
Academic Editor: Alessandro

Gasparetto

Received: 14 March 2025

Revised: 3 May 2025

Accepted: 20 May 2025

Published: 28 May 2025

Citation: Marchel, Ł.; Kot, R.;

Szymak, P.; Piskur, P. Model-Based

AUV Path Planning Using Curriculum

Learning and Deep Reinforcement

Learning on a Simplified Electronic

Navigation Chart. Appl. Sci. 2025, 15,

6081. https://doi.org/10.3390/

app15116081

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Model-Based AUV Path Planning Using Curriculum Learning
and Deep Reinforcement Learning on a Simplified Electronic
Navigation Chart
Łukasz Marchel 1,* , Rafał Kot 2 , Piotr Szymak 2 and Paweł Piskur 2,*

1 Faculty of Navigation and Naval Weapon, Polish Naval Academy, 81-127 Gdynia, Poland
2 Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, 81-127 Gdynia, Poland;

r.kot@amw.gdynia.pl (R.K.); p.szymak@amw.gdynia.pl (P.S.)
* Correspondence: l.marchel@amw.gdynia.pl (Ł.M.); p.piskur@amw.gdynia.pl (P.P.)

Abstract: Deep Reinforcement Learning (DRL)-based algorithms have demonstrated sub-
stantial effectiveness in tackling complex control problems for autonomous underwater
vehicles (AUVs). This paper attempts to evaluate reinforcement learning (RL)-based meth-
ods for AUV trajectory planning by incorporating a model of a vehicle’s full motion. In
this study, the agent (AUV) is assumed to have no prior knowledge of the environment in
which it navigates. Instead, it only receives inputs from navigation sensors and a simulated
sonar. Additionally, in the article, a reward function is proposed and described, along
with its optimization process, to elicit the desired behaviors in the underwater vehicle.
The models are trained and tested on simplified electronic navigation chart (ENC) maps,
followed by a comparative analysis against five effective classical methods for trajectory
planning. The proposed solution enables efficient, collision-free route planning for the
autonomous underwater vehicle, taking its motion dynamics into account to reach the
designated target successfully.

Keywords: Deep Reinforcement Learning; path planning; AUV model; path optimization

1. Introduction
Autonomous underwater vehicles (AUVs) continue to attract significant attention

within the scientific community. They are employed in various fields, such as oceanography,
the oil and gas industry, maritime rescue, military applications, underwater archeology,
and photogrammetry. Research on the development of AUVs encompasses multiple areas,
with a strong focus on enhancing vehicle autonomy. This includes the development of
artificial intelligence and machine learning algorithms for improved decision-making
capabilities [1,2] and increased precision in navigation and obstacle avoidance [3,4], as well
as adaptive algorithms that can adjust to changing conditions [1].

Simultaneously, efforts are underway to advance underwater communications and
data transmission. These include developing efficient underwater communication systems,
such as acoustic and optical data transfer methods [5]; improving the connectivity between
surface vessels and other underwater vehicles; and reducing latency while increasing the
data throughput [6–8].

Maritime route-planning systems are generally assessed in terms of their total path
length, adherence to safety contours (sometimes referred to as “safety isobaths”), and
avoidance of restricted or prohibited zones, as well as ensuring path smoothness and
sufficient separation from hazards. Vehicle motion models must accurately capture the

Appl. Sci. 2025, 15, 6081 https://doi.org/10.3390/app15116081

https://doi.org/10.3390/app15116081
https://doi.org/10.3390/app15116081
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1692-9175
https://orcid.org/0000-0002-9273-353X
https://orcid.org/0000-0002-4714-6192
https://orcid.org/0000-0002-8823-4316
https://doi.org/10.3390/app15116081
https://www.mdpi.com/article/10.3390/app15116081?type=check_update&version=3

Appl. Sci. 2025, 15, 6081 2 of 43

AUV’s maneuvering capabilities so that the path-planning algorithm can account for the
proper trajectory-following behavior [9–11]. External factors like ocean currents, tides,
wave conditions, the accuracy of navigation systems, and the presence of obstacles affect
path planning both prior to and during vessel operation. Consequently, an AUV should be
capable of making autonomous decisions regarding the trajectory it follows.

Up to now, the research has predominantly centered on classical route-planning
approaches, such as the A* algorithm and its numerous adaptations [12–14], Rapidly Ex-
ploring Random Trees (RRTs) [15,16], and Probabilistic Roadmaps (PRMs) [17,18]. Other
trajectory planning strategies encompass fuzzy-inference-based methods [19,20], optimiza-
tion techniques such as genetic algorithms [21,22] and particle swarm optimization [23].
Likewise, neural-network-based algorithms have been used to discover efficient paths, as
discussed in [24,25].

Another branch of research focused on control and path planning for underwater
vehicles is reinforcement learning (RL). It constitutes a field of machine learning that has
been intensively developed in the last decade, both by technology companies [26–28] and
by individual researchers. These methods involve studying and optimizing the interaction
of an agent with its environment. During training, the algorithms collect experience from
environmental data and the agent’s chosen actions. The objective is for the agent to perform
a specific task by maximizing a reward function, which depends on the actions taken over
the course of its interaction with the environment.

Reinforcement learning (RL) encompasses a broad range of algorithms that can be
categorized in multiple ways. From the perspective of value functions or policy repre-
sentation and updating, one can distinguish several groups: (1) tabular methods such as
SARSA and Q-learning, typically relying on Q-value tables and temporal-difference up-
dates for relatively low-dimensional state spaces [29,30]; (2) policy gradient approaches that
directly optimize a parameterized policy; (3) actor–critic methods combining value-based
and policy-based ideas; (4) hierarchical RL, which introduces higher-level structures or
subgoals; and (5) evolutionary or genetic-based algorithms. Furthermore, Deep Reinforcement
Learning (deep RL) extends these ideas by using deep neural networks to approximate
value functions, policies, or even entire environment models, allowing for more effective
handling of high-dimensional and complex tasks [31,32].

In [33], the SARSA algorithm was employed to build a hierarchical, two-level path-
planning framework using a multi-SARSA strategy. This method extends the classical
SARSA and reduces the training time while yielding shorter paths. Its operation integrates
a topological map and artificial potential fields, effectively handling obstacle avoidance and
converging more quickly compared to basic SARSA. This approach maintains two Q-tables:
one for accelerating learning and another as part of the topological map. Meanwhile,
Q-learning was applied in [34] to planning the route for a three-degree-of-freedom (3-DOF)
marine vehicle. The RL algorithm was compared with standard path-planning methods
such as A* and D*. Obstacles were not included in this study. Classic RL algorithms have
also been used in more sophisticated scenarios, like flight route planning for UAVs [35].

Because route planning constitutes a high-dimensional problem, where the vehicle
is operating in continuous space in both the control signals (actions) and the physical
environment, classical algorithms are rarely effective for such use cases. They typically do
not generalize well to broader settings. Consequently, using neural networks as function
approximators within RL helps to address these limitations. Specifically, obstacles in the
environment, numerous control signals, and the environment’s state vector do not hinder
the application of these methods. Deep RL thus enables maritime route planning that
can adapt in real time to changing ocean conditions. In [36], for example, the authors
proposed a Deep Q-Learning approach to dynamic obstacle avoidance for autonomous

Appl. Sci. 2025, 15, 6081 3 of 43

surface vessels. A key novelty is its real-time obstacle avoidance capability, which enhances
the computational efficiency, thereby allowing vessels to plan routes in changing conditions.
The proposed algorithm integrates deep RL techniques with simulations of real-world
conditions, representing a more advanced level of adaptive navigation than was previously
available for surface vessels.

In [37], an adaptive path-planning method for an underwater vehicle was proposed
using the Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithm. The algo-
rithm successfully controlled a simulated Unmanned Surface Vehicle (USV) modeled in
6-DOFs (the Remus model), taking into account simulated ocean currents and dynamically
introduced obstacles. Obstacle avoidance was achieved based on navigational sensor data
measuring both the range and bearing to navigational hazards.

A different approach was presented in [38], where Proximal Policy Optimization (PPO)
was employed for route planning and collision avoidance in autonomous surface vessels.
A 3-DOF motion model was used, reflecting specific dynamic properties such as speed,
drift, and rotation. The system relies on the collision risks proposed by the authors and
complies with the COLREG rules for avoiding collisions at sea.

In [39], the authors present a method for the optimal trajectory tracking control over
AUVs using DRL. They employ the Deep Deterministic Policy Gradient (DDPG) algorithm
to train neural networks that generate precise control signals for the AUV. Simulations
demonstrate that this approach outperforms traditional PID controllers in terms of its
trajectory tracking accuracy, especially in complex and uncertain marine environments.

An interesting approach is presented in [40]. This paper addresses the problem of
position tracking and trajectory control for AUVs using a rapidly deployable DRL method.
The authors propose an approach that allows the DRL agent to be trained quickly and
effectively deployed in real-world scenarios. The method achieves both position tracking
and trajectory control, demonstrating excellent generalization capabilities.

In addition, in [41], the authors focused on path tracking for underactuated Unmanned
Underwater Vehicles (UUVs) under conditions of intermittent communication. The authors
developed a reinforcement-learning-based method that enabled the UUV to effectively
follow a planned path despite communication constraints. Simulations show that the
proposed approach ensures stable and accurate path tracking, even in the presence of
model uncertainties and environmental disturbances.

The use of deep RL for docking tasks was demonstrated in [42]. In this work, the
authors employed the DDPG and Deep Q-Network (DQN) algorithms to dock with a
stationary platform. The comparative simulations included classical control methods such
as Proportional–Integral–Derivative (PID) controllers and parametric optimal control. The
results indicated that the DQN-based control provided faster docking while requiring less
thrust power and a lower energy consumption. More recently, in [43], the authors focused
on the docking problem in a realistic ocean environment, taking into account factors such
as currents and noisy sensor data. In this work, the authors provide an Extended Kalman
Filter (EKF) to fuse the raw noisy data. This enables the agent to effectively learn stable
policies in the noisy environment, outperforming traditional control and policy methods
that were obtained in noiseless environments. Furthermore, in [44], the authors focus on
three-dimensional docking control for AUVs using DRL. They develop a method that
enables AUVs to dock precisely in 3D space. Simulations demonstrate that the proposed
approach features a faster learning process, greater robustness to disturbances, and effective
control capabilities for achieving 3D docking.

Resource scheduling based on DRL has been explored in UAV-assisted emergency
communication systems [45], focusing on optimizing limited bandwidth and power in
critical circumstances. In a similar vein, 3D UAV trajectory planning for energy-efficient and

Appl. Sci. 2025, 15, 6081 4 of 43

fair communication was studied in [46], showcasing how DRL can handle multi-objective
constraints in high-dimensional action spaces. Moreover, multi-agent cooperation in aerial
computing systems [47] demonstrates the capability of RL to coordinate multiple agents
under shared resource limitations.

This study presents a deep RL approach to determining and executing the trajectory for
an AUV in a simplified (binary) ENC map environment. A 6-DOF model of the underwater
vehicle is designed to achieve the shortest possible arrival path to the destination point.
To enable a comparison, off-policy RL algorithms are utilized, including Soft Actor–Critic
(SAC) with and without Hindsight Experience Replay (HER), Twin Delayed DDPG (TD3)
with and without HER, and Truncated Quantile Critics (TQCs) with and without HER. The
performance of these methods is benchmarked against five widely recognized classical
algorithms known for high-efficiency collision-free path planning.

Table 1 provides an overview of selected works (from 2015 to 2025) on the applica-
tion of reinforcement learning methods to path planning for surface (USV) and under-
water (AUV) vehicles. This summary covers various map types (e.g., grid-based, sonar
data, vision, and simplified maps), different degrees of complexity of the motion models
(3–6 DOFs), and diverse RL algorithms (e.g., DDPG, PPO, SAC, and DQN). Additionally, it
highlights key outcomes and findings, such as effectiveness in obstacle avoidance, handling
of ocean currents, and adaptation to uncertain environments.

Compared to these earlier studies, this article introduces the following innova-
tive elements:

• The use of a full 6-DOF AUV motion model for training and validation (in most
prior works, the model is typically simplified to 3–4 DOFs);

• Experiments based on real ENC map data (converted into a simple binary grid de-
rived from electronic navigational charts of the port of Gdynia), significantly bridging
the gap between the training conditions and real-world applications;

• A comparison of three advanced off-policy algorithms (SAC, TD3, and TQC) with
classical methods (A*, APF, GA, PSO, and RRT*), while also incorporating Hindsight
Experience Replay (HER) and curriculum learning;

• An extensive multiparametric analysis (accuracy, distance, speed, and mission time)
confirming that the TQC-based approach offers both high success rates (near 99%)
and short execution times.

The remainder of this article is organized as follows: Section 2 describes the math-
ematical model of the AUV used both to train the RL-based algorithms and verify the
feasibility of the trajectories obtained using the classical methods. This section also out-
lines the RL-based and classical methods, along with the procedure for path smoothing
and trajectory generation. Section 3 details the agent’s training environment, including
the observation and action spaces, as well as the reward function. Section 4 presents the
optimized hyperparameters for the RL algorithms and discusses their training process. In
Section 5, the simulation results for a path-planning task in the nonlinear AUV model are
analyzed. Section 6 provides a discussion of the key aspects of trajectory planning based
on the results obtained. Finally, Section 7 concludes this paper with a summary of its main
findings and future work.

Appl. Sci. 2025, 15, 6081 5 of 43

Table 1. Comparative overview of RL-based path planning methods for underwater and surface
vehicles (2015–2025).

Title (Year) Map Type RL
Algorithm

Motion
Model Environment Platform Key Contribution

AUV Obstacle Avoid-
ance via Deep RL (Yuan
et al., 2021) [48]

Active sonar
(mapless)

Double
DQN
(LSTM)

3-DOF dyn. Simulation AUV

End-to-end obstacle avoidance
using sonar inputs. Demon-
strates collision-free navigation
in unknown areas underwater.

Path Planning under
Ocean Currents with
DDQN (Chu et al.,
2023) [49]

2D grid
Double
DQN
(CNN)

Dynamic
(w/ current) Simulation AUV

Incorporates current distur-
bances into the CNN-based
planner. Outperforms A* and
RRT in strong current fields.

SAC-Based Game
Training for AUV
Maneuvers (Wang et
al., 2022) [50]

Random ob-
stacles

SAC (game-
theoretic) Dynamic Simulation AUV

Adversarial approach with pol-
icy adaption to the environment
(obstacles). Improves robustness
under high uncertainty.

Adaptive Deep RL for
3D Navigation (Politi
et al., 2024) [51]

Vision-based,
mapless PPO 6-DOF dyn. Simulation AUV

End-to-end 3D navigation
using visual inputs. Stably
achieves goals in complex
underwater spaces.

Noisy Dueling Double
DQN for AUV (Liao et
al., 2024) [52]

2D grid + cur-
rent data ND3QN Kinematic

(drift) Simulation AUV

Uses dueling Q-nets with para-
metric noise for better explo-
ration and stable training. Han-
dles variable currents.

Improved PPO for USV
Obstacle Avoidance
(Sun et al., 2023) [53]

Radar-based
local map PPO (CNN) Dynamic Simulation USV

Modified PPO with priority re-
play and a CNN architecture for
the radar input. Converges faster
and avoids collisions effectively.

Offline RL for USV Tra-
jectory Tracking (Zhou
et al., 2024) [54]

N/A (route
known)

SAC (en-
semble) Dynamic Sim + real

USV
(full-
scale)

Offline-trained controller
validated in simulations
and sea trials. Robust to
waves and currents.

DDPG-Based Global
Path Planning for
USVs (Zhao et al.,
2023) [55]

2D grid
(static obs.) DDPG Kinematic Simulation USV

A global planner surpassing A*
and heuristics in its path length,
safety, and computation time.

Safe Lyapunov-DDPG
for Target Interception
(Du et al., 2022) [56]

No map
(moving
target)

SLDDPG Dynamic Simulation USV

Integrates Lyapunov con-
straints for safe interception.
Ensures bounded errors and
avoids collisions.

Multi-AUV Cooper-
ative Hunting with
MAPPO (Wang et al.,
2025) [57]

No explicit
map MAPPO Dynamic Simulation Multi-

AUV

Knowledge-guided policy from
potential fields. Coordinates
multiple AUVs for target pursuit
under currents.

