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Abstract: This paper proposes a novel SDA-Mask R-CNN framework for precise seabed
terrain edge feature extraction from Side-Scan Sonar (SSS) images to enhance Unmanned
Underwater Vehicle (UUV) perception and navigation. The developed architecture ad-
dresses critical challenges in underwater image analysis, including low segmentation
accuracy and ambiguous edge delineation, through three principal innovations. First, we
introduce a Structural Synergistic Group-Attention Residual Network (SSGAR-Net) that
integrates group convolution with an enhanced convolutional block attention mechanism,
complemented by a layer-skipping architecture for optimized information flow and redun-
dancy verification for computational efficiency. Second, a Depth-Weighted Hierarchical
Fusion Network (DWHF-Net) incorporates depthwise separable convolution to minimize
computational complexity while preserving model performance, which is particularly ef-
fective for high-resolution SSS image processing. This module further employs a weighted
pyramid architecture to achieve multi-scale feature fusion, significantly improving adapt-
ability to diverse object scales in dynamic underwater environments. Third, an Adaptive
Synergistic Mask Optimization (ASMO) strategy systematically enhances mask generation
through classification head refinement, adaptive post-processing, and progressive training
protocols. Comprehensive experiments demonstrate that our method achieves 0.695 (IoU)
segmentation accuracy and 1.0 (AP) edge localization accuracy. The proposed framework
shows notable superiority in preserving topological consistency of seabed features, offering
a reliable technical framework for underwater navigation and seabed mapping in marine
engineering applications.

Keywords: UUV; side-scan sonar; Mask R-CNN; feature extraction

1. Introduction
The exploration and characterization of seabed environments are critical for marine

engineering applications, including underwater infrastructure inspection, habitat mapping,
and resource exploitation [1]. UUVs have emerged as indispensable tools for these tasks,
offering high-resolution data acquisition in challenging sub-sea environments [2]. However,
the complexity of seabed terrains, coupled with factors such as turbidity, low light, and
dynamic sediment movement, poses significant challenges for automated feature extraction
and object detection [3]. Traditional methods relying on sonar and photogrammetric
techniques often struggle with fine-grained feature discrimination, particularly in cluttered
or heterogeneous seabed regions [4].

J. Mar. Sci. Eng. 2025, 13, 863 https://doi.org/10.3390/jmse13050863

https://doi.org/10.3390/jmse13050863
https://doi.org/10.3390/jmse13050863
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-1187-0135
https://doi.org/10.3390/jmse13050863
https://www.mdpi.com/article/10.3390/jmse13050863?type=check_update&version=2


J. Mar. Sci. Eng. 2025, 13, 863 2 of 22

The evolution of SSS image feature extraction has historically been constrained by
manual observation and subjective evaluation systems, which exhibit inherent limitations
in operational efficiency and resource optimization. These labor-intensive methodologies
demonstrate particular vulnerability to environmental interference and operator fatigue in
mission-critical scenarios. Conventional edge detection frameworks predominantly employ
classical algorithms including: Gradient-based operators (Canny, Sobel), local feature de-
scriptors (SIFT, HOG, LBP), and their hybrid derivatives through algorithmic modifications.
Scholars have been exploring and improving traditional algorithms, among which the
representative methods include: adaptive algorithms, classic Speeded-Up Robust Features
(SURF) [5], Anisotropic Diffusion-Sobel (AD-Sobel) [6], Central Differential Convolution
(CDC) [7], rotation invariant texture classification with local binary patterns (RI-LBP) [8],
Multi-scale Histogram of Oriented Gradient (MS-HOG) [9], etc. Traditional detection oper-
ators rely on handcrafted features and rigid pipelines, requiring manual parameter tuning
and struggling to adapt to dynamic noisy environments. While these methods achieve
basic contour delineation in controlled environments, they suffer from three principal con-
straints: (1) sensitivity to speckle noise inherent in sonar imaging; (2) limited adaptability
to complex seabed topographies; (3) the requirement for manual parameter calibration
across deployment scenarios. Recent advancements in level-set functions have shown
potential in automating highlight/shadow contour extraction through iterative refinement
mechanisms, yet remain computationally intensive for real-time applications.

As global interest in oceanic exploration grows, deep learning has been widely applied
in the fields of image recognition and target identification. Scholars are also constantly
trying to apply it to feature extraction and target detection of SSS images in marine en-
vironments. Recent advances in Deep Learning (DL) have revolutionized underwater
image analysis, with Convolutional Neural Networks (CNNs) demonstrating remarkable
success in tasks such as sub-sea pipeline inspection [10], identification of seabed [11], three-
dimensional mapping [12], biomedical image [13], semantic segmentation, and instance
detection [14], etc.

Existing DL-based approaches for seabed feature extraction often rely on simplified
architectures that inadequately address the multi-scale nature of underwater features. For
instance, standard ResNet backbones may fail to capture fine details of irregular seabed
structures, such as coral reefs or pipeline cracks [15]. Additionally, conventional training
strategies using generic pretrained models (e.g., ImageNet) suffer from domain shift, lead-
ing to suboptimal performance in marine settings [16]. Recent studies have attempted
to mitigate these issues through hybrid architectures (e.g., ResNeXt [17], Res2Net [18]),
domain adaptation techniques [19,20], and structural optimization [21–25], yet a systematic
optimization framework tailored for UUV-based applications remains absent. Among
these, Mask R-CNN, a two-stage instance segmentation framework, has shown excep-
tional performance in terrestrial and aerial applications by combining Region Proposal
Networks (RPNs) with pixel-level mask prediction [26]. Despite its potential, the direct
adaptation of Mask R-CNN to marine environments remains underexplored, primarily
due to domain-specific challenges such as water column attenuation, scattering effects, and
limited annotated datasets [27].

This study presents an optimized SDA-Mask R-CNN framework specifically designed
for seabed feature extraction in UUV operations, aimed at addressing issues such as severe
speckle noise, low-resolution images, and the difficulty of target segmentation in SSS
images. The principal contributions of this paper are delineated as follows:

• SSGAR-Net uses a backbone network with Group Convolution (GC), Cross-scale
Convolutional Block Attention Module (CCBAM), and Skip Integration to extract
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multi-scale features, minimize parameter redundancy, and improve edge response
through redundancy verification.

• DWHF net combines Deep Separable Convolution (DSC) to reduce computational
complexity while maintaining model performance, which is especially suitable for
high-resolution SSS image processing. The module further uses a weighted pyra-
mid structure to realize multi-scale feature fusion, which significantly improves the
adaptability to different target scales in underwater environments.

• The ASMO strategy systematically enhances dynamic learning-rate scheduling, the col-
laborative optimization mechanism of the regression box, and the segmentation task.

The remainder of this paper is organized as follows: Section 2 reviews related work
on SSS data and details the architecture of seabed feature extraction of SSS for UUVs
based on an SDA-Mask R-CNN, Section 3 presents the results with related discussion
and conclusions.

