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Abstract: For a bottom-moored vertical line array in deep ocean, the underwater maneuver-
ing source will produce interference patterns in both grazing angle–distance (vertical-time
record, VTR) and frequency–grazing angle (wideband beamforming output) domains,
respectively, and the interference period is modulated by the source depth. Based on these
characteristics, an interference feature fusion (IFF) method is proposed in the space–time–
frequency domain for source depth estimation, in which the principal interference mode of
the VTR is extracted adaptively and the depth ambiguity function is constructed by fusing
the ambiguity sequence, mapped by wideband beamforming intensity, and the principal
interference mode, which can achieve the long-term depth estimation and recognition of
underwater sources without requiring environmental information. Theoretical analysis
and simulation results indicate that the IFF can suppress the false peaks generated by
the generalized Fourier transform (GFT) method, and the depth estimation error of the
IFF for a single source is reduced by at least 47% compared to GFT. In addition, the IFF
is proven to be effective at separating the depth of multiple adjacent sources (with the
average estimation error reduced by 28%) and exhibits a high degree of robustness within
the fluctuating acoustic channel (with the average estimation error reduced by 12%).

Keywords: source depth estimation; acoustic interference structure; interference feature
fusion; underwater source recognition

1. Introduction
In the deep ocean, underwater robots (unmanned underwater vehicles) play a signif-

icant role in the fields of marine resource development, scientific research, and military
surveillance. Owing to the complexity of the deep-sea environment and various mesoscale
oceanic phenomena, acoustic passive positioning has become one of the principal technolo-
gies used for the localization of deep-sea robots based on the acoustic characteristics of
the source and deep-sea channel. As a special and important path of acoustic propagation
in deep-sea contexts, relevant research on the reliable acoustic path (RAP) has gradually
received attention over the years. It has been proved by experiments that sensors, deployed
below the critical depth, can detect underwater sources at medium distances (20–35 km),
displaying the low transmission loss properties of the RAP (with a high signal-to-noise
ratio, SNR) [1,2]. In addition, the bottom-moored vertical line array (VLA) can further
improve the SNR by applying the beamforming method, and the array shape is relatively
less affected by ocean currents [3]. However, the shipping noise near the sea surface also
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shows the strong performance of acoustic propagation in the RAP zone and greatly hinders
the passive detection of underwater sources [4,5].

As a basic parameter of surface and underwater sources recognition, depth information
is of great significance to the detection system. At present, the methods for source depth
estimation mainly include the matched field processing-based and the interference pattern-
based methods. Researchers have conducted a lot of studies on matched field processing
technology and verified its effectiveness through a series of experiments [6–9]. However, it
is sensitive to environmental mismatches and array tilting [10–12] and requires the use of
significant computational resources in acoustic field simulation and matching processes [13],
limiting its use in engineering applications.

For the interference pattern-based method, the source depth can be estimated based
on the periodic oscillation characteristics of the interference pattern of beamforming maps.
Considering an underwater maneuvering source and bottom-moored VLA, McCargar and
Zurk [14,15] first proposed a depth estimation method based on the interference period
of the source in the grazing angle–distance/time domain, which can be extracted using
generalized Fourier transform (GFT). Kniffin et al. [16] further conducted a detailed analysis
on the depth resolution, influencing factors, and applicability of the above method, and
established a simplified method for depth estimation based on the observed spacing of
the depth–harmonic interference nulls. However, the estimation error of the GFT-based
method increases with the source distance under the isovelocity assumption, though the
GFT is intuitionistic and easy to implement. In recent years, the theory of matched beam
processing [17] has been applied to source depth estimation and a lot of progress has been
made [18–23]. Duan et al. [18] proposed a depth estimation method based on the number of
interference fringes in the receiving acoustic field by analyzing the interference mechanism
of Lloyd’s Mirror effect. Yang et al. [19] applied the extended Kalman filter-based tracking
algorithm to match the measured interference fringe trajectories with the trajectory library
constructed using a theoretical model, thus realizing the depth estimation of the fixed
underwater source. Zheng et al. [20] designed a depth estimation method by matching the
measured and copied time series of the beamforming output power, which has higher depth
resolution compared to the GFT-based method. The above methods based on the acoustic
field model require environmental parameters and overly rely on the accuracy of the model.
In order to solve the problem of depth estimation errors caused by the disturbance of
interference fringes, Liu et al. [24] improved the robustness of the depth estimation method
by modeling interference fringes as Gaussian processes and applying Gaussian process
regression for noise reduction. Wang et al. [25] established the relationship between the
interference period of the beamforming intensity with the source depth, and mapped the
2D frequency-domain beamforming output to the source depth–grazing angle domain
by performing the improved Fourier transform to separate the depth information of the
sources effectively. The above methods involve multiple hyperparameters and require a
large amount of computation.