Our manuscript
(2025)

Simplified
ENC (binary)

SAC, TD3,
TQC

6-DOF
dynamic
(full motion
model)

Simulation
(real port
map)

AUV

Proposes a curriculum-trained
deep RL approach on a real-
world ENC map, integrating
a full 6-DOF AUV motion
model. Demonstrates smooth,
high-speed collision-free trajecto-
ries. Outperforms classical meth-
ods (A*, PSO, GA) in its success
rate and mission time across mul-
tiple scenarios.

2. Materials and Methods
Global path-planning methods for AUVs can generally be classified into two categories:

those that incorporate a dynamic model of the vehicle and those based solely on kinematic
constraints. In this section, the nonlinear AUV model utilized in this study is presented,
along with the RL methods that directly leverage this model. Additionally, a brief overview
of the classical path-planning algorithms used is provided, followed by a discussion on how

Appl. Sci. 2025, 15, 6081 6 of 43

the generated paths are smoothed and converted into feasible trajectories while considering
the motion constraints of the AUV.

2.1. The Nonlinear Mathematical Model of the AUV’s Dynamics

To achieve a highly accurate representation of the AUV’s motion and to provide
realistic conditions for the control algorithms, a nonlinear mathematical model was used to
describe the motion of the autonomous underwater vehicle (AUV) with both kinematic
and dynamic constraints. The following assumptions are made for this model [10]:

• The AUV is treated as a rigid body with three planes of symmetry moving in six
degrees of freedom and has a longitudinal plane of symmetry, which is also the plane
of symmetry of the mass distribution.

• The vehicle moves in viscous fluid at a low speed and has a torpedo-like shape.
• The origin of the stationary coordinate system overlaps with the center of gravity.
• The mass distribution, moments of inertia, and deviant moments of a vehicle operating

in a movable coordinate system are constant.
• The parameters responsible for the AUV’s dynamics are determined for a torpedo-

shaped vehicle with a 45 kg mass and a 0.3 m diameter. These parameters could easily
be adapted to other AUVs.

• The PID controller parameters are tuned using a genetic algorithm [58].
• The model does not include limitations on the driving system because it is not focused

on a specific driving system.

The model is based on equations for motion in six DOFs, which, using the SNAME
notation [59], take the following matrix–vector form:

M(v̇) + D(v)v + g(η) = τ (1)

where

v—a vector of the linear and angular velocities in the movable system, expressed as

v = [u, v, w, p, q, r] (2)

η—a vector of the coordinates for the vehicle’s position and its Euler angles in an
immovable system, expressed as

η = [x, y, z, ϕ, θ, ψ] (3)

M—a matrix of inertia, which is the sum of the matrices of the rigid body MRB and
the added masses MA, expressed, respectively, as

MRB =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Ix


(4)

Appl. Sci. 2025, 15, 6081 7 of 43

MA = −



Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 K ṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ


(5)

D(v)—a hydrodynamic damping matrix, expressed as

D(ν) =


Xu+(X|u| |u|) 0 0 0 0 0

0 Yv+(Y|v| |v|) 0 0 0 0
0 0 Zw+(Z|w| |w|) 0 0 0
0 0 0 Kp+(K|p| |p|) 0 0
0 0 0 0 Mq+(M|q| |q|) 0
0 0 0 0 0 Nr+(N|r| |r|)

 (6)

where

Xu, Yv, Zw—the first-order damping coefficients for the forces in the X, Y, Z direc-
tions;
Kp, Mq, Nr—the first-order damping coefficients for the moments in the K, M, N
directions;
X|u|, Y|v|, Z|w|—the second-order damping coefficients for the forces in the
X, Y, Z directions;
K|p|, M|q|, N|r|—the second-order damping coefficients for the moments in the

K, M, N directions.

g(η) is a vector of the restoring forces and the moments of forces of gravity and
buoyancy, expressed as

g(η) =



(P− B) · sin θ

(P− B) · cos θ · sin ϕ

−(P− B) · cos θ · cos ϕ

(zG · P + yB · B) · cos θ · cos ϕ− (yG · P + zB · B) · cos θ · sin ϕ

−(zG · P + zB · B) · sin θ · cos ϕ + (xG · P + xB · B) · cos θ · cos ϕ

0


(7)

where

P—the weight of the body;
B—the force of buoyancy;
xG, yG, zG—coordinates of the center of gravity;
xB, yB, zB—coordinates of the center of buoyancy;
θ—the pitch angle;
ϕ—the roll angle.

τ—a vector of the control signals (the sum of the vector of the forces and moments of
the force generated by the propulsion system τp and by environmental disturbances
τd).

τ =
[

X, Y, Z, K, M, N
]

(8)

The following simplifications were considered in the AUV simulation model:

• The mass deviation moments corresponding to the respective axes of the movable
coordinate system were omitted due to their insignificance to the simulation.

• The C(v) matrix was omitted from the mathematical model due to its negligible
numerical influence under the assumed operating conditions. The propulsion sys-
tem imposes strict dynamic limits, with the maximum thrust along the surge axis

Appl. Sci. 2025, 15, 6081 8 of 43

constrained to 25 N and the maximum yaw moment limited to 2 Nm. As a result,
the AUV operates at relatively low forward velocities, up to approximately 2 m/s.
This limited yaw moment further restricts the vehicle’s ability to perform aggressive
turning maneuvers. These constraints ensure that the inertial effects represented by
the C(v) matrix, such as the Coriolis and centripetal forces, remain minimal and do
not significantly affect the simulated vehicle dynamics [60].

• Hydrodynamic damping components greater than 2nd-order are omitted (the vehicle
is operating at a low speed, the motion is not connected, and it has three planes of
symmetry).

Two reference frames are used to analyze the motion of the AUV. The first is a body-
fixed moving reference frame, whose origin corresponds to the vehicle’s center of gravity.
The second is an inertial reference frame, which is fixed to the Earth. The position of the
AUV in space is defined relative to the inertial reference frame, whereas the linear and
angular velocities are described with respect to the body-fixed moving reference frame.

The transformation of the vehicle’s linear velocities from the body-fixed frame to the
rate of change in its position coordinates in the inertial frame can be performed using the
transformation matrix, as expressed in

η̇1 = J1(η2) (9)

where
J1(η2)—a transformation matrix dependent on the Euler angles, defined as

J1(η2) =

cos ψ cos ϕ − sin ψ cos ϕ + cos ψ sin θ sin ϕ sin ψ sin ϕ + cos ψ sin θ cos ϕ

sin ψ cos θ cos ψ cos ϕ + sin ψ sin θ sin ϕ − cos ψ sin ϕ + sin ψ sin θ cos ϕ

− sin θ cos θ sin ϕ cos θ cos ϕ

 (10)

The inverse transformation is defined as

ν1 = J−1
1 (η2)η̇1 (11)

It should be noted that the model does not account for external forces such as ocean currents
or inaccuracies in the position estimation.

The model utilizes PID controllers to regulate key motion parameters, including the
longitudinal speed (u), depth (z), trim angle (θ), and course angle (ψ). The PID controllers
compute the required forces and moments τ based on the difference between the setpoint
value ps and the current state of the vehicle. PID controllers were employed in this context
to ensure uniformity across all tested planning methods and to decouple the evaluation of
these methods from the complexities of motor-level control. This approach was intended
to ensure that both classical and DRL-based planning strategies could be evaluated fairly,
without being biased by the characteristics of the low-level controller.

The modeled torpedo-like AUV can execute maneuvers to avoid obstacles by ad-
justing its depth, course, or forward speed. Since horizontal-plane maneuvers are most
commonly used, this paper assumes that AUV control will be performed through course
and speed adjustments.

Employing a 6-DOF model of the AUV allows for an accurate representation of vehicle
behavior in an underwater environment. In reinforcement learning, the agent learns from
interactions with its environment; hence, using a realistic motion model ensures that
the agent’s experiences closely resemble those in the real world. With a comprehensive
dynamics model, an RL agent can learn complex maneuvers such as navigating in three-
dimensional space, avoiding obstacles in a dynamic setting, and adapting to changing
conditions—like varying ocean currents or different operating depths (not accounted for in

Appl. Sci. 2025, 15, 6081 9 of 43

this paper). Moreover, an AUV model enables the RL agent to optimize control strategies
aiming to both minimize the energy consumption and enhance safety by learning to avoid
collisions and stabilize the vehicle in challenging circumstances. The more realistic the
simulation model, the greater the likelihood that the trained policies will transfer effectively
to real AUV operations, thus reducing the time and cost of real-world testing.

2.2. The Reinforcement Learning Background

Reinforcement learning encompasses methods that enable an agent to develop a
policy π, guiding its future behavior through interactions with the environment. If a
particular action a leads to a better performance (i.e., higher accumulated rewards), the
algorithm reinforces the agent to execute this action more frequently. RL can be viewed as
unsupervised learning: the agent gathers scalar feedback (rewards) based on its interactions
with the environment. The agent’s performance is measured by analyzing these collected
rewards, which in turn allow it to optimize its actions to maximize them.

At each time step t, the agent, in state s, performs an action a. As a result, it transitions
to a new state s′ and receives a reward r. Note that receiving a reward r at every transition
is not mandatory in all environments; it is specific to so-called dense reward settings, as
studied in this work. Given that the subsequent state s′ depends only on the current state
s and action a, rather than on any prior states or actions, the Markov Decision Process
(MDP) framework is used to describe the system dynamics. This framework helps the agent
learn the optimal policy by evaluating the outcomes of its actions and updating its value
estimates for states or actions accordingly. Through the MDP, the agent can consider actions
with long-term effects by taking into account both the immediate and future rewards,
ultimately learning over extended interactions with the environment to choose actions that
maximize the cumulative expected reward rather than focusing solely on short-term gains.

The expected cumulative return from an episode, representing the total rewards
that the agent may gather starting from time t to until the episode ends, is given by
the following:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞

∑
k=0

γk rt+k+1, (12)

where

• rt+1, rt+2, . . . represent the sequence of rewards the agent receives at successive time
steps following time t;

• γ (the discount factor), with 0 ≤ γ ≤ 1, specifies the weight the agent assigns to future
rewards relative to immediate ones.

The state-value function V(s) and the action-value function Q(s, a) are fundamental
concepts in RL because they allow the agent to anticipate the expected future rewards. The
state-value function Vπ(s) defines the expected cumulative reward when starting in state s
and following policy π:

Vπ(s) = Eπ

[
Gt

∣∣ St = s
]
. (13)

The action-value function Qπ(s, a) denotes the expected cumulative reward when the
agent takes action a in state s and subsequently follows policy π:

Qπ(s, a) = Eπ

[
Gt

∣∣ St = s, At = a
]
. (14)

The agent’s objective is to find an optimal policy π∗ that maximizes the value function.
The Bellman equation for the optimal state-value function is

Appl. Sci. 2025, 15, 6081 10 of 43

V∗(s) = max
a

Q∗(s, a), (15)

while for the optimal action-value function, this is given by

Q∗(s, a) = E
[

rt+1 + γ max
a′

Q∗(s′, a′)
∣∣ St = s, At = a

]
. (16)

In practice, functions V(s) and Q(s, a) are often approximated using parametric forms,
such as neural networks. Algorithms like Soft Actor–Critic (SAC), Twin Delayed Deep
Deterministic Policy Gradient (TD3), and Truncated Quantile Critics (TQCs) implement the
actor–critic architecture, where the actor represents the policy and the critic estimates the
action-value function.

In Soft Actor–Critic (SAC), the policy πϕ(a | s) is stochastic and parameterized by
a neural network with the parameters ϕ. The goal is to maximize both the cumulative
reward and the entropy of the policy, the latter of which encourages exploration. Entropy
motivates the agent to sometimes pick actions that are not strictly reward-optimal in the
short term, thereby aiding more extensive environmental exploration. The loss function for
the actor in SAC is defined as

Lπ = Es∼D
[

α log πϕ(a | s) − Qθ(s, a)
]
, (17)

where α is the entropy coefficient governing the trade-off between exploration and exploitation.
The critic in SAC estimates the action-value function Qθ(s, a) and is updated by

minimizing the Bellman error:

LQ = E(s,a,r,s′)∼D

[(
Qθ(s, a) −

(
r + γEa′ ∼πϕ

[
Qθ′(s

′, a′) − α log πϕ(a′ | s′)
]))2]

, (18)

where θ′ are the parameters of the target network (a copy of the critic network).
In Twin Delayed Deep Deterministic Policy Gradient (TD3), the policy is deterministic

and approximated by the actor network µϕ(s). To enhance the training stability and reduce
value overestimation, TD3 introduces two critics and delays updates to the actor. The critic
loss function is given by

LQ = E(s,a,r,s′)∼D

[(
Qθi (s, a)− y

)2
]
, (19)

where the target value y is computed as

y = r + γ min
i=1,2

Qθ′i

(
s′, µϕ′(s

′) + ϵ
)
, (20)

and ϵ represents the noise added to the action for exploration. The parameters θ′i and ϕ′

refer to the target networks.
The actor in TD3 is updated by maximizing the critic’s predicted value:

Lπ = −Es∼D
[

Qθ1

(
s, µϕ(s)

)]
. (21)

Truncated Quantile Critics (TQCs) extends TD3 by estimating the action-value func-
tion via quantiles, enabling a more robust treatment of uncertainty. The critic in TQC
approximates the distribution of Q(s, a) and minimizes the quantile Huber loss:

LQ =
1
N

N

∑
i=1

E(s,a,r,s′)∼D

[
ρτi

(
δi,j

)]
, (22)

Appl. Sci. 2025, 15, 6081 11 of 43

where δi,j = r + γ Ẑθj(s
′, a′) − Ẑθi (s, a), Ẑθ(s, a) are the estimated quantiles, N is the total

number of quantiles, and ρτi is the Huber loss function quantile.
The actor in TQC is updated in a manner similar to that in TD3 but uses the mean of

the lowest quantiles to compute the action-value:

Lπ = −Es∼D
[1

M

M

∑
i=1

Ẑθi

(
s, µϕ(s)

)]
, (23)

where M is the number of the lowest quantiles selected.
In these algorithms, the policy can be deterministic (TD3, TQC) or stochastic (SAC).

A deterministic policy maps states directly to actions, whereas a stochastic policy de-
fines a probability distribution over the possible actions in each state, thereby promoting
exploration of the environment.

The actor and critic network parameters are updated via stochastic gradient methods
(e.g., the Adam optimizer), using the agent’s experience, stored in a replay buffer D. By
minimizing the relevant loss functions on these collected samples, the agent learns the
optimal control policies in continuous and stochastic environments, which is critical for
path-planning applications in AUVs.

2.3. Reinforcement-Learning-Based Algorithms

Three state-of-art reinforcement learning algorithms using continuous state and action
spaces are applied. Their pseudocode representations are provided below.

The Soft Actor–Critic (SAC) algorithm leverages a stochastic policy and an additional
entropy component H, regulated by a parameter α that determines the weight of entropy in
its calculations. By employing a stochastic actor and allowing for adjustment of the entropy
weight parameter, SAC can balance exploration (through selecting suboptimal actions)
and policy exploitation. Such a balance often leads to faster convergence and a strong
performance in high-dimensional, continuous search spaces, such as the marine environ-
ment proposed in this study. Moreover, soft updates of the target networks—controlled
by the factor τ—enable smoother adaptation of the target critics in response to changes
in the main critic networks. The pseudocode for SAC, shown as Algorithm 1, is adapted
from [61].

Another algorithm employed is Twin Delayed Deep Deterministic Policy Gradient
(TD3), an enhancement over the Deep Deterministic Policy Gradient (DDPG) method.
Compared to its predecessor, TD3 introduces two critics—helping reduce the overestima-
tion bias in the Q-function—and delays actor updates to minimize correlations between
actor and critic updates. Additionally, TD3 adds exploration noise ϵ to the actor’s output,
encouraging broader exploration of the environment. The pseudocode for TD3 is shown in
Algorithm 2 [62].

The Truncated Quantile Critic (TQC) algorithm is an extension of the TD3 method, in
which the Q-value is modeled using quantiles. In TD3, the state–action-value function is es-
timated as a single number; in TQC, the value function is represented by quantiles, enabling
more precise modeling of the uncertainty inherent in future rewards. This allows TQC
to capture complex environmental dynamics where significant fluctuations in the reward
signal may occur. Additionally, TQC permits the use of more than two critics, substantially
enhancing the stability of training. The algorithm is outlined below as Algorithm 3 [63].