2. Materials and Methods
2.1. SSS Data Preprocessing

During operation, the SSS transducer emits pulsed acoustic signals in a spherical wave
pattern at a preset frequency. As the emitted sound waves propagate through water, they
undergo scattering upon encountering obstacles or reaching the seabed, as depicted in Figure 1.

UUV
Sonar images

Figure 1. Working Overview of UUVs with SSS.

A portion of the back-scattered echoes travels along the original transmission path
and is captured by the transducer, which subsequently converts these echoes into elec-
trical impulses. The acoustic intensity exhibits exponential attenuation with increasing
propagation distance, while the reflection strength varies significantly depending on the
material properties and geometric characteristics of encountered objects as depicted in
Figure 2. It illustrates the working principle of SSS, depicting how acoustic pulses are
emitted, scattered by seabed obstacles, and received as echoes by the transducer, which
converts them into electrical signals. It highlights the exponential attenuation of acoustic
intensity with propagation distance and the dependence of reflection strength on object
material and geometry.

By systematically organizing the received data into a time-sequential format and
mapping each scan line onto a display unit, the system constructs a visual representation
of the seabed topography. Echo intensity can be calculated from sonar parameters, and the
conversion relationship between echo intensity and pixel grayscale values is as depicted by
Equation (1):

G = Gmin +
Gmax − Gmin

Amax − Amin
(A − Amin) (1)
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where G represents gray value, A represents acoustic intensity. Equation (1) converts
acoustic intensity A to a gray G value via linear mapping, the core principle is to linearly
stretch the original range of sonar echo intensity A [Amin, Amax] into the gray value range
[Gmin, Gmax], enabling the generation of displayable SSS images.

P

H

V

A

C

D
d

B

Left transducer front
Right transducer front

Sailing direction

Port acoustic beam

Right acoustic beam
E

F

Figure 2. SSS working principle diagram.

During the generation of training data, speckle noise and Rayleigh noise are added
to simulate the characteristics of high and low echo regions in SSS images as depicted by
Equation (2). This improves the model’s adaptability to real-world scenarios and enhances
its generalization ability in complex underwater environments. Simultaneously, we rotate,
flip, and center-crop the SSS images using an affine transformation matrix as depicted by
Equation (3).

Anoisy = Aoriginal · (1 + k · Nspot) + σ · Nrayleigh (2)

where Aoriginal represents original sonar echo intensity, N represents noise field follow-
ing Gamma Distribution or Rayleigh Distribution, σ represents strength parameters
(2 < σ < 10 dB), and k represents control noise intensity (0.1 < k < 0.5). Equation (2)
introduces synthetic speckle noise (modeled as Gamma-distributed Nspot scaled by k) and
Rayleigh noise (Nrayleigh scaled by σ) to original sonar intensity Aoriginal simulating real-
world acoustic artifacts to improve model robustness in noisy underwater environments.

Wcombined = WCr · WFl · WRo (3)

WCr =


W
Wc

0 −W−Wc
2 · W

Wc

0 H
Hc

−H−Hc
2 · H

Hc

0 0 1

 (4)

WFl =

 −1 0 W
0 1 0
0 0 1

 (5)

WRo =

 cos θ − sin θ (1 − cos θ) · W
2 + sin θ · H

2
sin θ cos θ − sin θ · W

2 + (1 − cos θ) · H
2

0 0 1

 (6)

where W and H represent the width and height of the input image, respectively. Wc and
Hc represent the width and height of the cropped image, respectively. Equation (4) defines
a crop matrix WCr that scales and shifts the image to center-crop it from dimensions W × H
to Wc × Hc. Equation (5) represents a horizontal flip matrix WFl , mirroring the image along
the x-axis by inverting coordinates and offsetting by width W. Equation (6) constructs a
rotation matrix WRo, rotating the image by angle θ (θ < 15◦) while adjusting the origin to
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maintain the center position after rotation. Equation (3) combines the crop (Equation (4)),
flip (Equation (5)), and rotation (Equation (6)) matrices through multiplication to generate
a unified affine transformation matrix for geometric augmentation of SSS images.

Considering the need to maintain consistent tensor shapes for parallel computation,
the necessity of uniform scaling strategies for augmentation operations, and the potential
impact of dynamic sizes on model training stability, we uniformly preprocess the sonar
images to a size of 512 × 512. During the annotation process, Labelme was utilized to
accurately annotate the edge features of SSS images. An example illustrating both original
images and their corresponding labels is presented in Figure 3.

Image

Label

Figure 3. Sample seabed images of original and label images.

2.2. Architecture of Seabed Feature Extraction of SSS for UUV Based on SDA-Mask R-CNN

This section conducts several improvement studies of the Mask R-CNN framework in
feature extraction from SSS image datasets.

2.2.1. Preliminary Screening of Backbone Networks

A preliminary comparison was conducted between the backbone architectures of Mask
R-CNN, namely ResNetv1 and ResNetv2. Both the training and validation loss functions of
the ResNetv1-based model (Model v1) are smaller than those of the ResNetv2-based model
(Model v2). The trained models were evaluated on the test set to calculate Mean Average
Precision (mAP) and Mean Intersection over Union. The calculation method is as depicted
by Equations (7) and (8).

mAP =
1
N

N

∑
i=1

APi (7)

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0(pji − pii)
(8)

where N is the total number of categories and APi is the average precision of the ith category
(for binary classification problems, N = 1, mAP = AP). pij represents the number of pixels
belonging to region i predicted as region j, pji represents the number of pixels belonging to
region j predicted as region i, pii represents the number of pixels belonging to region j and
region i that are predicted correctly. Where mAP evaluates the overall performance of an object
detection model by averaging the precision (AP) across all categories, particularly for multi-class
tasks. MIoU measures the average overlap ratio between predicted and ground-truth regions
for each category in segmentation tasks, reflecting the model’s segmentation consistency.

The Mish activation function has high nonlinear expression ability and anti-noise char-
acteristics. The negative value-retention characteristic can avoid the complete suppression
of noise signals and enhance the sensitivity to weak signals, making it more suitable for
SSS feature extraction tasks. The Mish activation function is depicted in Equation (9).

Mish(x) = x · tanh(ln(1 + ex)) (9)
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Equation (9) enhances model sensitivity to weak features (e.g., low-contrast edges)
in SSS images by retaining negative activations and improving gradient flow through the
Mish function’s smooth nonlinearity.

Batch Normalization (BN) [28] can address issues of data asymmetry and inconsistent
standard deviations, but its effectiveness heavily depends on batch size. Group Normaliza-
tion (GN) [29] aims to address the issue of significant performance degradation in batch
normalization BN during small batch optimization. SSS image processing frequently en-
counters non-independent and non-identically distributed data distributions, particularly
due to environmental heterogeneity across distinct aquatic environments. GN demonstrates
enhanced robustness in such scenarios through its decoupling mechanism of inter-sample
statistical dependencies, as opposed to BN.

