
Received: 17 April 2025

Revised: 23 April 2025

Accepted: 24 April 2025

Published: 28 April 2025

Citation: Song, D.; Huo, H.

Lightweight Underwater Target

Detection Algorithm Based on

YOLOv8n. Electronics 2025, 14, 1810.

https://doi.org/10.3390/

electronics14091810

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Lightweight Underwater Target Detection Algorithm
Based on YOLOv8n
Dengke Song and Hua Huo *

Information Engineering College, Henan University of Science and Technology, Luoyang 471000, China;
220320040389@stu.haust.edu.cn
* Correspondence: pacific_huo@126.com

Abstract: To address the challenges in underwater target detection, such as complex environ-
ments, image blurring, and high model parameter counts and computational complexity, an
improved lightweight detection algorithm, RDL-YOLO, is proposed. This algorithm incorpo-
rates multiple optimizations based on the YOLOv8n model. The introduction of the RFAConv
module optimizes the backbone network, enhancing feature extraction capabilities under
complex backgrounds. The DySample dynamic upsampling module is used to effectively
improve the model’s ability to capture edge information. A lightweight detection head based
on shared convolutions is designed to achieve model lightweighting. The combination of the
normalized wasserstein distance (NWD) loss function and CIoU loss improves the detection
accuracy for small targets. Experimental results on the UPRC (Underwater Robot Prototype
Competition) and RUOD (Real-World Underwater Object Detection) datasets show that the
improved algorithm achieves an average precision (mAP) increase of 1.4% and 1.0%, respec-
tively, while reducing parameter count and computational complexity by 19.3% and 14.8%.
Compared to other state-of-the-art underwater target detection algorithms, the proposed
RDL-YOLO not only improves detection accuracy but also achieves model lightweighting,
demonstrating superior applicability in resource-constrained underwater environments.

Keywords: underwater target detection; YOLOv8; RFAConv; DySample

1. Introduction
Underwater target detection is a critical task in computer vision and a key research

topic in image processing, primarily involving object recognition and localization in com-
plex underwater environments [1]. However, the underwater environment is highly chal-
lenging, with underwater images often suffering from severe noise, poor visibility, blurred
edges, and low contrast, which significantly increase detection difficulty [2–4].

In recent years, with the progress in deep learning, many breakthroughs in target
detection in underwater environments have been made. The most mainstream target detec-
tion algorithms are now primarily classified into two types as follows [5]: two-stage target
detection algorithms and single-stage target detection algorithms. Two-stage target detec-
tion algorithms, exemplified by the Fast R-CNN [6] and the Faster R-CNN [7], first handle
the input image with a Region Proposal Network (RPN) to produce a sequence of candidate
regions that likely contain targets and then utilize a Convolutional Neural Network (CNN)
to further process the candidate regions. Since they require two stages of computation,
their speed of processing the target is low. Single-stage target detection algorithms predict
the target category and location directly on the map of features, bypassing the step of
candidate region generation, thus greatly accelerating the process of detection. The most
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mainstream single-stage target detection algorithms are the YOLO [8] (You Only Look
Once) series and the SSD [9] (Single Shot MultiBox Detector). Of the two, the YOLO series
of algorithms has been widely employed in underwater target detection since they can
maintain high speed in the process of detection while guaranteeing accuracy. Cao et al. [10]
proposed the BG-YOLO method, which enhances detection performance by constructing a
parallel structure with an enhanced branch and detection branch and introducing a feature
guidance module between them. Liu et al. [11] introduced the BiFormer module based
on YOLOv7, utilizing a dual-layer routing attention (BRA) mechanism to focus on target
edge and texture features, effectively solving the target blurring problem. Zhou et al. [12]
designed YOLOv9s-SD based on YOLOv9s, integrating a simple enhancement attention
module (SME) to strengthen attention to target features while employing the WIoU v3
loss function to increase the accuracy of small target localization. By implementing a
lightweight C2f module, constructing a fast feature pyramid structure, and introducing a
lightweight FasterNet backbone, Guo et al. [13] successfully achieved the enhancement of
underwater target recognition in real time with good accuracy. Liu et al. [14] embedded a
Transformer self-attention module into the backbone network of YOLOv5s and added a
Coordinate Attention (CA) module in the neck network, which was designed to improve
feature extraction capabilities, achieving better detection performance. Zhang et al. [15]
presented an enhanced network based on YOLOv8, improving underwater target detec-
tion accuracy by introducing the FasterNet-T0 backbone, adding small target prediction
heads, adjusting the number of feature map channels, and integrating deformable convolu-
tion and CA mechanisms in the Neck section. Wu et al. [16] proposed the SVGS-DSGAT
model, which integrates GraphSAGE and the DSGAT [17] (Dynamic Structure Graph At-
tention) module to enhance underwater object detection performance. The DSGAT module
employs a graph attention mechanism to dynamically adjust edge weights within the
graph structure, thereby improving the model’s ability to recognize objects in complex
underwater environments.