In this study, the TQC implementation from stable-baselines3 contrib was used [64],
which builds upon TD3 by estimating a distribution over future returns via quantiles.
Although TQC is often named as a separate agent, conceptually, it is a distributional
extension of TD3. This design truncates the highest quantiles to mitigate overestimation.
HER and curriculum learning were implemented on top of this TQC base class.

Appl. Sci. 2025, 15, 6081 12 of 43

Algorithm 1. Soft Actor–Critic (SAC) algorithm

1: Initialize the critic networks Qθ1 , Qθ2 and the actor network πϕ with random parame-
ters

2: Initialize the target networks θ′1 ← θ1, θ′2 ← θ2
3: Initialize the temperature parameter α and the replay buffer D
4: for each time step t = 1 to N do
5: Select action at ∼ πϕ(· | st) using stochastic policy

▷ Sample an action from the actor’s probability distribution
6: Execute the action at in the environment and observe the reward rt and the next

state st+1
7: Store transition (st, at, rt, st+1) in D

▷ Save experience to the replay buffer
8: Sample mini-batch {(si, ai, ri, s′i)}M

i=1 from D
▷ Batch size M

9: Compute the target value

yi = ri + γ

(
min
j=1,2

Qθ′j
(s′i, a′i)− α log πϕ(a′i | s′i)

)
with a′i ∼ πϕ(· | s′i)

▷ Soft Q-target with the entropy term
10: Update the critic networks Qθj by minimizing

LQ(θj) =
1
M

M

∑
i=1

(
Qθj(si, ai)− yi

)2

▷ Mean squared Bellman error
11: Update the actor policy πϕ by minimizing

Lπ(ϕ) =
1
M

M

∑
i=1

(
α log πϕ(ai | si)−Qθ1(si, ai)

)
▷ Encourage exploration (entropy) while maximizing the Q-value

12: Update the temperature α using Lα = 1
M ∑M

i=1−α
(
log πϕ(ai | si) + H

)
▷ Adjust the entropy weight automatically

13: Soft-update the target networks: θ′j ← τθj + (1− τ)θ′j, j = 1, 2 ▷ Ensure stable
target estimates

14: end for

2.4. Classical Algorithms

This study used five classical algorithms—artificial potential field (APF), A*, a genetic
algorithm (GA), particle swarm optimization (PSO), and Rapidly Exploring Random Tree-
Star (RRT*)—which are well established in the literature and widely used for AUV path
planning. Each algorithm generates a computed path from the starting point to the target
location in the form of coordinates based on a known obstacle map. The generated path
is then processed for smoothing and trajectory determination to ensure the feasibility of
the vehicle.

One of the classical approaches explored in this study is the artificial potential field
(APF) algorithm, which relies on an attractive force directed toward the target and a
repulsive force generated by an obstacle. The well-known issue of local minima is mitigated
by limiting the range of the repulsive field, thereby preventing distant objects from exerting
unnecessary influence. Additionally, the total force exerted on the vehicle is supplemented
by a random component to facilitate escape from potential trap regions and to reduce
oscillatory behavior in narrow passages. The APF technique is integrated into a path-

Appl. Sci. 2025, 15, 6081 13 of 43

planning framework, where subsequent waypoints are derived from the net force of
attraction and repulsion. The pseudocode for APF is presented in Algorithm 4.

Algorithm 2. Twin Delayed Deep Deterministic Policy Gradient (TD3) with comments

1: Initialize the critic networks Qθ1 , Qθ2 and the actor network µϕ with random parame-
ters

2: Initialize the target networks θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ
3: Initialize the replay buffer D
4: for each time step t = 1 to N do
5: Select action

at = µϕ(st) + ϵ where ϵ ∼ N (0, σ)

▷ Add Gaussian noise for exploration
6: Execute action at in the environment and observe the reward rt and the next state

st+1
7: Store transition (st, at, rt, st+1) in buffer D
8: Sample mini-batch {(si, ai, ri, s′i)}M

i=1 from D ▷ Batch size M
9: Compute the target actions for smoothing (TD3 trick):

a′i = µϕ′(s
′
i) + clip

(
N (0, σ̃), −c, c

)
▷ Clipped noise for policy smoothing

10: Compute the target values

yi = ri + γ min
j=1,2

Qθ′j

(
s′i, a′i

)
▷ Use both critics and take the minimum

11: Update the critic networks Qθj by minimizing

LQ(θj) =
1
M

M

∑
i=1

(
Qθj(si, ai)− yi

)2

▷ The mean squared error with relation to target yi
12: if t mod d = 0 then ▷ Delay actor/target updates for stability (TD3 trick)
13: Update the actor network µϕ by maximizing Qθ1 :

Lµ(ϕ) = − 1
M

M

∑
i=1

Qθ1

(
si, µϕ(si)

)
▷ Deterministic policy gradient

14: Soft-update the target networks:

θ′j ← τ θj + (1− τ)θ′j, ϕ′ ← τ ϕ + (1− τ)ϕ′

▷ Slowly track learned parameters
15: end if
16: end for

Another classical algorithm used in this study is the A* approach described in
Algorithm 5. Its operation involves discretizing the area into cells and computing the
total cost F(n), which is the sum of the distance traveled from the start G(n) and a heuristic
estimate of the distance to the goal H(n). While A* efficiently determines a path consid-
ering static obstacles, the computational load increases substantially with larger maps
or numerous obstacles. Therefore, the approach used in this paper employs bicubic in-
terpolation to downscale the map and applies morphological operations (dilation and
closing) to artificially enlarge the obstacles, thereby preventing the algorithm from finding
collision-prone paths on the reduced image. After planning the route in this simplified

Appl. Sci. 2025, 15, 6081 14 of 43

environment, the calculated path coordinates are then upscaled to the original map size.
This process significantly reduces the number of operations required while maintaining a
high level of accuracy in the final path.

Algorithm 3. Truncated Quantile Critics (TQCs) with comments

1: Initialize K critic networks Qθ1 , Qθ2 , . . . , QθK and the actor µϕ randomly
2: Initialize the target networks θ′k ← θk for each k = 1, . . . , K, and ϕ′ ← ϕ
3: Initialize the replay buffer D
4: for each time step t = 1 to N do
5: Select action

at = µϕ(st) + ϵ, ϵ ∼ N (0, σ)

▷ Deterministic policy with exploration noise
6: Execute action at and observe the reward rt and the next state st+1
7: Store (st, at, rt, st+1) in D
8: Sample mini-batch {(si, ai, ri, s′i)}M

i=1 from D
9: Compute the target action

a′i = µϕ′(s
′
i) + clip

(
N (0, σ̃),−c, c

)
▷ A similar smoothing approach to that for TD3

10: Compute K target quantiles:

yi,k = ri + γ Qθ′k

(
s′i, a′i

)
for k = 1, . . . , K

▷ The distributional Bellman target
11: Sort {yi,k} and select the lowest M quantiles ▷ Truncation to reduce

overestimation
12: Update each critic Qθk via quantile Huber loss:

LQ(θk) =
1
M

M

∑
i=1

ρτk

(
yi,k −Qθk (si, ai)

)
▷ Distributional Q-learning objective

13: if t mod d = 0 then ▷ Delayed update for the actor and the target
14: Update the actor µϕ by maximizing the mean of the lowest quantiles:

Lµ(ϕ) = −
1

M |D|
M

∑
i=1

M

∑
k=1

Qθk

(
si, µϕ(si)

)
▷ Averaging to handle uncertainty

15: Soft-update targets: θ′k ← τθk + (1− τ)θ′k, ϕ′ ← τ ϕ + (1− τ)ϕ′

16: end if
17: end for

The genetic algorithm (GA) employed in this study follows the approach illustrated in
Algorithm 6 and is directly inspired by the natural evolution process, in which only the best-
adapted organisms survive. The procedure begins with generating a random population of
potential solutions (paths), each represented by a set of waypoints. A high penalty factor is
incorporated into the objective function for any waypoint that intersects with an obstacle’s
coordinates. In each generation, the least suitable individuals (those exhibiting the highest
path cost) are eliminated, and the most promising candidates are chosen for replication.
New offspring result from the crossover operation, in which complementary segments
of the parents’ genotypes are combined. Additionally, the mutation operation introduces
random modifications into the newly generated offspring, preventing premature conver-
gence to suboptimal solutions. The algorithm then evaluates all members of the current

Appl. Sci. 2025, 15, 6081 15 of 43

generation according to the objective function, keeping those with the lowest path cost. This
iterative selection process continues until the maximum number of generations is reached.
In the approach used in this study, two intermediate waypoints are calculated between the
start and target points. While increasing the number of generations and intermediate points
typically yields more accurate paths, it also raises the computational overhead. Therefore,
a compromise is made between the computational cost and solution accuracy, ensuring
that the final path is both feasible and near-optimal within the assumed parameters.

Algorithm 4. Artificial potential field

1: Input: obstacle map (map), start (xp, yp), goal (xk, yk), parameters η, ξ, d0, K,
2: Compute the distance transform: d← bwdist(map).
3: Define ρ(x, y) = d(x,y)

K + 1.

4: The repulsive potential: Urep(x, y) = η
(

1
ρ(x,y) −

1
d0

)2
for ρ ≤ d0, and 0 otherwise.

5: The attractive potential: Uatt(x, y) = ξ
[
(x− xk)

2 + (y− yk)
2].

6: Total potential: U(x, y)← Uatt(x, y) + Urep(x, y) + Urand(x, y)
7: Compute the gradient: (gx, gy)← ∇

(
−U(x, y)

)
.

8: Initialize route with (xp, yp).
9: for i = 1 to max_its do

10: If ∥(xp, yp)− (xk, yk)∥ ≤ Tolerance, then break.
11: Retrieve ∆x = gx, ∆y = gy; move in the ∆ direction.
12: Append the new position to route.
13: end for
14: Output: route.

Algorithm 5. A* algorithm

1: Input: obstacle map map, start (xp, yp), goal (xk, yk), parameters (scale, th)
2: Preprocess map: resize (imresize) by scale and apply morphological

imdilate, imclose operations.
3: Scale coords: x′p ← round(xp · scale), y′p ← round(yp · scale); similarly, (x′k, y′k).
4: Mark obstacles: for each cell (i, j), if map(i, j) > th, then add (i, j) to CLOSED.
5: Initialize OPEN: insert start node with

(
g = 0, h = dist(start, goal), f = g + h

)
.

6: Set xnode = x′p, ynode = y′p, NoPath = 1.
7: while (xnode ̸= x′k or ynode ̸= y′k) and NoPath = 1 do
8: Expand neighbors {(xn, yn)} not in CLOSED; compute gn = g + dist(xn, yn).
9: Let hn = dist((xn, yn), (x′k, y′k)) and fn = gn + hn; update OPEN or insert new node

if better fn.
10: Pick the node with the min f in OPEN; set (xnode, ynode) to that node, and move it to

CLOSED.
11: If no node can be picked (OPEN empty), set NoPath = 0.
12: end while
13: Path reconstruction: if the goal is found, backtrack the parents from (x′k, y′k) to (x′p, y′p).
14: Rescale path: x ← x/scale, y← y/scale.
15: Append start/goal to ensure a full route: route← [(xp, yp), . . . , (xk, yk)].
16: Output: route.

Particle swarm optimization (PSO) is inspired by the collective movement patterns
of animals, such as flocks of birds. In this method, a population of particles (paths) is
randomly generated. Each particle consists of two intermediate waypoints between the
start and the target. In each iteration, the position of every particle is evaluated with the
same objective function used in the GA-based solution, and the global best position (of the
entire swarm), as well as each particle’s personal best position, is updated. The movement
of a particle is governed by its inertia, its tendency to move towards its personal best
position, and its attraction to the best position in the neighborhood. If a particle crosses

Appl. Sci. 2025, 15, 6081 16 of 43

the map boundary or is predicted to do so, its velocity is set to zero, and its position is
clamped to the boundary. After each update, the objective function is recalculated, and
better solutions replace the previous personal or global best positions. Once there is no
significant improvement in the best result (less than 10−6 m) for 15 consecutive iterations
(the stall condition), the algorithm terminates. In the tested configuration, the swarm size
was 50, and each of the two waypoints was bounded between 0.01 and 0.91 of the map
size. This approach effectively balances exploration (through random updates and a large
swarm size) and exploitation (focusing on the best local and global positions), gradually
converging to a near-optimal path solution. The pseudocode for the used approach is
presented in Algorithm 7.

Algorithm 6. Genetic algorithm

1: Input: binary map, start (xp, yp), goal (xk, yk), number of waypoints noPoints, popula-
tion size popSize, max generations maxGen, penalty P

2: Cost function distanceCostGA(x): interpret each waypoint (xi, yi) ∈ [0, 1]2, scale to
the map size, and build path = [start; (x1, y1), . . . , (xnoPoints, ynoPoints); goal]; then,
cost = ∑L−1

i=1 subCost(pathi, pathi+1).
3: subCost(p, q): subdivide the segment (p → q); each small step ∆ adds ∆ if

properPoint is true; otherwise, P × ∆.
4: properPoint(r) checks whether 1 ≤ rx ≤ dimx, 1 ≤ ry ≤ dimy, and map(rx, ry) = 0;

returns false for obstacles/out of bounds.
5: Initialize the population P0 of random individuals with the size popSize
6: Evaluate distanceCostGA(·) for each solution in P0; let best be the individual with the

minimal cost.
7: for t = 1 . . . maxGen do
8: elite← top max(1, 0.05 · popSize) solutions in Pt−1
9: Use stochastic uniform selection on Pt−1 to pick parents.

10: Apply scattered crossover (with the probability CrossoverFraction = 0.8) to
produce children.

11: Mutate the children with the gaussian mutation operator.
12: Form Pt by adding elite plus enough children to maintain size = popSize.
13: currentBest← arg min x∈Pt(distanceCostGA(x));
14: if distanceCostGA(currentBest) < distanceCostGA(best), then best← currentBest
15: end for
16: Reconstruct the final path: Scale the best way-

points to map the coords, prepend source, and
append goal.

17: Output: path and cost.

The last classical algorithm employed in this study is the RRT*, as outlined in
Algorithm 8. The Rapidly Exploring Random Tree-Star (RRT*) algorithm incrementally
constructs a collision-free path in a grid map by growing a tree from the start position. At
each iteration, a random point is sampled, biased with a 10% probability toward the goal
to expedite the convergence. The algorithm identifies the nearest node in the tree, extends
it by a fixed step size toward the sampled point, and verifies collision-free movement. If
valid, the new node is added to the tree, and nearby nodes within a neighbor radius are
evaluated to optimize the path costs through rewiring—reassigning parents to minimize the
cumulative travel distance. This rewiring ensures asymptotic optimality by locally refining
the tree structure. The process iterates until the goal is reached within a specified threshold
or a maximum iteration limit is exceeded. RRT* balances exploration of the configuration
space through random sampling with the exploitation of shorter paths via cost-aware
rewiring, progressively converging to an optimal solution. The algorithm terminates upon
reaching the goal or exhausting its iterations, after which the shortest path is reconstructed
by backtracking the parent nodes from the nearest goal-proximate node to the start.

Appl. Sci. 2025, 15, 6081 17 of 43

2.5. Path Smoothing and Set Trajectory Calculation

For the classical algorithms, an approach was adopted in which the computed path
was processed further to apply smoothing and impose speed limits. These limits were
determined based on the path curvature, the maximum velocity achievable by the AUV
model, and the maximum allowable lateral acceleration to maintain maneuverability and
ensure the feasibility of the tracked trajectory.

Algorithm 7. Particle swarm optimization

1: Input: binary map, start (xp, yp), goal (xk, yk), number of waypoints noPoints, swarm
size SwarmSize, max stall iterations maxStallIter, penalty P .