The above methods for source depth estimation are based on the interference pattern
of the acoustic field. Most of them are performed by processing the periodic interference
fringes of the source in the grazing angle–distance/time or the frequency–grazing angle
domain. Using the theory of incoherent matched beam processing, the accuracy of the
depth estimation can be further improved. However, the maneuvering underwater source
with complex motions and the underwater channel are variable over time and space due
to the characteristics of the transmission media and the environment in the actual ocean.
These factors will “destroy” the interference structure of the source to a certain extent and
restrict the scope of the application of the above methods. Therefore, this paper proposed
an interference feature fusion (IFF) method in space–time–frequency domain for source
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depth estimation, which is implemented by fusing the interference features in both the
grazing angle–distance/time and frequency–grazing angle domain to construct the depth
ambiguity function. The effectiveness of the IFF is verified by theoretical simulation.

The remainder of this paper is structured as follows. Section 2 describes the acoustic
interference structure and the realization process of the IFF. In Section 3, the IFF and the
GFT-based methods are applied to the single-source scene for comparison and analysis. In
addition, the robustness of the IFF is simulated and analyzed in a multi-source scene and
fluctuation environment. Finally, the summary of the study is presented in Section 4 and
the abbreviations used in this study are listed at the end.

2. Theory and Method
2.1. Acoustic Interference Structure in Deep-Sea

In the dee -sea, acoustic waves generated by the underwater source are superimposed
in the direct arrival zone through the direct (D) and surface-reflected (SR) paths, respectively,
making the interference pattern of acoustic field appear as alternating light and dark bands
along the horizontal plane (i.e., Lloyd’s Mirror interference fringes). As shown in Figure 1a,
the acoustic pressure Ps received by the array at the depth of z from source s (with a distance
of rs and a depth of zs) can be expressed as follows [26]:

Ps(z, f ) = S( f )

[
eikR1

R1
− eikR2

R2

]
(1)

where k and S( f ) refer to the wavenumber and the spectrum of acoustic source, respectively.
R1 and R2 represent the D and SR paths, respectively.

 
 

(a) (b) 

Figure 1. (a) Geometric diagram of interference of acoustic field in direct arrival zone and (b) VTR at
zs = 100 m and vs = 12 kn (white curves represent interference trajectories formed by superposition of
different wave arrivals).

Based on the assumption of the channel in uniform seawater (with constant sound
speed) and the virtual source method, Equation (1) can be further simplified as follows [16]:

Ps(z, f ) ≈ S( f )
[

eik(R−zs sin θs)√
r2

s+(z−zs)
2 −

eik(R+zs sin θs)√
r2

s+(z+zs)
2

]
≈ S( f )eikR

R

(
e−ikzs sin θs − eikzs sin θs

)
= − 2iS( f )eik

√
r2
s +z2

sin(kzs sin θs)√
r2

s+z2

(2)