Although the aforementioned methods have achieved certain success in improving
underwater target detection accuracy, their model complexity and computational resource
requirements are relatively high, limiting their practical application in resource-constrained
underwater environments. In underwater scenarios, devices often face limited power
supply and low computational performance, making the demands for model lightweighting
and efficiency particularly strict.

As a result, the focus of this work is in how to further improve the accuracy in detection
while still keeping the model lightweight to satisfy the demands of underwater devices for
both the lightweight model and high-quality detection performance. According to these
challenges, a lightweight target detection algorithm, RDL-YOLO, is proposed, an upgraded
version of the YOLOv8n with the following improvements:

1. The introduction of the Introduce RFAConv module optimizes the backbone network,
effectively suppressing interference from complex underwater backgrounds and
enhancing the capacity to extract features for underwater targets.

2. The DySample dynamic upsampler is adopted in the neck network to effectively
reduce the loss of edge detail information during upsampling.

3. A lightweight shared convolution detection head is designed, which preserves de-
tection efficiency while significant reducing the number of parameters and computa-
tional complexity.

4. By combining the NWD and CIoU loss functions, the NWD-CIoU loss function is con-
structed, improving the accuracy of bounding box localization for small underwater targets.
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2. Materials and Methods
2.1. Object Detection Algorithm

The YOLO (You Only Look Once) family of algorithms are real-time object detectors
based on Convolutional Neural Networks (CNNs) that were first proposed by Joseph Red-
mon et al. in 2015. As an important member of the YOLO family, the YOLOv8 maintains the
typical feature of real-time detection and can achieve high-quality detection even under low
hardware specifications. Hence, the model is very suitable for low-resource environments,
such as in underwater environments. The C2f module is used in the backbone network in
place of the old C3 module, and the Bottleneck Block and Spatial Pyramid Pooling-Fast
(SPPF) module are used to improve the function of extracting features while decreasing the
complexity of the computation.

The neck network adopts a PAN-FAN structure, utilizing the Path Aggregation Net-
work (PAN) [18] and Feature Aggregation Network (FAN) [19] to perform multi-scale
feature fusion, improving the model’s detection ability for targets of different scales.

In the head network, YOLOv8 has a decoupled head structure, partitioning the classifi-
cation and regression tasks, resulting in increased accuracy in detection. YOLOv8 provides
a range of model sizes such as N/S/M/L/X to align with different computational resources
and application demands.

The model in this paper is based on YOLOv8n with several improvements. Compared
to YOLOv8n, the model is optimized in the following four main areas: first, the backbone
network is improved with receptive field attention convolutions; second, DySample re-
places the network’s upsampling technique; third, the detection head is redesigned based
on shared convolution; and finally, the original loss function is enhanced by incorporating
NWD. Figure 1 depicts the improved model’s structure.

Figure 1. Network structure of RDL-YOLO.