2: Cost function distanceCostPSO(x): interpret each waypoint (xi, yi) ∈ [0, 1], scale to
the map size, and build path = [start; (x1, y1), . . . , (xnoPoints, ynoPoints); goal]; then,
cost = ∑L−1

i=1 subCost(pathi, pathi+1).
3: subCost(p, q): subdivide the segment (p → q); each small step ∆ adds ∆ if

properPoint is true; otherwise, P × ∆.
4: properPoint(r) checks whether 1 ≤ rx ≤ dimx, 1 ≤ ry ≤ dimy, and map(rx, ry) = 0;

returns false if outside boundaries or is an obstacle.
5: Initialize swarm of size SwarmSize by placing each particle xi randomly in [0, 1]. Set

the velocity vi ← 0 for all i.
6: Evaluate distanceCostPSO(xi) for each particle. Let pbesti ← xi (the particle’s best

position), and choose gbest as the particle with the minimal cost in the swarm.
7: stallCount← 0.
8: while stallCount < maxStallIter do
9: improved← false

10: for each particle i = 1, . . . , SwarmSize do
11: vi ← w vi + c1 r1 ⊙ (pbesti − xi) + c2 r2 ⊙ (gbest− xi)
12: xi ← xi + vi; clamp to [0, 1]
13: costNew← distanceCostPSO(xi)
14: if costNew < distanceCostPSO(pbesti)
15: pbesti ← xi
16: if costNew < bestCost
17: gbest← xi; bestCost← costNew
18: improved← true
19: end for
20: if improved then
21: stallCount← 0 else stallCount← stallCount + 1
22: end while
23: Reconstruct the final path: scale gbest into map coords, prepend start, and append

goal.
24: Output: path and cost.

Each of the classical algorithms returns a path as a set of N waypoints:{
(x1, y1), (x2, y2), . . . , (xN , yN)

}
, (24)

representing the desired path for the vehicle. To avoid abrupt heading changes, linear
interpolation was performed between consecutive waypoints at a spacing ∆s = 10 m. Next,
the heading angles were computed to identify large changes in direction. The difference
was examined for each pair of consecutive headings. Any segment for which the absolute
heading change exceeded the threshold θth = 30◦ was designated as a “sharp turn”.
Consecutive sharp-turn indices were grouped into blocks and then extended by one point
on each side to ensure smoother transitions.

Within each block, a cubic spline was employed to fit the points, thus creating a
smoothly varying local path. Outside these blocks, linear interpolation was retained. Over-
lapping spline segments were merged to form a continuous, piecewise-smooth path with no

Appl. Sci. 2025, 15, 6081 18 of 43

repeated points. To ensure that the paths remained both collision-free and dynamically fea-
sible after smoothing, the following features were incorporated into the planning methods:

• For A* and RRT*, morphological preprocessing (dilation and closing) is applied to
artificially expand the obstacles before planning;

• In the APF method, repulsive forces activate within a 10 m radius around obstacles;
• The GA and PSO reject intermediate waypoints that are less than 10 m from any obstacle.

Algorithm 8. Rapidly Exploring Random Tree-Star (RRT*)

1: Given: grid map M, start (xs, ys), goal (xg, yg), step size δ, neighbor radius rnbr, goal
threshold dgoal, max iterations Imax

2: Initialize tree T ← {(xs, ys, 0, 0)}
3: for i = 1 to Imax do
4: With a prob. of 0.1, set (xrand, yrand)← (xg, yg); otherwise, sample uniformly in M
5: Find (xnear, ynear)← argmin(x,y)∈T ∥(x, y)− (xrand, yrand)∥
6: Compute the direction θ ← arctan 2(yrand − ynear, xrand − xnear)
7: (xnew, ynew)← (xnear + δ cos θ, ynear + δ sin θ)
8: if CollisionFree(xnear, ynear, xnew, ynew, M) then
9: T ← T ∪ (xnew, ynew, parent, cost)

10: Find Nnbr ← {(x, y) ∈ T | ∥(x, y)− (xnew, ynew)∥ < rnbr}
11: Set the parent← index of (xnear, ynear) with the minimal path cost
12: Update cost← cost(xnear) + ∥(xnear, ynear)− (xnew, ynew)∥
13: for each (xnbr, ynbr) ∈ Nnbr do
14: if cost(xnew) + ∥(xnew, ynew)− (xnbr, ynbr)∥ < cost(xnbr) then
15: if CollisionFree(xnew, ynew, xnbr, ynbr, M) then
16: Update the parent of (xnbr, ynbr) to (xnew, ynew)
17: Recompute the cost(xnbr) and propagate to the descendants
18: end if
19: end if
20: end for
21: end if
22: if ∥(xnew, ynew)− (xg, yg)∥ < dgoal then
23: break
24: end if
25: end for
26: Find (xlast, ylast)← argmin(x,y)∈T ∥(x, y)− (xg, yg)∥
27: Reconstruct the path by backtracking the parents from (xlast, ylast) to (xs, ys)
28: Append (xg, yg) to the path if within the threshold
29: Output: Final route path

The smoothed path was described by
(
x(t), y(t)

)
with the first and second derivatives

denoted as (x′(t), y′(t)) and (x′′(t), y′′(t)), respectively. The curvature κ(t) was defined as

κ(t) =

∣∣ x′(t) y′′(t)− y′(t) x′′(t)
∣∣(

x′(t)2 + y′(t)2
) 3

2
(25)

The maximum lateral acceleration alat imposes a curvature-based velocity limit:

vcurv(t) =
√

alat
κ(t)

(if κ(t) > 0) (26)

This condition dynamically constrains the reference velocity of the vehicle based on
the instantaneous path curvature, effectively linking the allowable speed to the lateral
acceleration induced by the maneuver. As a result, the vehicle slows down in segments

Appl. Sci. 2025, 15, 6081 19 of 43

with a high curvature, which prevents excessive deviation from the planned trajectory
during turning. Under these conditions, inertial effects such as Coriolis and centripetal
forces are inherently limited and have only a minor impact on the vehicle’s motion.

A maximum speed constraint vmax was considered according to

vlim(t) = min
(

vmax, vcurv(t)
)

(27)

To prevent abrupt peaks in vlim(t), a simple filter was applied. This procedure checks
for any velocity value vlim(i) which is significantly larger than its neighbors. Any such
spike is replaced by a local average:

vlimNew(i) =
2.5 · vlim(i) + 0.25 · vlim(i± 1)

3
(28)

The final smoothed trajectory matrix takes the form
x1 y1 z1 vlim1

x2 y2 z2 vlim2
...

...
...

...
xM yM zM vlimM

 (29)

where zi = 0 for the considered motion in the horizontal plane. These entries encode
the spatial coordinates (xi, yi, zi) and the local velocity limits vlim,i at each sampled point
along the path. The obtained trajectory is intended to be followed by the PID controllers in
autonomous underwater vehicles and is processed to respect both the curvature-based and
maximum speed constraints while maintaining smooth transitions through sharp turns.

3. Description of the Environment
Most published works on RL-based path planning have utilized simulated maps that

may lack realism, being generated solely for the environment at hand. In this study, a real,
cartometric electronic navigation chart (ENC) of a marine port located in Gdynia, Poland,
is utilized. Since the map is cartometric, the distances measured on the chart accurately
correspond to real-world distances, a property that is essential to precise route planning for
an AUV. The corresponding area is highlighted in red in the satellite image in Figure 1a.

The ENC S-57 map was converted into the PL-2000 (Zone IV) projected coordinate
system (EPSG:2177) to preserve these cartometric properties—particularly the distance
fidelity. The resulting port map in S-57 format is shown in Figure 1b. From the layers
defined in [65], only the “LAND AREA” layer (with the acronym LNDARE) was retained,
as illustrated in Figure 1c. This remaining layer was then saved as a 2-bit bitmap, as
seen in Figure 1d. In this binary representation, navigable and non-navigable areas in the
underwater vehicle’s operational domain are marked on a grid map.

The map covers a total area of 2,156,492 m2 within a 1468.5 m × 1468.5 m square,
corresponding to a resolution of approximately 1.1472 m/pixel. Black pixels denote regions
inaccessible to the AUV, whereas white pixels indicate navigable areas. The AUV agent
moves in continuous space, meaning its motion is not discretized. Nonetheless, determining
whether the agent is located in a valid or an invalid region is performed by mapping the
AUV’s continuous coordinates to the nearest pixels on the bitmap. The overall simulation
environment is built upon the OpenAI Gym framework and preserves its general structure.

To prevent unbounded rollouts and properly handle collisions or successful arrivals,
the following termination conditions are introduced when training the RL algorithms:

Appl. Sci. 2025, 15, 6081 20 of 43

• Maximum Step Limit: A fixed maximum number of time steps (e.g., 200) is specified.
Once this threshold is reached, the episode ends automatically.

• Collision or Out-of-Bounds: If the AUV crosses the boundaries of the map or collides
with an obstacle (a black pixel), the environment terminates the episode immediately
and assigns a negative reward.

• Goal Achievement: When the AUV comes within a specified distance (e.g., 10 m) of
the target, the episode terminates, and a small success bonus is awarded. The exact
threshold value is determined by a curriculum parameter.

Figure 1. (a) Satellite map of northern Poland, with the test area outlined in red; (b) the S-57 ENC
chart of the study area in the PL-2000 (Zone VI) coordinate system (EPSG:2177); (c) the “Land Area”
(LNDARE) layer according to [65]; (d) the corresponding 2-bit bitmap of the study area.

This design prevents indefinite episode durations, promptly penalizes collisions, and
rewards reaching the goal as soon as it is achieved.

The workstation used for training and validating the algorithms was a Windows 11
machine featuring an Intel Xeon W-2255 3.70 Ghz CPU, 128 GB of RAM, and three NVIDIA
RTX 3090 GPUs.

3.1. State Space RL

The problem of the AUV reaching a specified target can be framed as a standard
Markov Decision Process (MDP), described by

M = (S, A, T, R, γ), (30)

where

Appl. Sci. 2025, 15, 6081 21 of 43

• S is the state space;
• A is the action space;
• T : S× A→ P(S) is the state transition function, defining the probability of moving

to state s′ given the current state s and action a;
• R : S × A → R is the reward function, assigning a scalar reward to state s and

action a;
• γ ∈ [0, 1) is the discount factor, indicating the relevance of future rewards.

Since the states S are fully observable (i.e., S coincides with the observations O), the
policy π(a | s) is learned from the exact states s ∈ S. At time t, an agent operating under
policy π observes the precise state st, takes an action at, and then receives an immediate
reward rt and transitions to the new state st+1.

The objective is to optimize the policy by maximizing the expected cumulative reward:

θ∗ = arg max
θ

J(θ) = arg max
θ

Eπ

[∞

∑
t=0

γt rt

]
, (31)

where θ denotes the parameters of the policy π, and the reward rt is accumulated according
to the discount factor γ. The notation θ∗ represents the optimal set of policy parameters,
for which the objective function J(θ∗) reaches its maximum.

3.2. The Observation Space

The agent’s observation space must capture all critical environmental information
that an AUV can obtain. Initially, the full-occupancy grid extracted from the electronic
navigation chart was provided to the DRL agent; however, this configuration was found to
be inefficient due to slow and unstable training progress, prompting the use of a simplified
sonar-based representation. Beyond basic navigational data such as the position, heading,
and speed, variables describing the agent’s location relative to the goal were included.
Specifically, the bearing and distance to the target were added. Moreover, to avoid collisions
with fixed map objects, the sonar beams were simulated so that the vehicle could scan a
90◦ sector in front of its bow. At time t, the entire observation of the vehicle is represented
by an n-dimensional vector:

ot =
[

x̃ ỹ θ̃ ṽ cos(θ) sin(θ) d̃goal ϕ̃goal r̃1 r̃2 ··· r̃N

]T
, (32)

where

• x̃, ỹ ∈ [0, 1] are the normalized coordinates of the vehicle’s position;
• θ̃ = θ

2π , θ ∈ [0, 2π] is the normalized heading (in radians);
• ṽ = v

vmax
, v ∈ [0, vmax] is the normalized speed of the vehicle;

• cos(θ), sin(θ) provide the cosine and sine of the current heading;
• d̃goal =

d
dmax

, d ∈ [0, dmax] denotes the normalized distance to the goal;

• ϕ̃goal =
ϕ

360◦ , ϕ ∈ [0◦, 360◦] is the normalized bearing to the goal;
• r̃i ∈ [0, 1] are the normalized sonar readings for i = 1, 2, . . . , N.

The heading was encoded using sin(θ) and cos(θ) instead of the raw angle θ. This
approach avoids discontinuities at the 0◦/360◦ boundary, which could otherwise lead to
instability in the training process. By mapping the heading to the unit circle, the policy
network sees a continuous representation for the vehicle’s orientation. An illustration of
the observation space is provided in Figure 2.

A simplified sonar model is adopted. A total of n = 24 sonar beams are assumed, uni-
formly distributed across a 90◦ sector ahead of the vehicle’s bow, and thus each beam covers
an angle of α

n where α = 90◦. The maximum range of the simulated sonar is rmax = 500 m.
Although industrial multibeam sonars can produce hundreds of range readings, the num-

Appl. Sci. 2025, 15, 6081 22 of 43

ber of beams was set to n = 24 to balance computational efficiency with the fidelity of
the environment. In future work, we intend to investigate more detailed sensor models
(e.g., with 128 or 256 beams) and potentially use convolutional layers to extract rich embed-
dings from high-dimensional sonar data. The AUV’s speed is constrained to the interval
[0, 2.05 m/s]. Figure 3 shows the concept of these simulated sonar measurements.

Figure 2. The modeled AUV and its observation space.

Figure 3. An illustration of the simulated sonar measurement principle.

3.3. The Action Space of the Agent

The action space is represented as a two-dimensional vector a, carrying the heading
and speed adjustments dictated by the agent to the vehicle’s motion (PID) controller. This
representation is common in planar (x-y) environments:

at =

∆̃θ

∆̃v

T

, (33)

where

• ∆̃θ ∈ [−1, 1] is the normalized change in the AUV’s heading;
• ∆̃v ∈ [−1, 1] is the normalized change in the AUV’s speed.

Appl. Sci. 2025, 15, 6081 23 of 43

Scaling factors convert these normalized changes into actual adjustments. The heading
and speed at time t + 1 are updated according to

θt+1 = θt + ∆̃θ wθ , vt+1 = vt + ∆̃v wv, (34)

where wθ and wv are the respective scaling coefficients for heading and speed changes.

3.4. The Reward Function

A reward function is critical for guiding the AUV agent’s behavior in the environment,
incentivizing actions that lead to successful goal-reaching. In this work, a dense reward was
employed that included three principal components:

1. A penalty for distance from the goal: The farther the vehicle is from the target point(
xgoal, ygoal

)
, the larger the negative portion of the reward. This encourages the agent

to continually decrease its distance to the goal.
2. A penalty for excessive control changes: To limit abrupt maneuvers, a weighted cost

∑M
j=1|aj| is added. The parameter wa controls the influence of this term on the reward.

3. A penalty for collisions with port infrastructure elements, denoted by c. Commonly, a
large negative reward is assigned upon collisions, strongly dissuading risky trajectories.

The total reward at time t is given by

r = −
√(

xgoal − xt
)2

+
(
ygoal − yt

)2 − wa

M

∑
j=1

∣∣aj
∣∣ + c, (35)

where

•
(

xt, yt
)

is the AUV’s position at time t.
•

(
xgoal, ygoal

)
is the target position.

• wa is the weight of the penalty on control actions, regulating abrupt or frequent
changes ∑M

j=1|aj|.
• M denotes the number of decision actions (e.g., heading changes, speed changes).
• c is the penalty (zero/negative reward) for collisions; it takes a large negative value

when a collision occurs or 0 if no collisions occur.

This reward design motivates the agent to approach its goal promptly and smoothly
(minimizing the distance), constrains sudden control deviations (through the penalty on
large changes), and severely penalizes collisions.

3.5. Curriculum Learning Elements

To accelerate training, a simple approach was adopted wherein the task difficulty was
gradually increased (or effectively, the success criterion tightened) as training progressed.
In this approach, the minimum distance di—below which the AUV must approach the goal
for an episode to be deemed a success—is systematically decreased over time. The change
value δ depends on the total number of training steps as follows:

δ =
b
N

, (36)

where

• b = d0 − dmin denotes the total “difficulty adjustment” between the start and end
of training;

• dmin is the final minimum distance requirement for success;
• N is the total number of training steps.

Given a training step i, the current minimum distance threshold is

Appl. Sci. 2025, 15, 6081 24 of 43

di = d0 − δ · i. (37)

In practice, δ was set to a relatively small value of 3.33× 10−5. Nevertheless, this
proved sufficient to prevent the training algorithms from plateauing at a certain success
rate threshold (e.g., 0.7–0.8). By applying this technique, it was observed that the success
rate rose to the 0.95–1 range, whereas omitting this mechanism caused some algorithms to
stall at lower success rates.