where θs is the grazing angle (vertical arrival angle).
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According to Equation (2), the oscillation period of the acoustic field intensity mainly
depends on zs and sin θs. For underwater source moves with a constant depth zs, the change
in distance between source and receiver affects the variation of sin θs and further determines
the interference period of the acoustic field. Assuming that the source s approaches
the VLA with a constant velocity of vs, the acoustic field intensity presents the periodic
oscillation as a function of sin θs. By applying the beamforming algorithm, the signal
received by the VLA during the source movements can be further converted into the 2D
beamforming output in the time–grazing angle domain (i.e., vertical-time record, VTR).
Figure 1b shows the VTR at 187 Hz (upper frequency limit under the condition of no grating
lobes) obtained by applying the MVDR beamforming to the received signals of a 40-element
VLA (with uniform spacing of 4 m and central depth of 3918 m). Figure 1b shows that the
distant shipping noise is presented as two “high-energy bands” (−0.3 < sin θs < 0.3) on
the VTR. In addition, the white curves #1 and #2 in Figure 1b represent the interference
trajectories (fringes) formed by the superposition of D and SR as well as bottom–surface-
reflected (BSR) and surface–bottom–surface-reflected (SBSR) wave arrivals, respectively.
In addition, the beamforming output power (P(t, θS)) on curve #2 is much lower due to
the bottom absorption. These interference trajectories contain the depth information of the
source, and the process for estimating the source depth by using trajectories is described in
detail below.

2.2. Generalized Fourier Transform

As analyzed in Section 2.1, the beamforming intensity along the interference trajectory
is modulated by the product of source depth (zs) and grazing angle (sin θs). For a moving
source with the constant zs, there is a mapping relationship between the period of this sinu-
soidal modulation and the variable sin θs. Therefore, this interference period in sinusoidal
form can be estimated based on the Fourier transform:

F(ω) =
∫

f ′(t′)e−iωt′dt′ (3)

It should be noted that Equation (3) is the general form of the Fourier transform (from
the time domain to the frequency domain). For the interference trajectories on the VTR
(Figure 1b), the beamforming intensity along which are converted from the grazing angle
domain to the depth domain. As a generalized Fourier transform (GFT), by replacing t′,
ω, f ′, and F with sin θtr, z, P and E1 respectively, the ambiguity function (E1) of the source
depth can be expressed as follows [14,15]:

E1(z) =
∫

tr
P(sin θtr(t))e−iz sin θtr(t)|d sin θtr(t)| (4)

where
∫

tr (·) represents the path integral formulation (tr refers to the interference trajectory
in Figure 1b). P and θtr(t) are the beamforming intensity and the grazing angle at time t
along tr, respectively.

Figure 2 shows the normalized beamforming intensity along trajectory #1 (red curve
in Figure 2a) and #2 (black curve in Figure 2b). Due to the vertical directivity of deep-sea
ambient noise as well as the variation in transmission loss during the source movements,
the intensity decreases exponentially with the increase in grazing angle and is accompanied
by periodic oscillation. Further, the depth ambiguity functions corresponding to the
trajectories are calculated based on Equation (4), and there are significant peaks, seen in
E1(z), of two trajectories around the true depth (zs = 100 m) of the source (red and black
curves in Figure 2c). However, there is a higher peak in the range of z < 20 m and it is
likely mistaken as a sea-surface source. This corresponds to the exponential downtrend as
a low-frequency component.



Electronics 2025, 14, 2228 5 of 17

 
(a) (b) (c) 

Figure 2. Normalized beamforming intensity sequences (as functions of grazing angle) along
(a) trajectory #1 and (b) trajectory #2 in Figure 1b as well as corresponding (c) ambiguity func-
tion (E1(z)) of source depth obtained by the GFT (red and black curves) and the PIM (blue and
green curves).

2.3. Interference Feature Fusion in Space–Time–Frequency Domain for Depth Estimation

The above simulation indicates that the interference pattern will be “destroyed” in
the complex underwater acoustic environment (characterized by strong background noise
and non-cooperative sources) and that the interference periods are not strictly modulated
by the sine function, thus producing false peaks. Applying the GFT inevitably leads to a
larger error in depth estimation. In addition, the formulation of the interference fringes in
the VTR requires the source to transmit a single-frequency signal stably and the received
signals need to be processed for a long period of time, limited application in real scenarios.
Therefore, the interference characteristics of the wideband source in the frequency domain
are also considered, and an interference feature fusion (IFF) method is proposed in the
space–time–frequency domain for depth estimation to overcome the above limitations. The
IFF method is described below.