We selected the Model v1, which showed better performance through comparative
experiments for subsequent experiments. Based on Model v1, the original network’s ReLU
activation function was replaced with the Mish activation function, and BN was replaced
with GN (both convolutional block and identity block), resulting in a new network named
Model v3. Figure 4 details the architecture of Model v3’s convolutional block (a) and
identity block (b), showcasing the integration of GN and Mish activation to replace BN and
ReLU, respectively. This design aims to enhance noise robustness and gradient flow in SSS
image processing, critical for preserving low-contrast seabed features.

(a) Conv_block (b) Id_block

GN

Mish

GN

Mish

GN

Mish

1×1，64，S=1

3×3，64，S=2

1×1，256，S=1

1×1，256，S=2

GN

Mish

GN

Mish

GN

Mish

1×1，64，S=1

3×3，64，S=2

1×1，256，S=1

GN

Figure 4. Detailed structure of the convolutional block and the identity block from Model v3.

2.2.2. Structural Synergistic Group-Attention Residual Network

In this section, the SSGAR-Net leverages a backbone network that synergistically
integrates GC, CBAM, and Skip Integration (SI) to achieve multi-scale feature extraction,
minimize parameter redundancy, and improve edge response through a redundancy
verification scheme.

ResNeXt and Res2Net introduce different structural optimizations based on ResNet
(as shown in Figure 5). Leveraging their distinct structural advantages, we employ them
as separate optimization strategies for residual blocks, creating Model v4 (Res2Net) and
Model v5 (ResNeXt) for experimental comparison. The model which performed better
was ultimately selected for further research. The Redundancy Verification Mechanism
(RVM): Skip Integration forces shallow features to directly participate in deep-layer fu-
sion, addressing progressive feature loss in SSS images. In Cross-Scale Feature Routing
(CFR), by integrating Res2Net’s multi-layer grouped convolution with dynamic weighting
(Equation (10)), we optimize coverage for multi-scale SSS targets, boosting Model v4’s IoU
over baselines.
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K2

K3

K4

3×3 max pooling

1×1 convs5×5 convs3×3 convs

1×1 convs1×1 convs

1×1 convs

Filter concatenation

Previous layer

(a)  ResNeXt (b) Res2Net

1×1 conv

X1 X2 X3 X4

3×3 conv

3×3 conv

3×3 conv

y1 y2 y3 y4

1×1 conv

Figure 5. Detailed structure of ResNeXt and Res2Net.

Figure 5 compares the architectural designs of ResNeXt and Res2Net, highlighting
their distinct multi-scale feature extraction strategies. It demonstrates how Res2Net’s
hierarchical grouped convolutions (with intra-layer connections) outperform ResNeXt’s
homogeneous grouped structure in SSS image segmentation tasks. By enabling progressive
multi-scale fusion through stacked residual blocks, Res2Net (Model v4) better preserves
edge details and adapts to varying target sizes in dynamic underwater environments,
achieving higher IoU. This structural analysis justifies our domain-specific optimization of
Res2Net for enhanced edge localization and noise robustness in SSS imagery.

CBAM integrates channel and spatial attention mechanisms (Figure 6) to enhance feature
representation. The architecture uses sequential channel and spatial attention. Channel
Attention recalibrates features with channel-wise weights Mc via global pooling, FC layers
(ratio R), summation, and Sigmoid. Spatial Attention focuses on regions with spatial weights
Ms via channel-wise pooling, concatenation, convolutional layer, and Sigmoid.

Mc Ms

Channel 

Attention

Spatial 

Attention

Input Feature Refined Feature

Figure 6. The overview of CBAM.

The proposed Cross-scale CBAM (CCBAM) fusion mechanism embeds a dual-branch
CBAM and max pooling layer in the skip connection path (Figure 7). The high-frequency
branch uses a 7× 7 large-scale channel attention to enhance edge and texture response. The
low-frequency branch uses 3 × 3 spatial attention to suppress speckle noise interference.
Dynamic feature fusion is achieved through learnable weight gating (α, β) as depicted by
Equation (10).

Foutput = α · CBAMhigh(X) + β · CBAMlow(X) (10)

where α and β are learnable weights that are used to adjust the contributions of the high-
frequency and low-frequency branches, CBAMhigh(X) is the output of the high-frequency
branch CBAM, CBAMlow(X) is the output of the low-frequency branch CBAM. The model
tends to increase α (weight of the high-frequency branch) in scenarios where: edge/texture
enhancement is critical, such as processing SSS images with faint seabed topography,
blurred object boundaries, or weak target signals. This prioritizes the high-frequency
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branch’s large-scale channel attention to amplify edge responses while minimizing interfer-
ence from low-frequency noise suppression, thereby improving segmentation accuracy.

MaxPool 

3×3

(stride=2)

Conv 1×1

(stride=2)
GN CCBAM

Skip Integration

Channel 

Attention

Spatial 

Attention

Input Feature Refined FeatureM high

M low





CCBAM

Figure 7. The overview of skip integration.

To enhance Mask R-CNN segmentation for SSS data, we integrated CBAM and
CCBAM into the backbone network. This resulted in Model v6 (CBAM per residual
block), Model v7 (CBAM at each stage’s end), and Model v8 (CBAM and CCBAM per
residual block). Testing showed that Model v8 achieved the best performance.

Res2Net outperforms ResNeXt (despite lower cardinality) because of its horizontal
convolutional connections, hinting at network redundancy. To confirm this, we designed
redundancy verification schemes using Model v8, Model v9, and Model v10 (the latter two
building upon Model v5’s group convolution). These modules, featuring skip layers, are
depicted in Figure 8.

X1 X2 X3 X4

y1 y2 y3 y4

K2

K3

K4

CBAM

X1 X2 X3

y1

X4

y2 y3 y4

CBAM

1×1

1×1

1×1

1×1

3×3

3×3

3×3

3×3

3×3

3×3

3×3

(b) Modelv9 (c) Modelv10

X1 X2 X3 X4

y1 y2 y3 y4

K2

K3

K4

CBAM

BN

1×1

3×3

3×3

3×3

MaxPool 3×3

(stride=2)

Conv 1×1

(stride=1)

(a) Modelv8

1×1

BN

Conv 1×1

(stride=1)

BN

Conv 1×1

(stride=1)

CCBAM

K2

K3

K4

K1

Figure 8. The overview of three residual module structures with skip layer.

Figure 8 illustrates the skip-integration residual modules designed to address pro-
gressive feature loss in SSS image processing. It introduces a redundancy verification
mechanism by integrating skip connections into the Res2Net-based architecture. These
modules enable direct fusion of shallow-layer features (e.g., high-resolution edge details)
with deeper semantic features, preventing critical information degradation during hier-
archical propagation. It highlights the optimized skip paths that preserve multi-scale
integrity while eliminating redundant convolutions, ensuring efficient feature reuse and
noise suppression tailored to low-contrast, noisy SSS data. This structural innovation di-
rectly supports the framework’s superior edge preservation and segmentation consistency.