3.6. Hindsight Experience Replay

Hindsight Experience Replay (HER) is a technique that improves an agent’s learning
efficiency in environments with high complexity or those requiring long action sequences.
HER enables experiences that would traditionally be deemed “failed” to be leveraged by
reinterpreting them as successes for alternative goals. Consequently, the agent can make
better use of the collected training data, which is particularly beneficial in sparse-reward
settings. In this study, HER is integrated into the SAC, TD3, and TQC algorithms. The HER
buffer operates for each transition τ as follows:

• Success cases: If the agent achieves the intended goal g, the standard reward rg

is assigned; in this situation, HER provides no additional benefit. The transition
parameters τ = (st, at, rt, st+1, g) are simply stored in the replay buffer.

• Failure cases: If the agent fails to reach the intended goal g, the HER buffer reinterprets
the goal as g′ and appends a new trajectory (st, at, r′t, st+1, g′) to the replay buffer. The
“future” strategy is used, which samples random future states as the new goal. The
reward is then computed based on the newly selected goal g′.
The alternative goal can be defined as

g′ = st+k, (38)

where

– g′ is the alternative goal designated by the HER buffer;
– st+k is a future state from the same episode.

3.7. Motivation for Off-Policy RL

Although various on-policy methods, such as Proximal Policy Optimization (PPO)
and Trust Region Policy Optimization (TRPO), can be applied to continuous control tasks,
they were found to be less suitable under the given constraints. In preliminary tests using
the 6-DOF AUV simulator and an episode limit, PPO and TRPO converged more slowly,
reaching a lower than 65% success rate after 600,000 steps. In contrast, off-policy algorithms
such as SAC, TD3, and TQC exceeded 90% success in 600,000 steps.

Focus was paid to off-policy RL for three reasons:

• Sample efficiency: Off-policy algorithms reuse past experiences more effectively
thanks to large replay buffers, which is crucial for computationally expensive
AUV simulations.

• Faster convergence: Experiments showed that the on-policy methods generally re-
quired more interactions to attain similar performance levels.

• Practical constraints: Given the limited training budget and high-fidelity vehicle dy-
namics, off-policy approaches balanced exploration and exploitation more efficiently.

3.8. Implementation Details

In the present study, the core off-policy DRL algorithms (SAC, TD3, and TQC) were
implemented using the open-source library Stable-Baselines3 [66]. This framework was

Appl. Sci. 2025, 15, 6081 25 of 43

selected because it offers reliable, well-documented implementations of modern actor–critic
methods that can be adapted to a 6-DOF AUV environment. In particular, the fundamental
update rules (e.g., Bellman backups, policy gradient steps) remained consistent with the
reference version of Stable-Baselines3, while the following modifications were introduced:

• Environment Wrappers: Custom wrappers were developed to interface the AUV
simulator (implemented in Python/C++) with the Stable-Baselines3 API, conforming
to the OpenAI Gym specifications (v0.26);

• Reward Shaping: Additional terms were incorporated to address the avoidance of
collisions and ensure smooth heading changes (Section 3.4);

• Curriculum Learning: A gradually tightening goal threshold was implemented
(Section 3.5) to prevent overly difficult early training episodes;

• HER Extension: The “future” HER strategy was adopted by modifying the replay
buffer logic, allowing the agent to reinterpret failed episodes for alternative subgoals
(a functionality originally present in Stable-Baselines3);

• Hyperparameter Tuning: Optuna (v2.10) was employed to systematically search over
the learning rates, discount factors, batch sizes, and network depths, culminating in
the final architectures shown in Table 2.

Table 2. The hyperparameters after the optimization process using Optuna (12 runs) for various RL
algorithms with their success rates and training times.

Algorithm Gamma Learning Rate Net Arch Use SDE Sigma Use HER Max Success Rate End Success Rate Training Time [h]

SAC-HER 0.9622 0.001586 [256, 256, 256, 256] False - True 0.98 0.9738 9.44
TD3-HER 0.9844 0.001231 [1024, 1024, 1024, 1024] - 0.0370 True 0.9517 0.9517 8.59
TQC-HER 0.9674 0.001268 [256, 256, 256, 256] False - True 0.996 0.9903 10.31
SAC 0.9515 0.001291 [512, 512, 512, 512] False - False 0.9782 0.9603 6.45
TD3 0.9687 0.001450 [1024, 1024, 1024, 1024] - 0.1126 False 0.9791 0.9715 6.69
TQC 0.9896 0.001581 [1024, 1024, 1024, 1024] False - False 1 0.9992 7.21

By leveraging Stable-Baselines3, the experiments are grounded in a robust RL frame-
work that minimizes the risk of fundamental implementation errors.

4. Hyperparameter Optimization
As reinforcement learning (RL) algorithms exhibit inherently stochastic behavior,

a hyperparameter optimization process was carried out. For this purpose, the Optuna
library was employed, offering advanced automation for hyperparameter tuning. Each
algorithm features its own specific hyperparameters, yet some remain common across all
methods. Table 3 summarizes both the fixed and tunable parameters. To identify the best-
performing model in terms of its success rate, 12 Optuna trials were run (4 per available
GPU). The training duration was fixed at 600,000 steps in each trial. Within every trial, the
Optuna optimizer aimed to maximize the average success rate by iteratively adjusting the
hyperparameter values.

Table 2 presents the results of hyperparameter optimization for the three well-
established reinforcement learning algorithms (SAC, TD3, and TQC) and their variants
without Hindsight Experience Replay (HER). This optimization was conducted using the
Optuna library, which automatically adjusts the hyperparameters to maximize the success
rate. The table includes key hyperparameters, such as the discount factor γ, the learning
rate, the neural network architecture, and the use of Stochastic Differential Equations (SDEs)
and HER. Additionally, for TD3, the exploration noise level σ is provided.

The results indicate that the algorithms without HER (e.g., SAC, TD3, and TQC)
frequently attained higher peak and final success rates compared to those of their HER-
enabled counterparts. For instance, TQC achieved a highest success rate of 1.0 and a final
result of 0.9992, whereas TQC with HER reached a maximum success of 0.996 and a final

Appl. Sci. 2025, 15, 6081 26 of 43

value of 0.9903. A similar trend was observed for TD3: the final success rate was 0.9715
without HER, outperforming TD3 with HER, which yielded 0.9517. In the case of SAC, the
HER variant reached a slightly higher maximum success rate (0.98) relative to that for SAC
(0.9782). However, their final rates were comparable (0.9738 vs. 0.9603), though the HER
variant required a significantly longer training time (9.44 h vs. 6.45 h for SAC).

Table 3. RL algorithms’ hyperparameters.

Hyperparameter SAC TD3 TQC

Buffer size 1,000,000 1,000,000 1,000,000
Batch size 256, 512 256, 512 256, 512

Net architecture
[256, 256, 256, 256], [512,
512, 512, 512], [1024, 1024,
1024, 1024], [2056, 2056,
2056, 2056]

[256, 256, 256, 256], [512,
512, 512, 512], [1024, 1024,
1024, 1024], [2056, 2056,
2056, 2056]

[256, 256, 256, 256], [512,
512, 512, 512], [1024, 1024,
1024, 1024], [2056, 2056,
2056, 2056]

Number of critics 1 N/A N/A
Learning rate 0.001–0.004 (opt.) 0.001–0.004 (opt.) 0.001–0.004 (opt.)
Gamma 0.90–0.99 (opt.) 0.90–0.99 (opt.) 0.90–0.99 (opt.)
Learning starts 100 000 (const) 100 000 (const) 100 000 (const)
Use sde True / False (opt.) N/A True / False (opt.)
Use sde at warmup True / False (opt.) N/A True / False (opt.)
Sde sample freq 1 N/A 1
Action noise N/A Normal (sigma opt.) N/A
Sigma N/A 0.01–0.2 (opt.) N/A

Figure 4a shows how the success rate evolves with the number of training steps.
Notably, algorithms incorporating HER tend to learn more slowly than those without
HER. Despite achieving higher maximum success rates in some instances, they required
more training steps, as was especially evident for TQC. Among all of the approaches, TQC
(both with and without HER) converged most rapidly, reaching its performance plateau
at around 150,000 steps. The weakest performer in terms of its success rate was TD3, for
which the non-HER variant surpassed the HER-based variant in both its final success rate
and total training time.

This analysis suggests that using HER does not consistently improve the performance
of reinforcement learning algorithms. In the case of TD3 and TQC, the non-HER variants
not only achieved higher success rates but also required shorter training times. For SAC,
although the HER version attained a slightly higher maximum success rate, it required
substantially longer training, and its final results were comparable to those of the non-HER
variant. This finding implies that for tasks of a moderate complexity or in environments
where the goals are relatively easy to reach, HER may not yield significant benefits and
might even add an unnecessary training overhead. Furthermore, these results indicate
that deeper network architectures (e.g., [1024, 1024, 1024, 1024]) can more effectively cap-
ture the complex dependencies in a simulated environment, leading to higher success
rates overall.

All of the reported training times (e.g., 6.45 h, 7.21 h) refer to the wall-clock timesob-
served in the physical workstation employed for both the environment simulations and
deep RL training, as opposed to any simulated in-environment times. In particular, these
measurements reflect the total duration from the start of each learning run (initialization of
the RL algorithm and environment) to the completion of the final training step.

Appl. Sci. 2025, 15, 6081 27 of 43

(a) Success rate over training steps (b) Reward evolution over training steps

(c) Actor loss (d) Critic loss

(e) Entropy coefficient loss (f) Entropy coefficient

(g) Learning rate

Figure 4. An overview of the training performance metrics for the examined algorithms. Panel (a)
shows the success rate and reward trends; panel (b) gathers five additional learning metrics.

Appl. Sci. 2025, 15, 6081 28 of 43

While Table 3 outlines the parameter ranges and final selections for each algorithm,
additional investigations were conducted regarding the impact of specific hyperparameters
on the training performance in the AUV environment:

• The Discount Factor (γ): Experiments were carried out with 0.90 ≤ γ ≤ 0.99. Empir-
ically, γ ≥ 0.95 was found to be necessary for the agent to account for longer-term
rewards (e.g., avoiding distant obstacles). Lower γ values frequently led to short-
sighted maneuvers. Long-term maneuver planning is most suitable for complex
harbor environments like that in the test.

• The Learning Rate: The observations from the Optuna trials indicated that rates in
the range of 1.2× 10−3 to 1.6× 10−3 provided a balance between stable convergence
and training speed. Higher rates sometimes accelerated the initial improvement but
increased the risk of divergence in deeper networks, whereas lower rates produced
more stable yet slower learning. As seen in Figure 4a, even with a slow learning
rate, the algorithms take enough steps to reach a high success rate, while the learning
process remains stable. No catastrophic forgetting phenomena are observed either.

• The Network Architecture: The 6-DOF dynamics of the environment, combined
with partial observability from 24 sonar beams, benefited from larger networks
(e.g., [1024, 1024, 1024, 1024]). Smaller architectures (e.g., [256, 256, 256, 256]) oc-
casionally plateaued at moderate success rates, presumably due to their limited rep-
resentational capacity and the complex environment (a 6-DOF AUV model and a
continuous and large map).

• The Batch Size (512): A batch size of 512 was effective in mitigating high-variance
updates, particularly for TQC’s quantile-based critics. Configurations below 256
tended to slow down the training progress.

The Computational Complexity and Resource Usage

In the present study, both classical path-planning methods (A*, RRT*, GA, and PSO)
and off-policy Deep Reinforcement Learning (DRL) algorithms (SAC, TD3, and TQC) were
investigated within the same high-fidelity AUV environment. Although the primary metric
reported was the execution time for each method under a fixed scenario, it is equally
important to consider how these approaches scale as the problem dimensions grow or
when the environment becomes more cluttered.

From a theoretical standpoint, grid-based methods such as A* may exhibit time
complexity in the order of O(n2 log n) if an n × n map is employed, with the memory
usage driven by the need to maintain a priority queue, as well as a closed list of the
visited nodes. Sampling-based approaches like the RRT* typically have a time complexity
O(k log k), where k is the number of sampled nodes. While each new sample is relatively
cheap to generate, large numbers of samples are often required in environments with
narrow passages or complex obstacles, which can drive up both the time and memory
costs. Genetic and swarm-based methods (GA, PSO) can be more difficult to characterize
precisely; in each generation, a population of candidate solutions is evaluated, meaning the
time cost scales with the population size and the cost of collision checks. Although these
checks can be performed on a standard CPU, the computational burden may still become
substantial for large maps.

By contrast, off-policy DRL algorithms such as SAC, TD3, and TQC, although shown
to converge quickly under the training procedure described in this paper, impose a higher
computational load during the learning phase. Larger neural networks (e.g., hidden layers
with a size of 1024 or more) require many floating-point operations per gradient step,
and the replay buffer, typically storing up to one million transitions, can drive up the
memory usage. Distributional or multi-critic extensions like TQCs add further overhead by

Appl. Sci. 2025, 15, 6081 29 of 43

maintaining additional parameters and quantile estimates. To manage this scale effectively,
a GPU is usually essential for accelerating the neural network updates and ensuring that
training completes within a practical timescale. After training, however, inference can be
run at low costs, making this policy suitable for near-real-time replanning or adaptation
once an AUV has been deployed.

In more extensive or dynamically changing environments, the classical planners
may require either downscaling the map resolution (which can compromise accuracy)
or increasingly large searches or population sizes, thus inflating the time and memory
consumption. DRL, on the other hand, may call for more complex network architectures
to model the richer state space (e.g., sonar readings or multi-layer bathymetry), and the
replay buffer may need to become even larger to capture the diverse experience. Although
this translates into a substantial one-time training cost, the final policy can then provide
immediate action decisions, which is advantageous for missions that require frequent
online adjustments.

Table 4 illustrates the approximate time complexity and hardware demands for each
algorithm category, aligning with the problem setup in this paper. The classical methods are
generally less memory-hungry and do not strictly mandate the GPU usage. Nonetheless,
their runtimes can grow significantly with higher map resolutions or complex obstacle
layouts. Meanwhile, DRL approaches typically require stronger hardware resources during
training but achieve rapid policy inference. Overall, the choice between a classical planner
and a learned DRL policy depends not only on the accuracy and the mission time but also
on practical factors such as the available memory and GPU capabilities and whether the
scenario allows for offline training or demands immediate in situ adaptation.

In summary, the classical methods typically exhibit lower memory requirements and
can be executed with modest hardware but may scale poorly for large or complex maps.
By contrast, DRL algorithms impose a heavier training-phase burden on the memory and
GPU resources, yet they offer near-instant path selection once the policy has been learned.

Table 4. Approximate time complexity and hardware demands of the selected methods in this study.

Algorithm Time Complexity Memory Usage Hardware

A* O(n2 log n) Moderate CPU
RRT* O(k log k) Moderate CPU
GA/PSO O(P× fevaluate) Varies CPU
SAC/TD3 O(steps×NN update) Large (replay buffer) GPU
TQC Similar to TD3 but multi-critic Larger High-end GPU

5. Simulation Results and Analysis
To compare the performance of RL-based models with that of classical path-finding

algorithms, test data were generated in the form of 100 randomly selected target locations on
the map presented in Figure 1d. To ensure consistency, each trial started from the center of
the map, with the AUV oriented eastward (090◦) and an initial velocity of m

s . The evaluation
of the efficiency of the tested methods was carried out based on the following metrics:

• The average success rate represents the average value for successful simulations. For
each individual simulation, the success rate can take a value of either 0 or 1. If the
vehicle reaches an area within a 10 m radius of the target point without colliding with
any obstacles, this metric is assigned a value of 1. Otherwise, it is assigned a value of 0.

• Feasibility-constrained distance—the average length of the traveled path, calculated
based on 100 test cases. For each individual simulation, this metric is computed
as the sum of the Euclidean distances between consecutive points along the simu-
lated trajectory.

Appl. Sci. 2025, 15, 6081 30 of 43

• Total average speed—the average speed, calculated as the sum of the average speeds
from each individual simulation divided by 100. For a single trial, the average speed
is determined as the total Euclidean distance traveled along the trajectory divided by
the total episode duration.