To eliminate the false peaks, the complete-ensemble empirical mode decomposition
(CEEMD) algorithm [27] is utilized to extract the principal interference mode from the
non-linear and non-stationary beamforming intensity sequences. Before the decomposition,
we add a pair of white Gaussian noises with opposite signs to the beamforming inten-
sity sequence (P(sin θtr)) along the interference trajectory, which can reduce the effects
of the impulse signal in beamforming intensity sequence and improve the robustness
of decomposition: [

Yn
1

Yn
2

]
=

[
1 1
1 −1

][
P(sin θtr)

Wn

]
(5)

where Wn is the noise added for the n-th time (n = 1, 2, . . ., N) with the standard deviation
of σWGN .

The empirical mode decomposition [28] is performed to decompose Yn
1 and Yn

2 to
obtain their respective interference modes:

Yn
1 =

Q
∑

q=1
IMn

1,q + REn
1

Yn
2 =

Q
∑

q=1
IMn

2,q + REn
2

(6)

where IMn
1,q and IMn

2,q are the q-th interference mode, and Q is the total modal number.
REn

1 and REn
2 denote the residual terms, respectively.
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Further, the mean value of the q-th interference mode with different periods is calcu-
lated using Equation (7), and the principal interference mode (PIM) can be extracted based
on Equation (8):

IMq =
1
N

N

∑
n=1

IMn
1,q + IMn

2,q

2
(7)

PIM = argmax
σ2

q

σ2
P

(8)

where σ2
q and σ2

P represent the variances in IMq and P(sin θtr), respectively.
On the basis of Equation (8), the ambiguity function of the source depth is updated

by replacing P(sin θtr) in Equation (4) with PIM. Figure 2a,b shows that the beamforming
intensity sequence of the GFT shows the periodic oscillation (at a high frequency) accompa-
nied by an exponential downward trend (at a low frequency), which causes interference
mode aliasing. The PIM can better reflect the high-frequency interference period of the
beamforming intensity sequences (Figure 2a,b) and eliminate the false peaks of E1(z) as to
obtain accurate depth estimation results for underwater sources (Blue and green curves in
Figure 2c).

For the wideband sources, there are also interference features present in the wideband
beamforming output maps as a function of vertical arrival angle and frequency (i.e., in
frequency–grazing angle domain). Similar to Equation (4), by replacing t′, ω and F in
Equation (3) with f , z sin θS and E2, respectively, the wideband beamforming spectrum can
be further mapped to the depth–grazing angle domain and the ambiguity plane (E2) of the
source depth is constructed as follows:

E2(t, sin(θS), z) =
∣∣∣∣∫ f

P(t, sin(θS), f )e−i f z sin(θS)d f
∣∣∣∣ (9)

where P(t, sin(θS), f ) represents the wideband beamforming spectrum at time t.
In addition, the critical condition of Equation (9) is determined as follows:

z ≥ c0

B sin(θS)
(10)

where B and c0 are bandwidth and average sound speed of seawater, respectively.
Figure 3a shows the wideband beamforming spectrum at t = 70 min during the source

movement in Figure 1b. It can be seen that the distant shipping noise (black rectangle
in Figure 3a) almost covers all frequency bands and its amplitude is highees in the low-
frequency band ( f < 150 Hz). In addition, the beamforming intensity (as a function of
frequency) at sin(θS) = 0.67 also appears as an interference fringe that is related to the
source depth. As can be seen from the depth ambiguity plane (Figure 3b), although there
are “bright areas” (false peaks) on the ambiguity plane (E2) when sin(θS) < 0.25, there are
also “bright spots” in the position of sin(θS) = 0.67 and z = 100 m (red circle in Figure 3b),
corresponding to the true source position.