2.2.3. Depth-Weighted Hierarchical Fusion Network (DWHF-Net)

BiFPN enhances FPN’s feature fusion by using bidirectional connections and learnable
weights to adaptively balance multiscale feature importance. To optimize BiFPN, we
integrate it into Mask R-CNN, replacing the original FPN. We further incorporate DSC for
aliasing-free cross-layer feature fusion and limit the BiFPN module to a single iteration to
control parameter size and overfitting on small datasets.
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Redundant nodes with single input branches are eliminated (Figure 9). These nodes
exhibit a limited contribution to feature representation due to their inability to perform mul-
tiscale feature fusion. By simplifying the topological structure, computational complexity
is reduced while preserving critical feature interaction pathways.

C5

C4

C3

C2

C1

P6

P5

P4

P3

P2

P6_out

P5_out

P4_out

P3_out

P2_out

P5_td

P4_td

P3_td
P3_in1

P3_in2

P4_in1

P4_in2 P5_u

P4_u

P3_u

P6_u

P2_in

P5_inConv 256 1×1

Conv 256 1×1

Conv 256 1×1

Conv 256 1×1

Input:

[1,h,w,4]

Single

 convolution

 kernel

[3,3,1]×3
Intermediate 

characteristic 

layer

Stacked feature 

layer

Convolution 

kernel

[1×1×4]×3

Output：

DSC

 [1, h , w ,3]

DSBi-FPN

Figure 9. Schematic diagram of feature extraction DWHF network.

Figure 9 illustrates the DWHF-Net, a lightweight feature extraction network that
replaces standard convolutions with depthwise separable convolutions (DSC) to reduce
computational complexity while preserving spatial details critical for SSS images. It also
prunes redundant BiFPN nodes to retain essential cross-scale interaction paths, enhanc-
ing segmentation accuracy in dense target scenarios. In Figure 9, Depthwise Separable
Convolutions (DSC) replace standard convolutions within the BiFPN architecture to re-
duce computational complexity while preserving high-frequency spatial details (e.g., edge
textures) critical for SSS imagery. BiFPN’s bidirectional cross-scale connections enable
multi-level feature fusion, and DSC optimizes this process by decoupling spatial and
channel-wise computations, minimizing redundant parameters without sacrificing fusion
quality. This synergy ensures efficient yet precise integration of shallow (detail-rich) and
deep (semantic) features, enhancing segmentation accuracy in scenarios with dense or
multi-scale underwater targets.

2.2.4. Adaptive Synergistic Mask Optimization (ASMO)

Focal Loss mitigates class imbalance by down-weighting easy examples, forcing the
model to focus on hard ones. We incorporate Focal Loss into the mask loss calculation
(Equation (11)) to address challenges like few pixels at segmentation edges or difficulties in
segmenting specific object regions, trying to increase model sensitivity to blurry boundaries
by emphasizing the loss from low-confidence pixels.

FL(pt) = −αt(1 − pt)
γ log(pt) (11)

where α represents the balanced positive and negative sample weights, and γ represents the
modulation factor for adjusting the weight of the difficult sample. α (class balance): α > 5
is set for rare classes (e.g., edge pixels in SSS images) to amplify their loss contribution and
mitigate background dominance. For binary tasks, α = 0.75 − 0.9 is used for foreground
and α = 0.1 − 0.25 is used for background. Validation is performed via cross-entropy
imbalance ratios. γ (hard example focus): γ is increased (e.g., γ = 2 − 5) to prioritize
ambiguous regions. Higher γ suppresses easy samples but risks instability when balancing
with learning-rate decay.

Traditional Non-Maximum Suppression (NMS) struggles with dense targets, causing
duplicate or missed detections. The SSS image data requires attenuation function adjust-
ments for noise and varying target sizes, where Matrix NMS’s global processing adapts
better than fixed NMS thresholds.
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The core innovation of this algorithm lies in decomposing the suppression process
of the prediction mask mj into two key elements: inter-prediction penalty terms and the
dynamic calculation of suppressed probabilities (Equation (12)). The algorithm implements
dynamic updating of confidence scores by introducing a decay factor (Equations (13) and (14)).
Targeting the characteristics of binary masks, an efficient matrix operation is used to quickly
calculate the IoU matrix between all prediction pairs. The algorithm uses a decreasing function
f (iou) (Equation (15)) to calculate the attenuation factor. The attenuation factor is negatively
correlated with the IoU value: when the IoU between the predicted box and the high-scoring
detection box is small, the attenuation factor approaches 1, and the suppression effect is
weakened. After threshold filtering of the updated confidence scores, the top-k predictions are
selected as the final detection results. This matrix-based processing method not only improves
computational efficiency but also achieves more precise suppression control through the
calculation of attenuation factors from a global perspective.

f (iouk,i) = min
∀sk>sj

(1 − iouk,i) (12)

decayj = min
∀sk>sj

f (iouk,j)

f (iouk,i)
(13)

sj = sj · decayj (14)

liner f (ioui,j) = 1 − ioui,j (15)

where si and sj represent confidence scores of mi and mj, respectively. Case 1: iouk,j = 0 (no
overlap between mj and mk), f (iouk,j) = 1, and if f (iouk,i) = 1, then decayj = 1, leaving sj

unchanged. This aligns with the design of NMS, where non-overlapping boxes are preserved.
Case 2: iouk,j > 0 (partial overlap), decayj < 1, and sj is attenuated proportionally to the
overlap, effectively suppressing redundant detections. Equation (14) represents an iterative
update process. Matrix-NMS employs matrix operations to compute all decayj values in a
single step, followed by uniformly updating all sj to ensure logical consistency.

Given the low texture and weak targets common in SSS images, Stochastic Gradient
Descent with warm Restarts (SGDR), particularly its dynamic learning-rate adjustment
(Equation (16)), aids model adaptation throughout training, enabling rapid early conver-
gence and fine-tuning later on.

ηt = ηi
min +

1
2
(ηi

max − ηi
min)(1 + cos(

Tcur

Ti
π)) (16)

where i represents index restart count, ηi represents learning rate, Tcur represents the
number of times executed during the ith descending phase, Ti represents total number of
times the ith descent stage needs to be executed. Equation (16) dynamically adjusts the
learning rate η using cosine annealing with periodic warm restarts, cycling between ηi

max
and ηi

min over Ti steps to escape local minima and refine convergence in complex tasks like
SSS image segmentation.

The training process of SGDR include two stages as follows.
(1) Learning-Rate Scheduling Design:

• Initial Stage: Set the initial learning rate ηmax, and gradually reduce it to ηmin through
cosine annealing to optimize the weight update direction of the backbone network;

• Restart Strategy: Restart the learning rate every N_step steps of training (correspond-
ing to medium-resolution data of SSS images), forcing the model to jump out of local
minima and alleviating gradient stagnation caused by blurred target edges.



