marine environmental monitoring, and related operations.
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