2.2. Receptive-Field Attention Convolution

In reference [20], the C2f module was improved with a multi-scale convolutional
EMC module, enhancing its ability to extract multi-scale feature information. However,
it lacks attention to the correlation between preceding and succeeding modules. Due to
the complex background and blurred details of underwater targets, the fixed convolution
kernel size in the CBS module of YOLOv8 causes information loss of target features,
particularly when processing small-scale targets where too much irrelevant information is
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introduced. Additionally, when inputting feature information into the BottleNeck, further
information loss occurs. To overcome these challenges, the RFAConv [21] module is
proposed in this paper to improve the optimization of the backbone network’s CBS and
C2f modules. The novelty of RFAConv is in the integration of attention and receptive fields.
The attention mechanism can inhibit interference from complicated background knowledge
in underwater environments and enhance the highlighting of target features to make the
model pay more attention to the most important parts and features of the target to precisely
detect the target’s boundary and location. Figure 2 depicts its structure.

Figure 2. Process of spatial feature transformation of the receptive field.

The working process of RFAConv is as follows. To begin with, a ”3 × 3 Group Conv”
grouped convolution is applied to the input data with dimensions “C × H × W”. Grouped
convolution reduces computation and parameter count, making the model more efficient.
It also increases the diversity of convolution kernels, better capturing texture features of
underwater targets with different shapes. Then, the grouped output is operated with the
corresponding kernel and passed through the Softmax function to generate an attention
map of dimension “9C × H × W”. The complex underwater environment, which includes
suspended particles and uneven lighting, causes interference. The attention map can highlight
the target area and suppress background noise and disturbances, focus on the key target
features, and improve detection accuracy. Meanwhile, the input data are processed through
grouped convolution to extract receptive field spatial features of the same dimension, and then,
a re-weighting operation is performed. According to the attention map, target features are
enhanced, irrelevant information is weakened, and target information in blurry images is
reinforced. Finally, the re-weighted features are adjusted in shape, with part of the output
returned to the “C × H × W” dimension through a “3 × 3 Conv, stride = 3” operation, while
the other part continues to adjust and is split into sub-feature maps, allowing the model to
better learn the target feature patterns and enhance underwater target detection accuracy.
The calculation of RFAConv can be calculated as follows:

F = Softmax(gx1(AvgPool(x)))× ReLU(Norm(gxk(x))) (1)
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To better extract features and suppress interference, replace the original convolution in C2f’s
BottleNeck with the RFAConv convolution, resulting in a more robust, accurate, and interference-
resistant feature representation. The C2f-RFAConv structure is shown in Figure 3.

Figure 3. C2f-RFAConv structure diagram.

The improved BottleNeck first performs a 1 × 1 convolution operation to weight and
combine features from different channels, enhancing both computational efficiency and
model performance. Following this, the RFAConv convolution operation is applied to
further suppress interference from the complex background information in underwater
environments, improving the model’s ability to extract features from underwater targets.
In summary, the CBS and C2f modules improved by RFAConv can better extract features
of underwater targets in complex backgrounds, strengthening the model’s capacity to
recognize underwater targets.

2.3. DySample Upsampling Module

As compared to aerial images, underwater images are prone to more noise, blurring,
and color distortion. While upsampling, the nearest neighbor interpolation technique em-
ployed in YOLOv8 causes blurring or the loss of edge and detail information of the targets.
To counteract the drawback, Xie et al. [22] replaced the default upsampling operation with
Carafe upsampling, the model’s receptive field, and improved feature extraction capacity.
Carafe upsampling, however, is more susceptible to interference from noise and increased
computational resource utilization. However, DySample [23] upsampling dynamically
computes point sampling locations, allowing more precise recovery of the most important
information while saving computational resources. Figure 4 depicts the working process.

Figure 4. DySample module flowchart.

The feature map X is first input into a point sampling generator to generate a sampling set,
which contains the sampling point information for subsequent upsampling operations. The grid
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sampling module then takes as input the feature map X and the sampling set and grid samples X
to obtain the upsampled feature map. This method can be represented as follows:

X′ = grid_sample(X, S) (2)

Figure 5 depicts the generation process for the sampling point set. First, the input
feature X is processed through a linear layer to generate weights with specific spatial
characteristics. Then, a 0.25-fold pixel rearrangement operation is performed, followed by
the addition of the rearranged values to the original features, thus generating the sampling
set. The pixel rearrangement ensures that the underwater feature map information is highly
preserved, effectively avoiding the blurring and distortion issues often encountered with
conventional upsampling methods.