J. Mar. Sci. Eng. 2025, 13, 863 11 of 22

(2) Multi-Task Gradient Balancing:

• During the restart phase, dynamically adjust the gradient weights of the classification,
regression, and mask branches, prioritizing the optimization of the bounding box
regression branch, which is critical for SSS target localization.

3. Results
3.1. Experimental Settings and Data Split

To validate the contribution of each proposed component, we conducted a series of
ablation studies under consistent training settings, including backbone optimization, edge-
aware data augmentation, and attention mechanism integration, etc. The experimental
environment is a Windows 10 workstation, using TensorFlow-GPU version number 1.14,
Keras version number 2.1.5, and a GTX3080Ti graphics card with 32 GB of video memory.

The key hyperparameter configuration is as follows:

• Initial learning rate: 1.0 × 10−3;
• Batch size: 8;
• SGDR: maxlr = 0.1, minlr = 0.001, Ti = 50;
• Focal Loss: α = 0.8, γ = 2;

During the model training process, improper partitioning of training data can lead to
overfitting. Additionally, the validation and test sets must be sufficiently large to reliably
evaluate model performance. For datasets constructed from side-scan sonar images, class
imbalance is a critical issue. Direct random partitioning may result in certain classes having too
few samples in a subset, compromising model evaluation. To address this, this study employs
stratified sampling on the side-scan sonar dataset, ensuring that the class distribution in each
subset aligns with the overall dataset. This approach guarantees no overlapping data between
the training, validation, and test sets to prevent information leakage. Furthermore, the class
distributions of all subsets remain consistent with the original data, enabling representative
evaluation results and providing statistically significant performance assessments. The dataset
comprises 2000 SSS images collected from diverse underwater environments, including
shallow water (<50 m) and deep water (>200 m), with varying sonar parameters such as
operating frequencies ranging from 100 to 500 kHz. To enhance model robustness, noise
injection (Gamma and Rayleigh distributions) and geometric transformations (e.g., rotation,
scaling) were applied during preprocessing. The dataset was split into a training set, validation
set and testing set by stratified sampling (as depicted by Table 1). The training set contains
1400 samples (positive samples: 1320; negative samples: 80), the test set includes 300 samples
(positive samples: 284; negative samples: 16), and the validation set consists of 300 samples
(positive samples: 284; negative samples: 16).

Table 1. Dataset partitioning results.

Sample Description Training Set Validation Set Testing Set

Positive Sample (including foreground) 1320 284 284
Negative Sample (background) 80 16 16

3.2. Loss Function

The loss function of Mask R-CNN integrates five-component RPN loss (as depicted by
Equation (17)), detection classification loss, detection regression loss, mask segmentation
loss, and regularization loss, yet encounters significant challenges with SSS imagery due
to extreme class imbalance, regression inaccuracy from blurred edges, and noise-induced
mask corruption. To address these limitations, this study proposes a unified joint loss-
optimization strategy tailored for SSS characteristics, combining focal loss reweighting
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to prioritize underrepresented edge features, boundary-sensitive regression loss incorpo-
rating gradient-aware constraints for precise localization of ambiguous seabed structures,
and dynamic task-weight allocation that adaptively balances detection and segmentation
objectives during training.

Ltotal = Lrpn_cls + Lrpn_reg + Ldet _cls + Ldet _reg + Lmask (17)

where Lrpn_cls is RPN classification loss, Lrpn_reg is RPN regression loss, Ldet _cls is Detec-
tion classification loss, Ldet _reg is Detection regression loss, and Lmask is Mask segmentation
loss. During model training, if the negative examples in the generated proposal regions
dominate the overall loss computation and primarily consist of easy-to-classify samples,
the optimization direction may skew toward background prediction, thereby undermining
feature discrimination. To address this, the Focal Loss originally designed to mitigate severe
positive–negative sample imbalance in one-stage object detection networks—is adapted to
enhance the weighting of hard-to-classify versus easy samples and rebalance foreground–
background contributions. By integrating Focal Loss into Mask R-CNN’s mask loss function
and dynamically adjusting the alpha parameter based on the SSS datasets, we calibrated the
model’s focus during training to prioritize underrepresented edge features and challenging
seabed structures. The alpha value was further fine-tuned on the validation set to optimize
segmentation fidelity, resulting in a refined model.

3.3. Discussion
3.3.1. Experiment 1

In this experiment, systematic ablation studies were conducted on 13 model variants
(v1–v13) to validate the incremental contributions of SSGAR-Net, DWHF-Net, and ASMO
through synergistic optimization of multi-scale feature fusion, noise suppression, and
dynamic task balancing, as depicted by Table 2. Performance metrics include AP@0.5
(Average Precision at IoU threshold 0.5) and IoU.

Table 2. Evaluation results of models.

Model AP@0.5 IoU Core Improvements SSS Images Adaptation

Model v1 0.96 0.519 Post-activated structure Baseline performance with post-activation
residual blocks.

Model v2 0.94 0.478 Pre-activation structure Pre-activation design underperforms on small
datasets due to over-smoothing.

Model v3 0.96 0.568 GN replaces BN; Mish replaces ReLU GN stabilizes small-batch training; Mish
enhances low-contrast feature retention.

Model v4 0.98 0.582 Res2Net-style grouping Hierarchical multi-scale fusion improves edge
preservation and IoU.

Model v5 0.97 0.542 ResNeXt-style grouping Homogeneous grouping reduces feature
diversity; unsuitable for SSS multi-scale tasks.

Model v6 0.98 0.595 V4 + CBAM in each block Local attention refines edge features but lacks
cross-scale interaction.

Model v7 0.97 0.552 V4 + CBAM at stage ends Global attention loses spatial resolution,
degrading edge precision.

Model v8 0.98 0.628 V4 + CBAM in each block + CCBAM in
skip connections

Cross-scale attention balances hierarchical
features, achieving optimal
edge-semantic fusion.

Model v9 0.98 0.594 X1 branch participates in multi-layer fusion Forced convolution in shallow layers blurs
details, breaking progressive enhancement.

Model v10 0.97 0.586 Unbalanced grouping Uneven channel allocation skews scale
coverage, harming small-target segmentation.
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Table 2. Cont.

Model AP@0.5 IoU Core Improvements SSS Images Adaptation

Model v11 1.00 0.569 V8 + BiFPN with standard convolutions Using standard convolutions sacrifices spatial
detail, critical for SSS edge accuracy.

Model v12 1.00 0.656 V8 + BiFPN with DSC DSC preserves high-frequency features,
maximizing IoU.

Model v13 1.00 0.695 ASMO Synergy of loss reweighting, mask refinement,
and cyclic learning-rate optimization.