Based on the depth ambiguity function E1 and plane E2, transformed from the VTR
and the wideband beamforming spectrum, respectively, a new ambiguity function is
constructed using the IFF and the source depth can be estimated in real time within a
sliding time window. The entire implementation process of the IFF is described as follows:

Firstly, the beamforming intensity sequence along the interference trajectory on the
VTR within the time interval [t1, tn] is taken as a snapshot, and CEEMD is performed to
extract the principal interference mode of the snapshot data. Subsequently, the ambiguity
function (E1(tn, z)) of the source depth (white dashed line in Figure 4a) within a snapshot
is converted using Equation (4).
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(a) (b) 

Figure 3. (a) Wideband beamforming spectrum and (b) ambiguity plane (E2) of source depth at
t = 70 min (white area represents inapplicability of depth estimation determined by Equation (10)).

Figure 4. (a) Ambiguity plane (E1(t, z)) of source depth within time interval [t1, tn] converted
from VTR and ambiguity plane (E2(t, sin(θS), z)) at time instant (b) t1, (c) ti and (d) tn transformed
from wideband beamforming spectrum (white dashed line in each subgraph represents the depth
ambiguity vector at a specific time or grazing angle).

In addition, the wideband beamforming spectrum at each discrete time instant (ti)
within the time interval [t1, tn] is mapped to the ambiguity plane (E2(ti, sin(θS), z)) of the
source depth by utilizing Equation (9), as shown in Figure 4b–d.

Furthermore, for each time instant (ti), the sequence E2(ti, sin(θS(ti)), z) corresponding
to the grazing angle of the trajectory on the VTR (white dashed lines in Figure 4b–d) is
extracted and plugged into Equation (11), and the depth ambiguity function obtained
by the fusion of interference features in space–time–frequency domain can be expressed
as follows:

E(tn, z) = E1(tn, z)
n

∑
i=1

E2(ti, sin(θS(ti)), z) (11)

where E2(ti, sin(θS(ti)), z) is normalized by scaling between 0 and 1. E(tn, z) is the newly
constructed ambiguity function of source depth, and the z corresponding to maximum
E(tn, z) is the estimated value of source depth at time tn.
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Lastly, the sliding window-based processing method is applied to the whole beam-
forming intensity sequence along the interference trajectory on the VTR. By conducting the
above steps for each snapshot (the sliding window size is determined as Twin), source depth
estimation can be carried out continuously and in real time. The overall implementation
process of the IFF is summarized in Figure 5.

Figure 5. The implementation flowchart of the IFF.

3. Simulation and Analysis
3.1. Depth Estimation for Single Source

It should be noted that the IFF method contains two hyperparameters that directly
affect the accuracy of the IFF. These are the standard deviation of the noise (σWGN) during
the CEEMD process and the sliding window size (Twin). Therefore, the sensitivity analysis
experiment is carried out for the determination of the optimal parameter combination.
As shown in Figure 6a, the average depth estimation error (µe) of the IFF is relatively
large (µe > 20 m) for Twin < 5 min and increases with the rising σWGN . The estimation
errors are generally small (µe~10 m) and insensitive to the change in both hyperparameters.
Moreover, it can be seen from Figure 6b that the computation time (Tcal) of the IFF is
inversely proportional to Twin and less than 300 ms, which is acceptable in engineering
implementation. Therefore, within the acceptable range of the estimation error, the IFF
with a short Twin has better real-time processing ability and lower estimation error for
sources with rapidly changing depths. Based on the sensitivity analysis result, the optimal
hyperparameter combination of σWGN = 0.7 and Twin = 12 min (corresponding to the
minimum µe) is adopted in the subsequent simulation.