Figure 5. Dynamic point sampling set generation process.

DySample dynamically adjusts the sampling strategy, effectively reducing the loss
of edge detail information during upsampling. This strategy ensures that the features in
the edge areas are better preserved during image size restoration, thereby improving the
network’s ability to catch tiny details.

2.4. Shared Convolution Detection Head

YOLOv8’s detection head adopts a decoupled head structure, consisting of three
branches and multiple convolution layers, with each branch performing independent
computations. This makes the model structure relatively complex, with high parameter
count and computational requirements. In underwater target detection scenarios, detection
devices typically have limited computational resources, so the optimization of the detection
head is necessary. Based on the lightweight design principle, this paper proposes using
shared convolutions to process inputs across layers. The multiple independent convolutions
of the three detection heads are replaced by two DEConv [24] convolutions with shared
weights. Since inconsistent input scales can affect subsequent shared convolutions, prior to
entering the shared convolution, each layer’s input is normalized using a 1 × 1 Conv_GN
module [25]. This ensures that inputs of different scales are better adapted to the shared
convolution processing, after which they are passed through the shared convolution.
Finally, the feature maps are processed by two different convolution layers to calculate the
bounding box regression and classification probabilities. The structure of LSC_Detect is
shown in Figure 6.

Unlike Batch Normalization (BN), Conv_GN’s normalization computation does not
depend on batch size, making it more effective in cases with small batch sizes or varying
batch sizes. This allows GN to maintain good normalization performance, contributing to
improved model stability and generalization ability.
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Figure 6. Structure of LSC_Detect.

DEConv (Detail-Enhanced Convolution) uses five types of parallel convolution layers
to perform feature extraction. Among these, standard convolution (Conv) primarily col-
lects image intensity data, i.e., capturing the actual brightness and color values of pixels.
The central differential convolution (CDC) extracts pixel differences from the center point,
the angular differential convolution (ADC) handles pixel variation in the corners of images,
and horizontal differential convolution (HDC) and vertical differential convolution (VDC)
deal with pixel variation in the horizontal and vertical orientations, respectively, to extract
texture and edge details from the image in a holistic way. The differential convolution
layers effectively extract the texture and the details of edges from an image by paying
attention to pixel variation in various regions.

By combining the outputs of these parallel convolution layers, DEConv generates a
feature map with more detailed and comprehensive information. The workflow of DEConv
can be expressed in Equation (3) as follows:

Fout = DEConv(Fin) =
5

∑
i=1

Fin ∗ Ki (3)

where Ki=1:5 corresponds to CDC, ADC, HDC, VDC, and standard convolution; ∗ repre-
sents convolution; and ∑ represents the summation operation.

2.5. Loss Function Improvement

In YOLOv8, the regression loss in the loss function is a combination of DFL (Distri-
bution Focal Loss) and CIoU (Complete Intersection over Union Loss) [26]. CIoU mainly
measures the overlap between the predicted and actual bounding boxes by considering the
distance between their center points and the consistency of their aspect ratios. However,
the intricacy of the underwater milieu, encompassing elements such as light refraction,
scattering, and water turbidity, leads to a degradation of image quality, causing the target’s
boundaries to become blurry. This complicates the precise calculation of the position and
aspect ratio of the expected and ground truth boxes. This is especially problematic for small
underwater targets, which occupy very few pixels in the image and are prone to significant
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boundary box localization errors. Since CIoU is sensitive to localization errors, this further
exacerbates the issue, leading to a decrease in model performance. To address this, this
paper introduces NWD (Normalized Wasserstein Distance) [27] to improve the CIoU loss
function, proposing the NWD-CIoU loss. NWD uses the Wasserstein distance from optimal
transport theory [28] to compute the distance between the predicted and actual bounding
boxes, subsequently normalizing it to derive the normalized Wasserstein distance, which
serves as a metric for the bounding box. NWD does not require considering whether
the bounding boxes overlap and is impervious to variations in target scale, rendering it
more appropriate for measuring the bounding box loss in small underwater target images.
The specific calculation of NWD is shown in Equation (4) as follows:

LNWD = 1 − exp

(
−
√

W2(Na, Nb)

C

)
(4)

where C is the number of categories in the dataset, W2
2 (Na, Nb) is the second-order Wasser-

stein distance; and Na and Nb represent the Gaussian modeled distributions of bounding
boxes A and B, respectively.