• Reward refers to the mean reward value (applicable to RL algorithms).
• Average standard deviation in the heading difference—represents the standard

deviation in the heading differences between consecutive time samples.
• The average computation time refers to the processing time, which, for RL-based

methods, is measured from the start of the simulation episode to its completion. In
classical algorithms, it represents the total time required for path planning by the
respective algorithm, smoothing the path, and determining the trajectory.

• The average direct path % indicates the average percentage of direct path completion
for the evaluated algorithms. For a single simulation, this percentage is calculated
based on the ratio of the distance obtained from the projection of the final point of
the trajectory onto the straight line connecting the start and target points to the total
length of the computed trajectory.

• Feasibility-constrained mission time—the total duration of the mission in seconds.
For classical algorithms, this metric corresponds to the time required to execute the
planned trajectory using the mathematical AUV model.

An objective evaluation of the path length is significantly challenging in simulations
where a collision has occurred in the obtained trajectory. To address this, an approach
was adopted in which the feasibility-constrained distance metric was assigned a value
corresponding to the highest result among all algorithms that successfully reached the
target, plus an additional 25% of this value. The same principle is applied to the feasibility-
constrained mission time metric.

This approach aims to emphasize the impact of collisions within these metrics in a way
that depends on the length of the path and the mission time in the “worst-case” scenario.
This is justified by the fact that when the start and target points are farther apart, the
discrepancies in the path length and the mission time between different algorithms become
more pronounced. Additionally, an infeasible trajectory cannot be treated as equivalent to
the “worst” feasible trajectory in terms of the distance and mission time. Therefore, adding
an additional component that scales both metrics based on the length of the longest feasible
trajectory ensures a more reliable evaluation in the overall assessment of the algorithms.

In the case of the total average speed and the average standard deviation in the heading
difference, the data were sampled every 5 s. Additionally, since RL models terminate the
mission upon reaching dmin of 15 m from the target, the remaining distance to the goal dgoal

is added to the total average distance value.
The results obtained for the metrics described above are presented in Table 5, while

all individual trajectories are visualized in Figure 5. Analyzing the results obtained, it
can be concluded that the RL algorithms demonstrate a high avg. success rate, ranging
on average from 0.85 for the TD3 algorithm to a maximum of 0.99 for TQC. At the same
time, it can be observed that for the SAC, TD3, and TQC algorithms with the HER buffer,
the success rates at the end of the training were higher (Table 2). This may have been
due to the more complex target selection cases during testing. However, the success rate
results indicate that using the HER buffer in the analyzed problem is not justified, as in
most cases, these approaches yield worse results compared to those of their counterparts
without HER. One factor that reduced the success rate in the RL algorithms was circulation
of the AUV close to the target location. The agent was not able to decide to slow down
to reduce circling maneuvers. Another primary cause of the reduced success rates for
these RL algorithms stems from the agent’s tendency to maintain higher speeds even

Appl. Sci. 2025, 15, 6081 31 of 43

when nearing the target location. Although traveling faster can be beneficial earlier in the
episode—both for increasing the cumulative reward and ensuring that the goal is reached
in a limited number of steps—it can lead to overshooting or circling once the goal is within
range. The learned policy effectively “forgets” or deprioritizes actions that would slow
the AUV down to stabilize it near the target because the reward function emphasizes
covering the distance quickly but does not sufficiently penalize excessive circling. As a
result, the agent continuously maneuvers at a suboptimal speed in the final approach,
making small heading corrections that cause repeated circular paths. This circling tendency
was particularly noticeable with the HER variants (e.g., TD3-HER) due to how Hindsight
Experience Replay re-labeled the goals in the replay buffer. When the agent comes close to
the real goal but does not fully decelerate or settle, HER interprets these near-goal positions
as valid future goals. This inadvertently rewards maintaining relatively high speeds while
repeatedly passing through the vicinity of the target. In other words, the agent sees multiple
near-goal states as “success” states during training and remains focused on quickly hitting
these slightly offset subgoals rather than genuinely slowing down to stabilize at the true
target. Consequently, the policy never develops a strong incentive to reduce the speed of
the final approach, leading to the circular paths observed that reduce the overall success
rates for the HER-based methods.

Table 5. A comparison of the average results (±σ) for the analyzed algorithms.

Algorithm Avg. Succ. Feas. Constr. Total Avg. Reward Avg. Std. Dev. Avg. Comp. Avg. Direct Feas. Constr.
Rate Dist. [m] Speed [m/s] of Hdg. Diff. [°] Time [s] Path % Time [s]

APF 0.63 ± 0.49 318.8 ± 140.2 1.39 ± 0.80 - 19.929 0.05 ± 0.02 86.3 ± 14.2 350.4 ± 121.7
A* 0.91 ± 0.29 288.8 ± 107.9 1.12 ± 0.47 - 15.458 1.70 ± 1.06 97.0 ± 9.0 316.4 ± 144.0
GA 1.00 ± 0.00 263.6 ± 105.4 1.61 ± 0.54 - 7.075 0.55 ± 0.09 100.0 ± 0.0 160.0 ± 45.5
PSO 1.00 ± 0.00 242.0 ± 110.0 1.65 ± 0.50 - 6.274 0.65 ± 0.10 100.0 ± 0.0 143.8 ± 38.7
RRT* 0.98 ± 0.14 366.8 ± 222.5 0.97 ± 0.27 - 12.33 0.04 ± 0.17 99.0 ± 7.8 418.9 ± 283.9
SAC 0.91 ± 0.29 269.4 ± 100.3 1.87 ± 0.55 −10.74 ± 5.20 8.426 0.46 ± 0.17 97.0 ± 8.3 144.7 ± 60.2
SAC-HER 0.91 ± 0.29 285.2 ± 110.2 1.89 ± 0.56 −8.93 ± 4.60 8.608 0.49 ± 0.19 96.9 ± 9.1 152.0 ± 72.0
TD3 0.85 ± 0.36 283.6 ± 111.1 1.88 ± 0.49 −10.57 ± 5.10 8.636 0.43 ± 0.15 97.0 ± 7.5 153.1 ± 51.2
TD3-HER 0.86 ± 0.35 472.6 ± 210.0 1.96 ± 0.52 −10.85 ± 5.25 10.366 0.71 ± 0.27 96.6 ± 9.8 245.1 ± 100.5
TQC 0.99 ± 0.10 244.7 ± 95.6 1.88 ± 0.50 −8.52 ± 4.30 8.183 0.46 ± 0.16 99.9 ± 0.3 133.3 ± 45.1
TQC-HER 0.93 ± 0.26 324.9 ± 135.7 1.89 ± 0.49 −9.10 ± 4.60 8.94292 0.50 ± 0.21 98.3 ± 5.6 172.2 ± 70.6

Among the classical algorithms, the best average success rate was achieved by the GA
and PSO (1.00), which means that all test cases were collision-free. High values for this
metric were also recorded for the RRT* (0.98) and A* (0.91) algorithms. However, in the case
of the APF algorithm, significantly worse results were obtained, with an average success
rate of only 0.63. This indicates low efficiency of this algorithm in path planning within
the analyzed environment. The reason for such a result is primarily the presence of long
obstacles oriented transversely to the starting point. As shown in Figure 5a, in several cases,
the algorithm encountered the local minimum problem, preventing the determination of
a collision-free path. Despite introducing a random repulsive force vector that activated
when the vehicle became trapped in a local minimum, the extensive transverse shape of
the obstacles made it impossible to generate a feasible, collision-free trajectory.

Considering the feasibility-constrained distance metric, the best result was achieved
by the classical PSO algorithm (242 m) and the RL-based TQC algorithm (244.7 m).
The longest path among the RL algorithms was recorded for TD3 with the HER buffer
(472.6 m). Among the classical algorithms, the longest value for this metric was observed
for the RRT* algorithm (366.8 m). For TD3 with the HER buffer, the high value of the
feasibility-constrained distance metric can be attributed to visible circulations around the
location of the goal, as shown in Figure 5i. In several cases, the vehicle failed to reach the
goal due to the centrifugal force resulting from its relatively high speed, combined with

Appl. Sci. 2025, 15, 6081 32 of 43

the vehicle’s limited ability to perform tight turns imposed by its propulsion constraints
and the circling problem mentioned earlier in this section. The poor performance of the
TD3-HER algorithm was further amplified by the additional 25% penalty applied due to
its relatively low average success rate. The increased value of the feasibility-constrained
distance metric observed for the RRT* primarily results from the inherent sampling-based
nature of the algorithm, which often produces suboptimal node distributions. Specifically,
the randomized node placement leads to locally dense clusters that inadequately capture
the global connectivity, resulting in excessively winding and indirect paths toward the goal
(Figure 5e).

(a) APF (b) Astar (c) GA

(d) PSO (e) RRT* (f) SAC

(g) SAC-HER (h) TD3 (i) TD3-HER

(j) TQC (k) TQC-HER

Figure 5. Trajectories computed by classical path-finding algorithms—(a–e)—and reinforcement
learning models—(f–k).

Appl. Sci. 2025, 15, 6081 33 of 43

It is worth noting that despite its significantly worse avg. success rate among those of
all algorithms, the feasibility-constrained distance obtained for the APF (318.8 m) was still
lower than that recorded for RRT*, TD3-HER, and TQC-HER. This results from the APF’s
approach, which attempts to generate a path that closely follows a straight line between the
starting and target points. When encountering obstacles, the repulsive force slightly alters
the trajectory to avoid them. However, in many cases, this mechanism fails to effectively
plan a feasible path. As seen in Figure 5a, verification of the trajectory’s feasibility using
the mathematical AUV model shows that upon reaching the final waypoint generated by
the APF, the vehicle heads directly toward the target point, disregarding obstacles.

It can be also observed that the RL algorithms exhibit a noticeably higher total average
speed for the AUV. This arises from the constraint on the maximum number of simulation
steps. RL models account for the link between a higher velocity and a greater likelihood of
success. By moving faster, the agent has a higher probability of reaching the goal before the
simulation ends, increasing the potential reward. In contrast, for the classical algorithms,
the trajectories are planned so that the vehicle slows down during heading changes to
follow the assigned path as accurately as possible. Consequently, the total average speed
for PSO is 0.22 to 0.31 m/s lower than that achieved by the RL-based algorithms. Among
all of the methods tested, the RRT* yielded the lowest average speed (0.97 m/s). Examining
Figure 5e reveals that the path contains a large number of heading changes due to the
inherent nature of growing a random tree. Despite local path smoothing, the high curvature
forces a stricter speed limit in the motion model to ensure that the vehicle effectively follows
the computed trajectory.

Additionally, TQC appears to have aligned the motion model with the reward function
most effectively, attaining the highest mean reward. In contrast, TD3 with the HER buffer
performed worst, as seen by its low success rate and highest average distance traveled.

The RL algorithms produced similar values for the average standard deviation in the
heading difference, indicating a stable course-keeping ability. This is due to the control
penalty factor introduced in the reward function in Equation (35). RL algorithms take into
account that stable heading leads to a higher reward signal. However, it should be noted
that the RL models typically choose a different type of trajectory compared to those of the
classical methods, as seen in Figure 5f–k. The classical algorithms generally plan a sequence
of fixed waypoints, resulting in extended intervals where the heading remains constant
and then changes abruptly at specific waypoints. By contrast, reinforcement learning
methods continuously re-evaluate the heading and speed at every simulation step, making
finer, more incremental adjustments rather than large, stepwise turns. These incremental
adjustments often appear to be gentler to an outside observer because the heading is
smoothly and frequently modified, without sharp “breakpoints” in the path. At the same
time, precisely because RL updates are applied at each time step, the numerical difference in
the heading between consecutive steps can be higher when aggregated—every small course
correction counts as a change, even though the overall trajectory looks fluid. Consequently,
when measuring the consecutive heading differences over the entire episode, reinforcement
learning models may exhibit larger standard deviations than those of piecewise-linear
methods, which remain on straight headings for longer periods before executing a single
discrete turn.

In the classical approaches, the path generally consists of straight-line segments, caus-
ing smaller changes in the heading between adjacent waypoints. As depicted in Figure 5a–d,
minor oscillations still appear along certain straight segments. These oscillations emerge
from the smoothing procedure, applied to enhance the trajectory’s fidelity, and the addi-
tion of intermediate points via interpolation to mitigate abrupt heading transitions. They
commonly occur just after heading changes, where the speed limit is nearly equal to the

Appl. Sci. 2025, 15, 6081 34 of 43

vehicle’s maximum speed. This strategy minimizes the deviation from the desired route,
thereby reducing collision risks in complex situations.

The average computation time for each RL algorithm remains below 0.5 s (except for
TD3-HER) primarily because the main computational load arises from simulating the full
6-DOF vehicle model. At every step, the simulator must compute the forces, torques, and
kinematics, which dominates the runtime regardless of the specific RL approach. Only the
HER algorithms incur the extra overhead from re-labeling the transitions in their Hindsight
Experience Replay buffer, thus extending the total processing time. Additionally, algorithms
that converge on shorter paths reduce the number of steps that the simulator must execute,
further curbing the per-episode runtime. The better the policy, the shorter the time needed
for computation, as the step number deceases. As a result, most RL methods converge in
broadly similar overall computation times.

In the classical algorithms, the simulation time spent by the AUV in following the
computed trajectory is not included, as this step merely verifies the correctness of the
path planning and trajectory generation. Notably, the RRT* and APF algorithms exhibit
exceptionally low average computation times (0.04 s and 0.05 s, respectively), making them
approximately ten times more computationally efficient compared to the other methods
analyzed. This efficiency arises primarily from their simplified computational frameworks:
the APF leverages straightforward potential field calculations, while the RRT* quickly
explores the state space using incremental sampling and local rewiring without the compu-
tational overhead of exhaustive search. However, it is important to highlight that the APF
does not achieve a high success rate, contrasting with the RRT*, which consistently provides
feasible paths within minimal computation times. Nevertheless, the RRT* tends to yield
suboptimal routes characterized by increased distances and prolonged mission durations.
On the other hand, the total computation times for PSO and the GA, while higher than
those of the RRT* and APF, remain comparable to those of the RL-based approaches and
yield trajectories closely approximating theoretical optimality regarding the path length
and mission duration. The highest computation time is observed for the A* algorithm
(approximately 1.70 s on average), primarily due to its systematic and exhaustive graph
search process, requiring the evaluation of numerous candidate paths to guarantee the
optimal solutions.

Regarding the average direct path percentage, most of the RL algorithms either
achieved the goal or ended very close to it—often circling around the target, as seen
especially for SAC-HER (Figure 5g) and TD3-HER (Figure 5i). This factor is also a reflection
of the policy optimality for RL algorithms. If the agents reach the target, the factor is set
to 100 %. For the GA and PSO, the goal was reached in every trial (100%). Slightly lower
values were observed for the RRT* and A* (99% and 97%, respectively). The lowest value
for this metric was observed for the APF (86.3%), which was associated with its relatively
low success rate and the frequent occurrence of the vehicle becoming trapped in local
minima when encountering obstacles.

The feasibility-constrained mission time in RL-based approaches is typically propor-
tional to the feasibility-constrained distance metric. Among the classical algorithms, the
RRT* produced the longest mission times (an average of 418.9 s), reflecting the conservative
speed limits it applies to accommodate numerous path segments. Although the RRT*
demonstrated robust exploration and a short computation time, it also yielded routes that
required advanced smoothing procedures.

Summarizing the performance of the RL models, TQC emerged as the best over-
all, matching or surpassing the GA, PSO, and RRT* in terms of its average success rate,
feasibility-constrained distance, average computation time, average direct path percentage,
and feasibility-constrained mission time. One notable advantage is TQC’s tendency to

Appl. Sci. 2025, 15, 6081 35 of 43

select a higher forward speed, which reduces the average mission time relative to that
of the aforementioned classical methods. Nevertheless, the GA and PSO remain highly
viable if the mission environment is relatively static and offline computation is acceptable.
Meanwhile, algorithms such as the APF and RRT* may either be too locally trapped (APF)
or prone to generating winding routes (RRT*), which become quite long when executed by
the dynamic AUV model.

Overall, these observations highlight that the final choice of planning approach de-
pends on whether one prioritizes offline or online execution, how critical short mission
times are, and to what extent the full dynamic model can or should be embedded into the
planner’s decision-making process.