Based on the above results, the GFT and IFF methods are applied to the single-source
scene for comparison and analysis. The ocean basin with a depth of 4000 m is taken as the
research area in this study. Additionally, the seabed topography is assumed to be flat and
the acoustic field is isotropic in the horizontal direction. The hydrologic data comes from
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the global Hybrid Coordinate Ocean Model (HYCOM) reanalysis with the Navy Coupled
Ocean Data Assimilation [29] and the sound speed profile is shown in Figure 7a. Since the
major noise sources of the typical underwater robots (e.g., manned submersibles and the
unmanned underwater vehicles) include the low-frequency mechanical noise (wideband
random signals) and the propeller noise (harmonic signals), the radiation noise spectrum
of the underwater robots is modeled as the superposition of the wideband continuous
spectrum (<1 kHz) as well as the discrete line spectrum [30,31]. Furthermore, consid-
ering the characteristics of the noise field in actual deep ocean, including the near-field
wind-driven and far-field distant shipping noise [32], the frequency and spatial distribu-
tion characteristics of the noise field are also taken into account in the simulation of the
ambient noise.

  
(a) (b) 

Figure 6. The mean values of (a) the depth estimation error (µe) and (b) computation time (Tcal) of
the IFF with different combinations of hyperparameters (σWGN and Twin) based on the scenario in
Section 2.1 (the white rectangle in (a) represents the parameter combination corresponding to the
minimum µe).

  
(a) (b) 

Figure 7. (a) Sound speed profile. (b) Source trajectory with CPA of 3 km (red line), 6 km (green
line), and 9 km (blue line). The hollow and solid triangles represent the starting and ending positions,
respectively. The source moves uniformly in a straight line (zs = 100 m, vs = 12 kn) close to the VLA
(Black dot).

Firstly, the closest point of approach (CPA) from source to the VLA (Figure 7b) is
considered, and the GFT and IFF methods are utilized to estimate the source depth con-
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tinuously with a sliding window. Figure 8 shows the ambiguity plane of the source depth
obtained by two methods, and it can be seen that the sidelobes of the ambiguity plane
obtained by IFF are lower than that of the GFT on the whole. During the source movement
for 45 min < t < 55 min (when the source has just entered the direct arrival zone), the
depth estimation error of the GFT increases significantly (with a maximal error ofmore
than 100 m) as the length of interference trajectory is too short (Figure 8a,b), while the
estimate of the IFF can converge to the true depth of the source faster with a lower error
(Figure 8d,e). In addition, the accuracy of both two estimation methods decreases when
CPA increases to 9 km with the increase in the interference period within the same time
window, while the IFF (with average estimation error µe = 11.2 m) is superior to the GFT
(µe = 33.2 m) (Figure 8c,f).

(a) (b) (c) 

(d) (e) (f) 

Figure 8. Normalized ambiguity plane (E(t, z)) obtained by GFT and IFF with CPA of (a,d) 3 km,
(b,e) 6 km, and (c,f) 9 km (with time interval of 10 s and processing frequency band of 100–200 Hz).
The red dots in each subgraph represent the depth estimation results of two methods.

Based on Figure 8, the GFT and IFF are tested and compared under different signal-
to-noise ratio (SNRs), respectively. Figure 9 shows that the depth estimation errors of
both methods decrease exponentially with the increase in the SNR. For SNR > −9 dB,
both methods can achieve relatively high estimate accuracy (µe < 10 m), and the average
estimation error of the IFF is reduced by ~55% compared with GFT. Moreover, the µe of the
IFF is ~63% lower than that of the GFT for SNR < −9 dB, although the estimation errors
increase significantly. It is difficult for both methods to obtain relatively accurate estimation
results with the further reduction in the SNR for the distant shipping noise completely
covered the interference fringes produced by the source. In general, the IFF is significantly
superior to the GFT under different SNRs.

In addition, the performance of the methods for depth estimation with different source
depths (zs) is further analyzed. As shown in Figure 10, the depth estimation errors of
the GFT and IFF methods decrease slightly with the increase in zs for zs < 220 m. On
the contrary, the depth estimation errors of two methods increase exponentially when
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zs > 220 m due to the large difference in grazing angles between the D and the SR arrivals,
resulting in a separation/bifurcation of the interference fringes of two arrival paths on the
VTR (without complete coherent superposition and forming a clear and intact interference
pattern). Overall, the depth estimation errors of the IFF are reduced by ~47% on average
compared to GFT.