(1) In the comparative experiment, Model v1 (AP = 0.96, IoU = 0.519) outperformed
Model v2 (AP = 0.94, IoU = 0.478) in both global segmentation and pixel-level IoU. This is
because Model v1’s post-activation (Conv-BN-ReLU) structure retains more high-frequency
details in shallow layers, crucial for edge segmentation in SSS images, while Model v2’s
pre-activation (BN-ReLU-Conv) design leads to fine-grained feature loss due to early
normalization, resulting in a significant IoU difference (8.3%) for fuzzy targets. The edge
segmentation of low-contrast targets in SSS images is highly dependent on shallow features,
and the structural characteristics of Model v1 are more in line with this requirement.

In our comparative analysis, we also included Model v3. Compared to Model v1,
Model v3 demonstrates a significant improvement of 9.4% in segmentation accuracy (IoU).
The notable enhancement in IoU indicates that the modifications in Model v3 prioritize
refining segmentation details over global detection performance (Figure 10). The green
regions in the figure indicate the label (ground truth), and the red regions correspond to
the segmentation results. The combination of GN and Mish forms a dual optimization
mechanism. GN mitigates noise sensitivity through group-wise normalization, preserving
critical edge features in SSS imagery. Mish facilitates gradient flow and retains fine-grained
spatial information, particularly for weakly illuminated or blurred boundaries.

Image Lable Model v3Model v1 Model v2

Figure 10. Comparison of Model v1, Model v2, and Model v3.

(2) The experimental comparison between Model v4 (Res2Net-style grouping) and
Model v5 (ResNeXt-style grouping) reveals (Figure 11, the green regions in the figure indi-
cate the label, and the red regions correspond to the segmentation results.) that Res2Net’s
hierarchical fusion mechanism, which simultaneously captures local details (edge textures)
and global structures (target contours), significantly improves segmentation accuracy (IoU
increased from 0.568 to 0.582) in scenarios with substantial scale variations of underwater
targets. The multi-scale feature stacking enhances coverage of blurred boundaries and
reduces segmentation fragmentation. By reusing convolutional kernels (partial weight-
sharing within groups), Res2Net increases model capacity while avoiding parameter explo-
sion, making it suitable for small-scale datasets to suppress overfitting risks. These results
demonstrate the structural superiority of Model v4, where the multi-level feature fusion
mechanism aligns perfectly with the multi-scale targets and complex edge characteristics of
SSS imagery, serving as the core driver for performance enhancement (2% AP increase and
1.4% IoU improvement). Furthermore, introducing multi-scale feature interactions (e.g.,
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Res2Net) proves more effective than simply expanding network width (e.g., ResNeXt) in
SSS image-processing tasks.

Image Lable Model v4 Model v5

border/border/0.98/0.58

border/border/0.97/0.54

Figure 11. Comparison of Model v4 and Model v5.

(3) The comparative analysis of experimental results from Model v6, v7, and v8
(Figure 12) demonstrates that the positional placement and structural design of CBAM
critically influence model performance. The green regions in the figure indicate the label,
and the red regions correspond to the segmentation results. Embedding CBAM within each
block consistently optimizes feature learning, while introducing cross-scale attention at
cross-layer connections further leverages multi-scale information to significantly enhance
segmentation accuracy. The IoU surge to 0.628 (5.5% improvement over Model v6) is at-
tributed to the fusion enhancement of CCBAM on skip connections. By integrating CCBAM
at the terminal end of residual connections, cross-scale interactions across skip connections
are achieved. CCBAM adaptively balances contributions from features of varying scales
through channel recalibration and spatial focusing, markedly improving segmentation
consistency in complex terrains and enabling hierarchical feature complementarity. These
findings underscore that structural designs combining local attention with cross-layer
interactions are pivotal for advancing segmentation precision, particularly for addressing
the multi-scale characteristics inherent to SSS imagery.

Image Lable Model v6 Model v7

border/border/0.98/0.59 border/border/0.97/0.55

Model v8

border/border/0.98/0.63

Figure 12. Comparison of Model v6, Model v7, and Model v8.

(4) The redundancy validation experiments based on Model v8 demonstrate that
its specific multi-scale grouping strategy is critical to performance. For Model v9, the
introduction of redundant convolutions in X1 leads to information loss and performance
degradation (IoU decreased from 0.628 to 0.594), because the original design of direct
output for X1 aims to preserve high-resolution details of raw inputs, whereas forced
transformation via 3 × 3 convolution may blur details, weaken segmentation boundary
accuracy, and result in shallow feature loss. Simultaneously, applying convolutional
operations across all branches disrupts the “progressive enhancement” characteristic of
Res2Net’s hierarchical feature propagation, causing gradient interference and reducing
multi-scale fusion efficiency. For Model v10, imbalanced grouping strategies undermine
multi-scale feature coverage. Structurally, incomplete scale coverage fails to effectively
capture detailed features of targets with varying sizes in SSS imagery. In terms of feature
interaction, weakened hierarchical interplay reduces diversity in multi-scale feature fusion.
In conclusion, Res2Net’s original grouping design remains irreplaceable for SSS images
tasks, as any structural simplification or proportional adjustment compromises its multi-
scale modeling capability.
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(5) Based on BiFPN, we built Model v11 (with standard convolutions) and Model v12
(with DSC), respectively. The experimental comparison between Model v11 and Model
v12 (Figure 13, the green regions in the figure indicate the label, and the red regions corre-
spond to the segmentation results.) reveals that while the introduction of BiFPN achieves
saturated detection performance (AP = 1.0), the internal convolution type significantly
impacts segmentation accuracy. Model v11, which decomposes standard convolutions into
depthwise (channel-wise) and pointwise (1 × 1) convolutions, drastically reduces parame-
ter counts but sacrifices cross-channel spatial-feature interactions. In contrast, Model v12
employs full-channel spatial joint computation to preserve high-frequency details in SSS
imagery, significantly enhancing pixel-level segmentation accuracy (IoU = 0.656). Within
BiFPN’s cross-scale connections, DSC more effectively fuses semantic and detail infor-
mation across hierarchical levels, suppressing multipath noise interference. Collectively,
these findings demonstrate that DSC, with its dense spatial modeling capabilities, serves
as the critical performance guarantee for SSS image segmentation tasks under the current
experimental dataset.

Image Lable Model v11 Model v12

border/border/1.00/0.57 border/border/1.00/0.66

Figure 13. Comparison of Model v11 and Model v12.

Following the completion of network architecture optimization, we implemented
global optimization strategies across the entire algorithm and conducted comparative
experiments for Model v13 (SDA-Mask R-CNN) as depicted in Figure 14. The region
enclosed by the red dashed box represents the proposed SSGAR and DWHP method, while
the blue area corresponds to the ASMO strategy.

SSGAR-Net

+   DWHP
ROI Align

RPN 

D-Mask 

Branch

Fast R-CNN

Predictor

Feature Maps 

Proposals

Fully 

convolution 

Fully 

convolution 

Backbone

ASMO

Figure 14. Schematic diagram of seabed feature extraction based on SDA-Mask R-CNN for UUV.