5.1. A Case Study for the Best Classical and RL Algorithms

To analyze the trajectory characteristics produced by both the RL-based and classical
algorithms, a single representative case showcasing the AUV’s behavior is examined. The
resulting paths on a map of Gdynia’s harbor are visualized in Figure 6, along with the
corresponding heading profiles (Figure 7) and speed profiles (Figure 8). Because of their
substantially longer mission times, the RRT* and APF algorithms are excluded from the
heading and speed plots (Figures 7a and 8a) for clarity.

This example effectively demonstrates the behavior of RL models alongside that of
their classical counterparts. In this scenario, all of the AUVs reached the goal except for the
one based on the SAC-HER model, which stopped following a collision with the breakwater.
Among the classical algorithms, the APF approach produced an incorrect path that resulted
in a collision when verified using the vehicle’s motion model. In contrast, the RL-based
trajectories are smoother overall, with the absence of the characteristic oscillations caused
by a PID controller attempting to follow discrete waypoints. The classical algorithms, on
the other hand, generally yield piecewise linear paths with several local heading changes.
These changes arise from the local path smoothing applied wherever the change in course
exceeds 30◦.

Moreover, in this particular episode, the genetic algorithm (GA) ended its optimization
of the intermediate waypoints prematurely. Meanwhile, the PSO method, which is also an
optimization-based approach, found a shorter route. For the GA, the stopping criterion
was a fixed number of generations, without considering whether the best solution had
recently improved. In contrast, PSO stopped once multiple consecutive iterations failed
to yield substantial progress in minimizing the objective function. This second strategy
proved more effective, albeit at the potential cost of additional computation time.

A noticeable distinction between the algorithm groups lies in the way in which the
heading changes are executed. In classical algorithms, these changes are often abrupt,
usually dictated by the route-planning logic for each method. In contrast, RL models adjust
the heading continuously, with the only rapid course adjustment occurring at the beginning
(up to around 15 s), when the vehicle turns to exit the port. This smoother maneuver-
ing style may be more intuitive for a human operator, unlike some classical algorithms,
where the GA, for instance, can initially steer the vehicle southeast, seemingly away from
the target.

Another common observation regarding heading changes is the small oscillations
visible in Figure 7a, arising from the vehicle’s pursuit of waypoints determined through the
linear interpolation of straight segments. These oscillations typically have a low amplitude
and taper off over time. They occur mainly in straight-line segments where the trajectory
generation algorithm allows the vehicle to reach its maximum speed.

Appl. Sci. 2025, 15, 6081 36 of 43

(a) Classical algorithms (b) RL models

Figure 6. Trajectory comparison within test episode.

(a) Classical algorithms (b) RL models

Figure 7. Comparison of the AUV’s heading over time in the selected episode.

The speed management also differs substantially between RL-based and classical
algorithms. As shown in Figure 8, RL approaches typically have the vehicle travel at
its maximum speed from the start of the episode. This behavior stems from the limited
number of training steps per episode. In such algorithms, maximizing the reward, essen-
tially reaching the goal within a set time, makes it advantageous to maintain the highest
possible speed, thereby increasing the likelihood of mission success. By contrast, in classical
methods, comparable speeds are achieved only along straight-line segments.

Referring to Figure 7a and 8a, one can observe that small heading oscillations coincide
with sudden accelerations. Moreover, the number of waypoints and the magnitude of
the heading changes exert a strong influence on the total mission time. This is because
the vehicle slows down to limit deviations from the planned route and then accelerates
again on longer, straighter segments. From a practical standpoint, maintaining a constant
speed during the entire mission may be more energy-efficient than repeatedly accelerating
and decelerating. Such behavior may be attributed to the limitations of classical PID
controllers. Alternative low-level control strategies, such as Model Predictive Control
(MPC), sliding mode control (SMC), or fuzzy logic controllers, could potentially provide
smoother and more robust behavior, especially during aggressive maneuvers. In the
context of DRL, it is also possible to bypass the traditional controller layer entirely. The
agent can instead directly output actuator-level commands, such as thruster RPMs or force
vectors. This approach enables the learning algorithm to handle nonlinear dynamics and
time-varying environmental conditions better.

Appl. Sci. 2025, 15, 6081 37 of 43

(a) Classical algorithms (b) RL models

Figure 8. Comparison of the AUV’s speed over time in the selected test episode.

5.2. Practical Implications and Recommended Use Cases

Table 6 summarizes the key advantages, drawbacks, and ideal mission scenarios for
each algorithm evaluated. For example, classical population-based methods (GA, PSO)
excel in static environments with sufficient offline computation times, whereas off-policy RL
algorithms (SAC, TD3, and TQC) are preferable in complex conditions requiring adaptive
decision-making.

Table 6. A high-level comparison of the algorithms for real-world deployment.

Method Pros Cons Ideal Use Case

GA/PSO No need for a precise motion
model; robust offline search

Non-adaptive; needs
re-optimization if the
conditions change

Pre-mission path planning in
static or well-known areas

RRT*/APF Quick approximate solutions;
simpler to implement

APF prone to local minima;
RRT* requires smoothing

Rapid offline/onboard
generation of feasible paths
with subsequent refinement

SAC/TD3/TQC
Adaptive to changing states;
smoother, dynamic-feasible
paths

Requires training and
hyperparameter tuning; relies
on a simulator

Missions with uncertain or
time-varying conditions;
repeated usage after
offline training

6. Testing DRL Algorithms on an Unseen Map
In order to evaluate the generalization capabilities of the trained Deep Reinforcement

Learning (DRL) agents, we tested them on a new map of the port of Gdańsk (Poland). This
map had dimensions of 2760× 2760 meters and was not used during the training phase.
Despite the lack of prior exposure to this region, our DRL approaches—augmented by
sonar beam observations—demonstrated excellent adaptability. Specifically, each agent
had access to 24 simulated sonar beams spanning a 90◦ field of view, enabling the detection
and avoidance of previously unseen obstacles. The test were conducted using 100 random
goals, as performed in Section 5.

Our experiments confirmed that off-policy DRL methods not only perform well in fa-
miliar maps but also exhibit a robust and efficient performance in unfamiliar environments.
Even without specific pre-training on the Gdańsk port data, the learned policies generated
collision-free trajectories of moderate lengths and effectively reached the designated targets.
The results are presented in Table 7 and Figure 9. This study shows that the TD3 algorithm
has a strong ability to generalize, in comparison to the slightly worse abilities of SAC
and TQC.

Appl. Sci. 2025, 15, 6081 38 of 43

Table 7. A comparison of the average results for the analyzed algorithms on an unseen map.

Algorithm Avg. Succ. Feas. Constr. Total Avg. Reward Avg. Std. Dev. Avg. Comp. Avg. Direct Feas. Constr.
Rate Dist. [m] Speed [m/s] of Hdg. Diff. [°] Time [s] Path % Time [s]

SAC 0.80 288.61 1.86 −13.08 8.03 0.68 90.65 162.79
SAC-HER 0.79 278.80 1.88 −12.27 8.40 0.69 92.0 154.4
TD3 0.84 290.43 1.90 −10.43 8.30 0.61 93.8 161.1
TD3-HER 0.83 276.77 1.94 −9.62 9.11 0.62 93.5 152.15
TQC 0.80 283.62 1.88 −11.28 8.09 1.53 93.1 158.1
TQC-HER 0.79 279.11 1.89 −11.52 8.45 0.59 93.4 153.7

(a) SAC (b) SAC-HER (c) TD3

(d) TD3-HER (e) TQC (f) TQC-HER

Figure 9. Trajectories computed by reinforcement learning models—SAC (a), SAC-HER (b), TD3 (c),
TD3-HER (d), TQC (e), and TQC-HER (f)—on an unseen map of Gdańsk port.

7. Discussion
The presented results and analyses suggest that selecting a trajectory planning algo-

rithm for an underwater vehicle largely depends on the complexity of the task and the
available computational resources. Classical algorithms such as the GA, PSO, and RRT*
proved to be highly effective in finding collision-free paths. These methods do not require a
training phase or precise knowledge of the AUV motion model, which can be advantageous
when environmental information is limited or the preparation time is constrained. On the
other hand, they operate by determining a series of intermediate waypoints, forcing the
vehicle to frequently adjust its speed to minimize deviations from the planned route. This
can lead to a higher energy consumption and longer mission durations, especially in more
challenging maneuvering conditions or with complex route profiles.

A comparative analysis of the RL algorithms indicates that training can bring benefits
by producing smoother trajectories, as the vehicle’s actual dynamics are taken into account
during learning. An RL agent continuously modifies the heading and speed to maximize
the cumulative reward, resulting in more natural maneuvers. This is crucial in restricted
spaces and scenarios that require rapid decision-making. In practice, this allows for higher
speeds throughout the mission, thus reducing the total mission time. At the same time,

Appl. Sci. 2025, 15, 6081 39 of 43

however, RL algorithms demand a lengthy training phase and a detailed, nonlinear vehicle
model. Such requirements may pose significant constraints if accurate vehicle dynamics
data are not available.

It is also worth noting that in certain cases, RL-based approaches may cause the vehicle
to circle around the target at an excessive speed, complicating precise arrival or stopping at
the intended location. This phenomenon was especially pronounced for selected variants of
SAC-HER, TD3-HER, and TQC-HER. Although RL methods can generally offer smoother
guidance and more natural maneuvers, their parameters and reward functions must be
carefully tuned to the specific mission requirements and vehicle characteristics.

A major advantage of the experiments carried out in this study is the use of an actual
port map, which narrows the gap between the test conditions and real-world scenarios.
Constraints such as ignoring the currents or waves could be addressed in future work
to broaden the generality and reliability of the tested methods. Whether implementing
classical or RL-based approaches, special care must be taken to ensure accurate modeling
of the vehicle’s dynamics and the environment in which it operates.

In summary, the final choice of algorithm is influenced by factors such as environ-
mental knowledge, the mission objectives, and energy constraints. In more complex and
demanding applications, RL approaches—trained using a vehicle-specific model—yield
smoother maneuvers. Conversely, in simpler missions or when the vehicle’s dynam-
ics are not fully known, the classical planning methods suffice and are easier to imple-
ment, provided that their configurations are properly tuned and the computed paths are
additionally smoothed.

8. Conclusions
The presented research clearly demonstrates that reinforcement learning algorithms

can effectively address trajectory planning tasks for underwater vehicles (AUVs), while
incorporating both a model of the vehicle’s motion and real-world constraints derived
from an actual ENC port map. Among the tested methods, the Truncated Quantile Critic
(TQC) algorithm performed the best, achieving high success rates alongside low average
path distances and short mission times. This indicates that accounting for the uncertainty
distribution in the action values—by means of quantiles—results in enhanced stability and
higher-quality decisions, in line with the AUV’s dynamic characteristics.

Compared to the classical approaches (A*, APF, GA, PSO, and RRT*),t he RL-based
methods more frequently produced smoother trajectories, thereby avoiding abrupt heading
changes and excessive speed fluctuations. Consequently, the vehicle achieved shorter
mission times and avoided obstacles more efficiently. Nonetheless, certain classical al-
gorithms—such as the GA and PSO—attained a one-hundred-percent success rate in
generating near-optimal paths in terms of their length. Methods such as the RRT* and
APF offer significantly faster computation times. However, while the RRT* typically pro-
duces feasible trajectories, these often deviate considerably from optimality. In contrast,
algorithms like the APF occasionally result in collisions or entrapment in local minima,
highlighting their limitations in complex, confined environments.

The use of Hindsight Experience Replay (HER) did not always improve the perfor-
mance—on some occasions, it increased the training time without significantly boosting
the success rate. Curriculum learning, however, enhanced the training stability and effec-
tiveness, preventing the system from failing to reach the goal at longer distances. Moreover,
this study confirms that a realistic model of vehicle motion is crucial for deploying RL
solutions in real-world navigation tasks, as it ensures that the trained policies transfer
effectively to genuine operational conditions.

Appl. Sci. 2025, 15, 6081 40 of 43

Using RL for route planning on an actual port map may be yet another factor bringing
the application of this group of methods in maritime navigation closer. Research has
shown that RL algorithms can effectively mirror the complexity of port environments and
enable collision-free navigation, competing with and sometimes surpassing the classical
algorithms. Additionally, they plan routes without abrupt maneuvers, which distinguishes
them from the classical approaches. Moreover, the results show that RL algorithms have
strong abilities to generalize path finding in an unseen environment, achieving 0.79 to 0.84
success rates. In future work, the plan is to validate the RL algorithms under more challeng-
ing conditions, including environmental factors such as ocean currents and uncertainties in
determining the position.

Author Contributions: Conceptualization: Ł.M. and R.K. Methodology: Ł.M., P.S. and R.K. Software:
Ł.M. and R.K. Validation: P.S. Formal analysis: Ł.M., P.S. and R.K. Investigation: Ł.M., P.S. and R.K.
Resources: Ł.M., P.S. and R.K. Data curation: Ł.M., R.K. and P.P. Writing—original draft preparation:
Ł.M. and R.K. Writing—review and editing: Ł.M., P.S. and R.K. Visualization: Ł.M. and R.K. Supervi-
sion: P.S. Project administration: Ł.M., P.S., P.P. and R.K. Funding acquisition: Ł.M., P.S., R.K. and P.P.
All of the authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, J.; Sun, C.; Zhang, A. Autonomous Navigation for Adaptive Unmanned Underwater Vehicles Using Fiducial Markers. In

Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 9298–9304. [CrossRef]

2. Guo, J.; Wang, J.; Bo, Y. An Observer-Based Adaptive Neural Network Finite-Time Tracking Control for Autonomous Underwater
Vehicles via Command Filters. Drones 2023, 7, 604. [CrossRef]

3. Wang, F.; Zhao, L. Coordinated Trajectory Planning for Multiple Autonomous Underwater Vehicles: A Parallel Grey Wolf
Optimizer. J. Mar. Sci. Eng. 2023, 11, 1720. [CrossRef]

4. McMahon, J.; Plaku, E. Autonomous Data Collection with Timed Communication Constraints for Unmanned Underwater
Vehicles. IEEE Robot. Autom. Lett. 2021, 6, 1832–1839. [CrossRef]

5. Orłowski, M. Directions of Development of the Autonomous Unmanned Underwater Vehicles. A Review. Marit. Tech. J. 2022,
224, 68–79. [CrossRef]

6. Strama, K.; Weber, D.; Renkewitz, H. Evaluation of Wifi Data Transmission Algorithms for Short Distance Underwater
Communication. In Proceedings of the OCEANS 2021: San Diego–Porto, San Diego, CA, USA, 20–23 September 2021; pp. 1–6.
[CrossRef]

7. Jiang, J.; Tian, W.; Han, G. A Medium Access Control Protocol Based on Interference Cancellation Graph for AUV-Assisted
Internet of Underwater Things. Sustainability 2023, 15, 4876. [CrossRef]

8. Mulholland, J.; Smolyaninov, I. Plasmonic-Surface Electromagnetic Wave Communication for Subsea Asset Inspection. In
Proceedings of the 2022 Sixth Underwater Communications and Networking Conference (UComms), Lerici, Italy, 30 August–1
September 2022; pp. 1–5. [CrossRef]

9. Breivik, M.; Thor, I. Guidance Laws for Autonomous Underwater Vehicles. In Underwater Vehicles; Inzartsev, A.V., Ed.; InTech:
Houston, TX, USA, 2009. [CrossRef]

10. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control, 1st ed.; Wiley: Hoboken, NJ, USA, 2011. [CrossRef]
11. Fossen, T.; Blanke, M. Nonlinear Output Feedback Control of Underwater Vehicle Propellers Using Feedback Form Estimated

Axial Flow Velocity. IEEE J. Ocean. Eng. 2000, 25, 241–255. [CrossRef]
12. Kot, R.; Szymak, P.; Piskur, P.; Naus, K. A-Star (A*) with Map Processing for the Global Path Planning of Autonomous Underwater

and Surface Vehicles Operating in Large Areas. Appl. Sci. 2024, 14, 8015. [CrossRef]

http://doi.org/10.1109/ICRA48506.2021.9561419
http://dx.doi.org/10.3390/drones7100604
http://dx.doi.org/10.3390/jmse11091720
http://dx.doi.org/10.1109/LRA.2021.3060709
http://dx.doi.org/10.2478/sjpna-2022-0005
http://dx.doi.org/10.23919/OCEANS44145.2021.9705847
http://dx.doi.org/10.3390/su15064876
http://dx.doi.org/10.1109/UComms56954.2022.9905693
http://dx.doi.org/10.5772/6696
http://dx.doi.org/10.1002/9781119994138
http://dx.doi.org/10.1109/48.838987
http://dx.doi.org/10.3390/app14178015

Appl. Sci. 2025, 15, 6081 41 of 43

13. Miao, J.; Wang, S.; Zhao, Z.; Li, Y.; Tomovic, M.M. Spatial Curvilinear Path Following Control of Underactuated AUV with
Multiple Uncertainties. ISA Trans. 2017, 67, 107–130. [CrossRef] [PubMed]

14. Xia, Y.; Xu, K.; Li, Y.; Xu, G.; Xiang, X. Improved Line-of-Sight Trajectory Tracking Control of under-Actuated AUV Subjects to
Ocean Currents and Input Saturation. Ocean Eng. 2019, 174, 14–30. [CrossRef]

15. Qi, X.; Cai, Z.j. Three-Dimensional Formation Control Based on Nonlinear Small Gain Method for Multiple Underactuated
Underwater Vehicles. Ocean Eng. 2018, 151, 105–114. [CrossRef]

16. Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Sliding Mode Based Neural Adaptive Formation Control of Underactuated AUVs with
Leader-Follower Strategy. Appl. Ocean Res. 2020, 94, 101971. [CrossRef]

17. Li, J.; Du, J.; Chang, W.J. Robust Time-Varying Formation Control for Underactuated Autonomous Underwater Vehicles with
Disturbances under Input Saturation. Ocean Eng. 2019, 179, 180–188. [CrossRef]

18. Bian, J.; Xiang, J. Three-Dimensional Coordination Control for Multiple Autonomous Underwater Vehicles. IEEE Access 2019,
7, 63913–63920. [CrossRef]

19. Galarza, C.; Masmitja, I.; Prat, J.; Gomaríz, S. Design of obstacle detection and avoidance system for Guanay II AUV. In
Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016;
pp. 410–414.