Figure 9. Mean (µe) and standard deviation (σe) of depth estimation errors for source with different
SNR obtained by GFT (blue bars) and IFF (green bars) methods based on 487 samples.

Figure 10. The mean (µe) and the standard deviation (σe) of the depth estimation errors for source
at different depth (zs) obtained by the GFT (blue bars) and the IFF (green bars) methods based on
487 samples (CPA = 5 km).

3.2. Depth Estimation for Multiple Sources

Further, the GFT and IFF are tested for depth separation in the multi-source scenario.
Figure 11a shows the trajectories of three underwater sources with different depths and a
constant turn motion in the horizontal plane, and the detailed parameters of each source are
shown in Table 1 (modeling of the source-radiated noise is the same as that in Section 2.1).
The continuous estimation results of multiple sources obtained by both methods are dis-
played in Figure 12, and it can be seen that the interference structures are masked by distant
shipping noise (Figure 11b) when each source is far away from the VLA (corresponding
to the small vertical arrival angle with sin(θS) < 0.3), resulting in a large deviation in the
source depth estimation of the GFT (Figure 12a), especially for source S3 with t < 40 min.
Within the period of 60 min < t < 80 min, the depth estimation error of the GFT gradually
increases for S3, while the IFF can still accurately separate the depth of multiple sources
(with lower estimation error) even though the interference tracks of sources are across
each other on the VTR (magenta circle in Figure 11b). In addition, the D-SR interference
pattern of source S2 was in a coherent superposition with the BSR-SBSR interference pattern
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of sources S1 (red curve) and S3 (green curve) and its original interference structure was
disrupted, which increased the estimation error of both methods. The IFF can still separate
S1 and S2 around t = 100 min (Figure 12b), and its average estimation error for S1, S2 and S3

decreases by 24%, 29% and 37% compared with GFT, respectively. The depth estimation
results for multiple sources with variable depth (Figure 13) also indicated that the IFF can
separate the depths of complexly and highly maneuvering sources effectively, with the
average estimation error reduced by 23% compared with GFT.

 
(a) (b) 

Figure 11. (a) Trajectories of multiple underwater sources (the hollow and solid triangles represent the
starting and ending positions) and position of the VLA (black dot). (b) The VTR in the multi-source
scene (the red, blue and green lines represent the traces of the D-SR interference fringes of the sources
S1, S2 and S3, respectively).

Table 1. Detailed motion parameters of each source in Figure 11a.

Source Depth (m) CPA (km) Speed (km)

S1 120 1.96 10
S2 170 3.43 8
S3 200 6.24 15

 
(a) (b) 

Figure 12. True depth (solid lines) and estimation results (dots) obtained by (a) GFT and (b) IFF
during the movements of the sources S1 (red), S2 (blue) and S3 (green) with constant depth.
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(a) (b) 

Figure 13. True depth (solid lines) and the estimation results (dots) obtained by the (a) GFT and
(b) IFF during the movements of the sources S1 (red), S2 (blue), and S3 (green) with variable depth
(the horizontal tracks of sources are the same as those in Figure 11a).

3.3. Robustness Analysis

In the real ocean, the spatial and temporal changes in the underwater acoustic channel
are complex, and the hydrological conditions change over time due to marine dynamic
processes such as internal waves and tides in the same sea area. The uncertainty of the
environment can cause the fluctuation of the sound velocity in seawater and affect the
characteristics of the acoustic field [26,33]. Therefore, the robustness of the IFF under
dynamic and fluctuating sound speed profiles is simulated and analyzed in this section.

In the typical deep-sea environment, the fluctuation of the sound velocity near the sea
surface is sharp. Thus, is mostly influenced by diurnal variation, wind waves, and swells.
The sound velocity below the surface mixed layer decreases with the increase in depth, and
is relatively stable and almost unchanged below the SOFAR channel [34]. Based on these
characteristics, sound speed profiles (c′) with different fluctuation degrees are constructed
according to Equation (12), and the standard deviations (σc) of sound velocity at different
depths (with maximum value σmax

c ) is shown in Figure 14.

c′(z) = c0(z) +
√

3σc(z) · Û(0, 1) (12)

where c0(z) is the original sound speed profile (Figure 7a), and Û(0, 1) represents the
random numbers uniformly distributed in the interval [0, 1].