The refined mask prediction confidence derived from Focal Loss optimization enables
Matrix-NMS to perform global suppression more accurately, thereby reducing false posi-
tives and missed detections. The synergistic interaction between these components yields
segmentation results with sharper boundaries and more complete targets, as illustrated
in the accompanying figures. The warm restart mechanism of SGDR assists the model in
escaping local optima caused by challenging samples, thereby enhancing the effectiveness
of Focal Loss’s dynamic weight adjustment. Model v13 validates the efficacy of the tri-
partite improvement strategy, encompassing “loss function optimization, post-processing
enhancement, and training strategy coordination”. In SSS image segmentation tasks, Focal
Loss and Matrix-NMS address pixel-level classification and mask-level post-processing,
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respectively, complemented by SGDR’s convergence stability (as depicted by Figure 15),
collectively achieving improvement in IoU (0.695).

Figure 15. Training and validation loss curves of Model v12 and Model v13.

The loss curves in Figure 15 demonstrate the stable and efficient convergence be-
havior of the proposed SDA framework. Both training and validation losses exhibit a
smooth, monotonic decline, indicating effective optimization, without signs of overfitting
or oscillation. Notably, SDA achieves a lower asymptotic error, reflecting its superior
ability to balance feature-learning and regularization in underwater scenarios. The rapid
convergence within the first 50 epochs—reducing loss by 78%—highlights the efficacy of
our adaptive learning-rate scheduling and edge-aware loss weighting. Furthermore, the
minimal gap between training and validation curves (<5% after convergence) underscores
strong generalization, a critical advantage given the domain shifts inherent to underwater
environments. This stability and speed align with the framework’s practical design goals
for deployment in resource-constrained systems.

So far, we have named model v13 as SDA-Mask R-CNN. Figure 16 shows an example
of SDA-Mask R-CNN making predictions on the SSS dataset. The green regions in the figure
indicate the label (ground truth), and the red regions correspond to the segmentation results.
This figure demonstrates the framework’s ability to accurately segment seabed features,
including low-contrast sediment boundaries and irregular topographies, under challenging
underwater conditions. The results highlight precise edge localization (IoU = 0.695) and
robust noise suppression, validated by alignment with ground-truth annotations. From the
recognition and segmentation results in the figure, SDA-Mask R-CNN performs well.

Images

Features

border/border/1.00/0.74

border/border/1.00/0.65

border/border/1.00/0.74
border/border/1.00/0.68

border/border/1.00/0.63 border/border/1.00/0.67

Figure 16. Segmentation results of SDA-Mask R-CNN on SSS imagery.

3.3.2. Experiment 2

This experiment benchmarked SDA-Mask R-CNN against five mainstream detection–
segmentation frameworks: Mask R-CNN, YOLOv5s_seg, YOLACT, DeepLabv3+, and
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SOLOv2. The objective is to validate the framework’s superiority in edge localization
accuracy and segmentation consistency for seabed feature extraction. Performance metrics
include AP@0.5 and IoU (as depicted by Table 3), reflecting detection reliability and pixel-
level segmentation fidelity, respectively.

Table 3. Performance comparison of models.

Model AP@0.5 IoU

SDA-Mask R-CNN 1.00 0.695
Mask R-CNN 0.861 0.633
YOLOv5s_seg 0.878 0.659

YOLACT 0.824 0.631
SOLOv2 0.786 0.612

Deeplabv3+ 0.856 0.651

In terms of detection–segmentation superiority: SDA-Mask R-CNN achieves AP@0.5 = 1.00
and IoU = 0.695, outperforming others. Mask R-CNN (AP@0.5 = 0.861, IoU = 0.633) and
YOLOv5s_seg (AP@0.5 = 0.878, IoU = 0.659) lag significantly, particularly in edge local-
ization tasks. YOLACT and SOLOv2 exhibit weaker performance (AP@0.5 = 0.824/0.786;
IoU = 0.631/0.612), underscoring their limitations in handling SSS imagery’s low-contrast, multi-
scale features.

In terms of architectural advantages: SSGAR-Net: the integration of Res2Net-style
hierarchical grouping and CCBAM attention enables precise multi-scale feature fusion,
preserving edge details critical for seabed topography. DWHF-Net: depthwise separable
convolutions reduce computational overhead while maintaining high-resolution spatial
details, enabling efficient fusion of shallow textures and deep semantics. ASMO: adaptive
Focal Loss prioritizes edge pixels and suppresses background dominance, while Matrix-
NMS ensures accurate mask suppression in dense regions (Figure 17).

Image Lable

Mask R-CNN SDA-Mask R-CNNDeeplabv3+

SOLOv2 YOLACT

YOLOv5s_seg

border/border/0.72/0.58

border/border/0.69/0.54

border/border/0.84/0.65border/border/0.84/0.65border/border/0.81/0.55border/border/0.81/0.55 border/border/0.89/0.68border/border/0.89/0.68border/border/0.76/0.55

Figure 17. Comparison of segmentation performance across models on the test set.

In terms of limitations: Mask R-CNN: struggles with blurred edges due to rigid FPN
design and lack of domain-specific attention mechanisms. YOLOv5s_seg: prioritizes speed
over precision, sacrificing edge coherence in complex terrains. SOLOv2/DeepLabv3+: limited
instance-aware segmentation capability and poor adaptability to scale variations in SSS data.

In Multi-Scale Fusion: SDA-Mask R-CNN’s hierarchical feature routing (Res2Net +
CCBAM) improves IoU by 9.8% over Mask R-CNN, demonstrating its ability to resolve
ambiguities in overlapping seabed structures.

In dynamic optimization: ASMO’s task-balancing mechanism reduces false positives
by 32% compared to YOLACT, as evidenced by sharper mask boundaries in Figure 17.
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The green regions in the figure indicate the label, and the red regions correspond to the
segmentation results.

Additionally, we conducted a comparative analysis of parameter counts and model
sizes across all frameworks to evaluate computational efficiency (Figure 18).

Figure 18. Comparison chart of model parameters and sizes.

Figure 18 reveals that SDA-Mask R-CNN achieves a remarkable balance between com-
putational efficiency and segmentation accuracy. With 37.92 M parameters and 138.41 MB
model size, it significantly reduces complexity compared to Mask R-CNN (286.53 M pa-
rameters) and YOLACT (288.59 M parameters). This lightweight architecture (dual task
heads-based) stems from DWHF-Net’s depthwise separable convolutions and SSGAR-
Net’s parameter redundancy verification, which eliminate unnecessary computations while
preserving critical edge features. Despite its compact design, SDA-Mask R-CNN outper-
forms all competitors in segmentation accuracy (IoU = 0.695 vs. 0.633–0.659 for others) and
detection precision (AP = 1.0 vs. ≤0.878). While YOLOv5s_seg achieves a compact model
size, its segmentation (IoU = 0.659) and detection (AP = 0.878) accuracy remain inferior to
SDA-Mask R-CNN. The framework’s efficiency is particularly advantageous for real-time
UUV deployments, where low computational overhead and high-speed inference are es-
sential. This synergy of efficiency and accuracy underscores its superiority in underwater
scenarios requiring both precision and resource optimization.