20. Li, X.; Wang, W.; Song, J.; Liu, D. Path planning for autonomous underwater vehicle in presence of moving obstacle based on
three inputs fuzzy logic. In Proceedings of the 2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Nagoya,
Japan, 13–15 July 2019; pp. 265–268.

21. Yan, S.; Pan, F. Research on route planning of AUV based on genetic algorithms. In Proceedings of the 2019 IEEE International
Conference on Unmanned Systems and Artificial Intelligence (ICUSAI), Xi’an, China, 22–24 November 2019; pp. 184–187.

22. Ab Wahab, M.N.; Nazir, A.; Khalil, A.; Ho, W.J.; Akbar, M.F.; Noor, M.H.M.; Mohamed, A.S.A. Improved genetic algorithm for
mobile robot path planning in static environments. Expert Syst. Appl. 2024, 249, 123762. [CrossRef]

23. Das, P.; Jena, P.K. Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary
operators. Appl. Soft Comput. 2020, 92, 106312. [CrossRef]

24. Yu, C.; Liu, C.; Lian, L.; Xiang, X.; Zeng, Z. ELOS-based Path Following Control for Underactuated Surface Vehicles with Actuator
Dynamics. Ocean Eng. 2019, 187, 106139. [CrossRef]

25. Cui, R.; Ge, S.S.; Voon Ee How, B.; Choo, Y.S. Leader-Follower Formation Control of Underactuated AUVs with Leader Position
Measurement. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May
2009; pp. 979–984. [CrossRef]

26. Nandy, A.; Biswas, M., Google’s DeepMind and the Future of Reinforcement Learning. In Reinforcement Learning; Apress: New
York, NY, USA, 2018; pp. 155–163. [CrossRef]

27. Huang, Y. Deep Q-Networks. In Deep Reinforcement Learning; Dong, H., Ding, Z., Zhang, S., Eds.; Springer: Singapore, 2020;
pp. 135–160. [CrossRef]

28. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:
Combining Improvements in Deep Reinforcement Learning. Proc. AAAI Conf. Artif. Intell. 2018, 3215–3222. [CrossRef]

29. Busoniu, L.; Babuska, R.; De Schutter, B. Multi-Agent Reinforcement Learning: A Survey. In Proceedings of the 2006 9th
International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006; pp. 1–6. [CrossRef]

30. Xiao, Z., Introduction of Reinforcement Learning (RL). In Reinforcement Learning; Springer Nature: Singapore, 2024; pp. 1–22.
[CrossRef]

31. Dong, H.; Ding, Z.; Zhang, S. (Eds.) Deep Reinforcement Learning: Fundamentals, Research and Applications; Springer:
Singapore, 2020. [CrossRef]

32. Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. arXiv 2015, arXiv:1509.06461. [CrossRef]
33. Wen, S.; Jiang, Y.; Cui, B.; Gao, K.; Wang, F. A Hierarchical Path Planning Approach with Multi-SARSA Based on Topological

Map. Sensors 2022, 22, 2367. [CrossRef]
34. Yoo, B.; Kim, J. Path Optimization for Marine Vehicles in Ocean Currents Using Reinforcement Learning. J. Mar. Sci. Technol.

2016, 21, 334–343. [CrossRef]
35. Tu, G.T.; Juang, J.G. UAV Path Planning and Obstacle Avoidance Based on Reinforcement Learning in 3D Environments. Actuators

2023, 12, 57. [CrossRef]
36. Saga, R.; Kozono, R.; Tsurumi, Y.; Nihei, Y. Deep-Reinforcement Learning-Based Route Planning with Obstacle Avoidance for

Autonomous Vessels. Artif. Life Robot. 2024, 29, 136–144. [CrossRef]
37. Hadi, B.; Khosravi, A.; Sarhadi, P. Deep Reinforcement Learning for Adaptive Path Planning and Control of an Autonomous

Underwater Vehicle. Appl. Ocean Res. 2022, 129, 103326. [CrossRef]
38. Heiberg, A.; Larsen, T.N.; Meyer, E.; Rasheed, A.; San, O.; Varagnolo, D. Risk-Based Implementation of COLREGs for Autonomous

Surface Vehicles Using Deep Reinforcement Learning. Neural Netw. 2022, 152, 17–33. [CrossRef]

http://dx.doi.org/10.1016/j.isatra.2016.12.005
http://www.ncbi.nlm.nih.gov/pubmed/28065455
http://dx.doi.org/10.1016/j.oceaneng.2019.01.025
http://dx.doi.org/10.1016/j.oceaneng.2018.01.032
http://dx.doi.org/10.1016/j.apor.2019.101971
http://dx.doi.org/10.1016/j.oceaneng.2019.03.017
http://dx.doi.org/10.1109/ACCESS.2019.2915933
http://dx.doi.org/10.1016/j.eswa.2024.123762
http://dx.doi.org/10.1016/j.asoc.2020.106312
http://dx.doi.org/10.1016/j.oceaneng.2019.106139
http://dx.doi.org/10.1109/ROBOT.2009.5152566
http://dx.doi.org/10.1007/978-1-4842-3285-9_6
http://dx.doi.org/10.1007/978-981-15-4095-0_4
http://dx.doi.org/10.1609/aaai.v32i1.11796
http://dx.doi.org/10.1109/ICARCV.2006.345353
http://dx.doi.org/10.1007/978-981-19-4933-3_1
http://dx.doi.org/10.1007/978-981-15-4095-0
http://dx.doi.org/10.1609/aaai.v30i1.10295
http://dx.doi.org/10.3390/s22062367
http://dx.doi.org/10.1007/s00773-015-0355-9
http://dx.doi.org/10.3390/act12020057
http://dx.doi.org/10.1007/s10015-023-00909-4
http://dx.doi.org/10.1016/j.apor.2022.103326
http://dx.doi.org/10.1016/j.neunet.2022.04.008

Appl. Sci. 2025, 15, 6081 42 of 43

39. Yu, R.; Shi, Z.; Huang, C.; Li, T.; Ma, Q. Deep Reinforcement Learning based optimal trajectory tracking control of autonomous
underwater vehicle. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017;
pp. 4958–4965. [CrossRef]

40. Fang, Y.; Huang, Z.; Pu, J.; Zhang, J. AUV position tracking and trajectory control based on fast-deployed Deep Reinforcement
Learning method. Ocean Eng. 2022, 245, 110452. [CrossRef]

41. Liu, Z.; Cai, W.; Zhang, M. Reinforcement Learning-based path tracking for underactuated UUV under intermittent communica-
tion. Ocean Eng. 2023, 288, 116076. [CrossRef]

42. Anderlini, E.; Parker, G.G.; Thomas, G. Docking Control of an Autonomous Underwater Vehicle Using Reinforcement Learning.
Appl. Sci. 2019, 9, 3456. [CrossRef]

43. Palomeras, N.; Ridao, P. Autonomous Underwater Vehicle Docking Under Realistic Assumptions Using Deep Reinforcement
Learning. Drones 2024, 8, 673. [CrossRef]

44. Zhang, T.; Miao, X.; Li, Y.; Jia, L.; Wei, Z.; Gong, Q.; Wen, T. AUV 3D docking control using Deep Reinforcement Learning. Ocean
Eng. 2023, 283, 115021. [CrossRef]

45. Wang, C.; Deng, D.; Xu, L.; Wang, W. Resource Scheduling Based on Deep Reinforcement Learning in UAV Assisted Emergency
Communication Networks. IEEE Trans. Commun. 2022, 70, 3834–3848. [CrossRef]

46. Ding, R.; Gao, F.; Shen, X.S. 3D UAV Trajectory Design and Frequency Band Allocation for Energy-Efficient and Fair Communica-
tion: A Deep Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 7796–7809. [CrossRef]

47. Tao, M.; Li, X.; Feng, J.; Lan, D.; Du, J.; Wu, C. Multi-Agent Cooperation for Computing Power Scheduling in UAVs Empowered
Aerial Computing Systems. IEEE J. Sel. Areas Commun. 2024, 42, 3521–3535. [CrossRef]

48. Yuan, J.; Wang, H.; Zhang, H.; Lin, C.; Yu, D.; Li, C. AUV Obstacle Avoidance Planning Based on Deep Reinforcement Learning.
J. Mar. Sci. Eng. 2021, 9, 1166. [CrossRef]

49. Chu, Z.; Wang, F.; Lei, T.; Luo, C. Path Planning Based on Deep Reinforcement Learning for Autonomous Underwater Vehicles
Under Ocean Current Disturbance. IEEE Trans. Intell. Veh. 2023, 8, 108–120. [CrossRef]

50. Wang, Z.; Lu, H.; Qin, H.; Sui, Y. Autonomous Underwater Vehicle Path Planning Method of Soft Actor–Critic Based on Game
Training. J. Mar. Sci. Eng. 2022, 10, 2018. [CrossRef]

51. Politi, E.; Stefanidou, A.; Chronis, C.; Dimitrakopoulos, G.; Varlamis, I. Adaptive Deep Reinforcement Learning for Efficient 3D
Navigation of Autonomous Underwater Vehicles. IEEE Access 2024, 12, 178209–178221. [CrossRef]

52. Liao, X.; Li, L.; Huang, C.; Zhao, X.; Tan, S. Noisy Dueling Double Deep Q-Network algorithm for autonomous underwater
vehicle path planning. Front. Neurorobotics 2024, 18, 1466571. [CrossRef]

53. Sun, P.; Yang, C.; Zhou, X.; Wang, W. Path Planning for Unmanned Surface Vehicles with Strong Generalization Ability Based on
Improved Proximal Policy Optimization. Sensors 2023, 23, 8864. [CrossRef]

54. Zhou, Z.; Bao, T.; Ding, J.; Chen, Y.; Jiang, Z.; Zhang, B. An Offline Reinforcement Learning Approach for Path Following of an
Unmanned Surface Vehicle. J. Mar. Sci. Eng. 2024, 12, 2173. [CrossRef]

55. Zhao, J.; Wang, P.; Li, B.; Bai, C. A DDPG-Based USV Path-Planning Algorithm. Appl. Sci. 2023, 13, 10567. [CrossRef]
56. Du, B.; Lin, B.; Zhang, C.; Dong, B.; Zhang, W. Safe Deep Reinforcement Learning-based adaptive control for USV interception

mission. Ocean Eng. 2022, 246, 110477. [CrossRef]
57. Wang, Y.; Wang, W.; Chen, D. Knowledge-Guided Reinforcement Learning with Artificial Potential Field-Based Demonstrations

for Multi-Autonomous Underwater Vehicle Cooperative Hunting. J. Mar. Sci. Eng. 2025, 13, 423. [CrossRef]
58. Szymak, P. Low-level control of unmanned marine vehicle past. In Proceedings of the Polymer Diagnosis Conference, Male, Italy,

15–22 January 2022.
59. Sname, T. Nomenclature for treating the motion of a submerged body through a fluid. In The Society of Naval Architects and Marine

Engineers, Technical and Research Bulletin; SNAME: Alexandria, VA, USA, 1950; pp. 1–5.
60. Helgason, B.; Leifsson, L.; Rikhardsson, I.; Thorgilsson, H.; Koziel, S. Low-speed modeling and simulation of torpedo-shaped

AUVs. In Proceedings of the International Conference on Informatics in Control, Automation and Robotics, Rome, Italy, 28–31
July 2012; Volume 2, pp. 333–338.

61. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. arXiv 2018, arXiv:1801.01290. [CrossRef]

62. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,
arXiv:1802.09477. [CrossRef]

63. Kuznetsov, A.; Shvechikov, P.; Grishin, A.; Vetrov, D. Controlling Overestimation Bias with Truncated Mixture of Continuous
Distributional Quantile Critics. arXiv 2020, arXiv:2005.04269. [CrossRef]

64. stable-Baselines3-Contrib: TQC, QR-DQN and Other Improvements. Available online: https://github.com/Stable-Baselines-
Team/stable-baselines3-contrib (accessed on 29 January 2025).

http://dx.doi.org/10.23919/ChiCC.2017.8028138
http://dx.doi.org/10.1016/j.oceaneng.2021.110452
http://dx.doi.org/10.1016/j.oceaneng.2023.116076
http://dx.doi.org/10.3390/app9173456
http://dx.doi.org/10.3390/drones8110673
http://dx.doi.org/10.1016/j.oceaneng.2023.115021
http://dx.doi.org/10.1109/TCOMM.2022.3170458
http://dx.doi.org/10.1109/TWC.2020.3016024
http://dx.doi.org/10.1109/JSAC.2024.3459035
http://dx.doi.org/10.3390/jmse9111166
http://dx.doi.org/10.1109/TIV.2022.3153352
http://dx.doi.org/10.3390/jmse10122018
http://dx.doi.org/10.1109/ACCESS.2024.3508031
http://dx.doi.org/10.3389/fnbot.2024.1466571
http://dx.doi.org/10.3390/s23218864
http://dx.doi.org/10.3390/jmse12122173
http://dx.doi.org/10.3390/app131910567
http://dx.doi.org/10.1016/j.oceaneng.2021.110477
http://dx.doi.org/10.3390/jmse13030423
http://dx.doi.org/10.48550/ARXIV.1801.01290
http://dx.doi.org/10.48550/ARXIV.1802.09477
http://dx.doi.org/10.48550/ARXIV.2005.04269
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

Appl. Sci. 2025, 15, 6081 43 of 43

65. International Hydrographic Organization (IHO). S-57 Appendix B.1 Annex a: Use of the Object Catalogue for ENC, 4.1.0 ed.;
International Hydrographic Organization (IHO): Monte Carlo, Monaco, 2018.

66. Stable-Baselines3. Available online: https://github.com/DLR-RM/stable-baselines3 (accessed on 10 October 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/DLR-RM/stable-baselines3

	Introduction
	Materials and Methods
	The Nonlinear Mathematical Model of the AUV's Dynamics
	The Reinforcement Learning Background
	Reinforcement-Learning-Based Algorithms
	Classical Algorithms
	Path Smoothing and Set Trajectory Calculation

	Description of the Environment
	State Space RL
	The Observation Space
	The Action Space of the Agent
	The Reward Function
	Curriculum Learning Elements
	Hindsight Experience Replay
	Motivation for Off-Policy RL
	Implementation Details

	Hyperparameter Optimization
	Simulation Results and Analysis
	A Case Study for the Best Classical and RL Algorithms
	Practical Implications and Recommended Use Cases

	Testing DRL Algorithms on an Unseen Map
	Discussion
	Conclusions
	References