Figure 14. Profile of standard deviation (σc) of sound velocity with different σmax
c .
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Figure 15 shows the depth estimation errors of the GFT and IFF for a single source
(the source motion state is the same as that in Figure 1b) at different σmax

c . It can be seen
from Figure 15a that the depth estimation error of both methods is low and acceptable for
σmax

c < 3 m/s, and the average estimation error of the IFF is reduced by 12% compared
with GFT. However, the propagation time delay between the D and SR paths fluctuates
greatly for σmax

c > 3 m/s due to the drastic fluctuation of the acoustic channel. As a result,
the interference period of the reconstructed PIM gradually deviates from the theoretical
value (0.04) under the isovelocity assumption, which results in a continued increase in the
depth estimation error (Figure 15b).

  
(a) (b) 

Figure 15. (a) The mean (µe) and the standard deviation (σe) of the depth estimation errors for
sources at different σmax

c obtained by the GFT (blue bars) and the IFF (green bars) methods based on
487 samples. (b) The interference periods (∆(sin θS)) of the principal interference mode (PIM) at
different σmax

c and the theoretical value under the isovelocity assumption.

4. Conclusions and Discussion
This paper introduces a depth estimation and separation method for underwater

robots based on the interference feature fusion (IFF) in the deep sea. By performing CEEMD
on the beamforming intensity along the interference trajectory in the grazing angle–time
domain (VTR), the IFF can extract the principal interference mode adaptively and eliminate
the low-frequency components (false peaks) generated by traditional GFT-based methods
due to the spatial directivity of the distant shipping noise. Further, the IFF also fuses the
interference feature of the source in frequency–grazing angle domain and further improves
the depth estimation accuracy without the need for data accumulation over a long period
of time. The theoretical analysis and simulation experiments show that the estimation
error of the IFF under multiple conditions is significantly reduced (>28%) compared with
GFT in the case of completely unknown environmental information. Additionally, the
sensitivity/robustness analysis indicate that the IFF has a low computational complexity
(<300 ms for computing time) and exhibits a high degree of environmental robustness
for σmax

c < 3 m/s (σmax
c denotes the maximum standard deviation of sound speed fluctu-

ations). The proposed method can be applied to the vertical line array deployed in the
direct-arrival zone to realize the long-term continuous depth estimation of the underwater
sources and establish the foundation for the subsequent state inspection and tracking of
underwater robots.

It is worth noting that the IFF is proposed based on the assumption that the radiated
noise of underwater source is a wideband signal, which is limited by the processing band-
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width gain and the characteristics of the source-radiated noise. For a narrowband source,
since the IFF struggles to fuse the interference features in the frequency–grazing angle
domain, a longer period of received data accumulation is required to obtain accurate esti-
mation, although the real-time processing performance will also be degraded substantially.
In addition, the arrival angle of the underwater source decreases exponentially with the
increase in its distance within the deep-sea acoustic channel. For medium-distance sources
with small arrival angles, its interference structure will be obscured by the distant shipping
noise, leading to an increase in the passive depth estimation error due to the low SNR.
Therefore, the suppression of the distant shipping noise and the feature enhancement of
the interference pattern will be the focus of follow-up research.
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Abbreviations
The following abbreviations are used in this study:

VTR vertical-time record
IFF interference feature fusion
RAP reliable acoustic path
SNR signal-to-noise ratio
VLA vertical line array
GFT generalized Fourier transform
D-path direct path
SR-path surface-reflected path
MVDR Minimum Variance Distortionless Response
BSR bottom–surface-reflected
SBSR surface–bottom–surface-reflected
CEEMD complete-ensemble empirical mode decomposition
PIM principal interference mode
HYCOM hybrid coordinate ocean model
CPA closest point of approach
SOFAR sound fixing and ranging
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