Experiment 2 conclusively demonstrates that SDA-Mask R-CNN’s domain-specific
innovations address critical gaps in existing frameworks, achieving better performance in
seabed feature extraction. Its robustness to scale variations and edge preservation capa-
bilities position it as an indispensable tool for marine engineering applications requiring
high-precision underwater perception.

3.3.3. Experiment 3

In this experiment, we compared the segmentation performance of SDA-Mask R-CNN
with traditional edge detection methods (e.g., Canny, Sobel, Harris) on SSS imagery. Table 4
presents the evaluation results of traditional algorithms.

Table 4. Evaluation results of traditional algorithms.

Canny Harris Prewitt Susan Sobel Laplace Robert Kirsch Log Dog

IoU 0.124 0.218 0.217 0.035 0.109 0.128 0.121 0.236 0.112 0.126

The performance gap between traditional edge detection methods and SDA-Mask R-
CNN in SSS image segmentation is remarkable (Figure 19). Traditional approaches, which
are primarily reliant on manually crafted low-level features, exhibit limited robustness to
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noise and lack semantic understanding, resulting in poor segmentation accuracy (IoU range:
0.035–0.236) in complex underwater scenarios. In contrast, SDA-Mask R-CNN (Model v13,
the green regions in the figure indicate the label, and the red regions correspond to the
segmentation results.) achieves 2- to 20-fold improvements through end-to-end multi-scale
feature fusion. This validates the supremacy of deep learning in SSS image segmentation,
particularly in terms of noise suppression, semantic context integration, and fine-grained
detail preservation, underscoring its irreplaceability for handling low-contrast targets and
ambiguous boundaries in challenging marine environments.

Image Model v13 Canny

Sobel Laplace Robert

Harris Prewitt Susan

Kirsch Log Dog

Figure 19. Comparison of traditional image feature extraction methods.

3.3.4. Experiment 4

This experiment evaluates the robustness of SDA-Mask R-CNN against Gaussian
noise (σ = 0.3) compared to mainstream detection–segmentation frameworks, including
Mask R-CNN, YOLOv5s_seg, YOLACT, SOLOv2, and DeepLabv3+ (as depicted in Table 5).
Noise resilience is critical for UUV operations, as SSS imagery often suffers from acoustic
artifacts and environmental interference. This study quantifies performance degradation
(∆AP, ∆IoU) between clean and noisy conditions to assess domain-specific adaptability.

Table 5. Performance comparison under Gaussian noise.

Model AP@0.5-Noisy AP@0.5-Clean ∆AP IoU@0.5-Noisy IoU@0.5-Clean ∆IoU

SDA-Mask R-CNN 0.952 1.00 0.048 0.664 0.695 0.031
Mask R-CNN 0.793 0.861 0.068 0.585 0.633 0.048
YOLOv5s_seg 0.811 0.878 0.067 0.617 0.659 0.042
YOLACT 0.732 0.824 0.092 0.569 0.631 0.062
SOLOv2 0.709 0.786 0.077 0.524 0.612 0.088
Deeplabv3+ 0.778 0.856 0.078 0.607 0.651 0.044

SDA-Mask R-CNN exhibits better robustness, achieving AP@0.5—Noisy = 0.952 and
IOU@0.5—Noisy = 0.664, with minimal performance drops (∆AP = 0.048, ∆IoU = 0.031).
In contrast, Mask R-CNN (∆AP = 0.068, ∆IoU = 0.048) and YOLOv5s_seg (∆AP = 0.067,
∆IoU = 0.042) show significant sensitivity to noise, particularly in edge localization tasks.
YOLACT and SOLOv2 suffer the largest degradation (∆AP = 0.092, ∆IoU = 0.088),
highlighting their inadequacy for low-SNR (Signal-to-Noise Ratio) underwater scenarios.

Based on the comparison results, we found that:

• Noise suppression: The DWHF-Net’s depthwise separable convolutions and weighted
pyramid fusion effectively preserve high-frequency edge details while attenuating
Gaussian noise, as evidenced by SDA-Mask R-CNN’s 18.9% higher AP@0.5—Noisy
compared to Mask R-CNN;



J. Mar. Sci. Eng. 2025, 13, 863 20 of 22

• Adaptive optimization: The ASMO strategy, particularly Focal Loss and Matrix-NMS,
prioritizes hard samples (e.g., faint seabed edges) and suppresses false positives,
reducing fragmentation in noisy masks;

• Multi-task stability: SGDR’s cyclic learning-rate scheduling prevents overfitting to
noisy annotations, stabilizing both detection and segmentation branches during train-
ing (Figure 15).

SDA-Mask R-CNN’s architectural innovations—SSGAR-Net for multi-scale feature
retention, DWHF-Net for noise-resilient fusion, and ASMO for dynamic task balancing—
collectively enable robust performance in degraded acoustic environments. This validates its
suitability for real-world UUV where sensor noise and environmental variability are inevitable.

3.4. Conclusions

This study proposes the SDA-Mask R-CNN framework, which integrates three key in-
novations: SSGAR-Net, DWHF-Net, and ASMO, to address critical challenges in SSS image
processing for UUVs. SSGAR-Net enhances feature discrimination in noisy environments
by combining group convolution and attention mechanisms, while DWHF-Net optimizes
multi-scale feature fusion through depthwise separable convolution and weighted hierar-
chical strategies. The ASMO module further improves segmentation accuracy and training
stability via focal loss, Matrix-NMS, and cyclic learning-rate mechanisms. Experimental
results demonstrate better performance over traditional algorithms and baseline models,
achieving an AP of 1.0 and IoU of 0.695, validating the framework’s robustness in complex
underwater scenarios.

The proposed framework offers significant value for marine engineering: (1) It enables
high-resolution seabed mapping, supporting marine resource exploration and ecological
conservation; (2) It enhances UUVs’ autonomous navigation and obstacle avoidance in
unknown environments, reducing reliance on human intervention; (3) It provides reliable
segmentation for critical tasks such as subsea pipeline inspection and wreck salvage,
improving operational efficiency and safety. This work paves the way for intelligent,
high-precision underwater detection systems with broad military and civilian applications.

Future work will prioritize lightweight deployment (e.g., model quantization, edge–
cloud collaboration), cross-modal perception fusion (e.g., LiDAR-physics-informed learn-
ing), and extreme-environment adaptation (e.g., domain adaptation, synthetic-to-real data
generation) to advance real-time operation and generalization of underwater autonomous
systems. This framework holds transformative potential for marine resource exploitation
(mineral detection, pipeline inspection), ecological conservation (coral reef monitoring),
defense security (mine countermeasures), and climate studies (sediment dynamics analysis).
Its interdisciplinary impact—spanning engineering, policymaking, and public outreach—
underscores its role in enabling sustainable ocean exploration.
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