Considering that using NWD alone as the loss function would reduce the model’s
compatibility in handling different target scales, making it difficult to effectively deal with
detection requirements for targets of varying sizes, this paper combines NWD and CIoU to
construct the NWD-CIoU loss function for the model’s localization loss. The formula for
this combined loss is shown in Equation (5) as follows:

LNWD−CIoU = αLCIoU + (1 − α)LNWD (5)

where α is the weight assigned to the CIoU loss function. Through experimentation, weight
α was determined to be 0.4.

3. Experimental Results and Analysis
3.1. Dataset Introduction

The URPC (Underwater Robot Professional Contest) series dataset is a high-quality
underwater image dataset released by institutions such as the Ocean University of China
since 2017. It is extensively utilized in underwater target detection, classification, image
enhancement, and other research fields. The dataset utilized in the studies was created by
integrating the URPC2020 and URPC2021 underwater optical image datasets, followed by
the removal of duplicate images and similar images. Specifically, the Structural Similarity
Index (SSIM) was used to assess the similarity between images, with a threshold of 0.8 set
to identify and remove highly similar images, which typically result from continuous
shooting. The processed dataset contains 7479 images, covering the following four cate-
gories: sea urchins, sea cucumbers, scallops, and starfish. These images showcase typical
underwater environmental features, including color distortion, low contrast, uneven illu-
mination, blurriness, and elevated noise levels. The dataset was randomly partitioned into
training, validation, and test sets in a 7:1:2 ratio. The training set comprises 5235 photos,
the validation set includes 747 images, and the test set contains 1497 images. Figure 7
displays many representative photos from the collection.
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Figure 7. Sample images from the URPC dataset.

3.2. Experimental Environment

The studies were conducted utilizing the PyTorch 2.1.0 deep learning framework,
version 2.1.0, with Python 3.10. The operating system employed was Ubuntu 22.04, and the
hardware consisted of an Intel Core i5-12400F processor, an NVIDIA GeForce RTX 4090D graphics
card with 24 GB of video RAM, and CUDA 12.1.

In the trials performed on the UPRC dataset, the model training parameters were
consistently established. The precise parameters are as follows: The image dimensions were
configured to 640 × 640, the batch size was established at 32, and the optimizer employed
was the Stochastic Gradient Descent (SGD) technique, with a momentum of 0.937, a weight
decay coefficient of 0.005, and an initial learning rate of 0.01. The model underwent training
for 200 epochs.

3.3. Evaluation Metrics

To comprehensively assess the efficacy of the improved model, we selected Preci-
sion (P), Recall (R), and mean Average Precision (mAP) as the metrics to reflect the model’s
accuracy in the object detection task. Additionally, the Parameter count and computational
complexity were employed as metrics for model lightweighting. The specific evaluation
metrics are given in Equations (6)–(10).

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)dR (8)

mAP =
∑k

i=1 APi

k
(9)

FLOPs = K2 × W × H × C0 × Ci (10)
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3.4. Ablation Experiment

Ablation tests were conducted using the UPRC dataset to evaluate the efficacy of
the enhanced modules on YOLOv8n for underwater target detection. The experimental
findings are presented in Figure 8 and Table 1.

The results in Table 1 show that in Experiment 2, after introducing RFAConv into the
C2f module of the backbone network, mAP50 increased by 0.9%. In Experiment 3, when
RFAConv was introduced into the CBS module of the backbone network, mAP50 increased
by 0.7%. In Experiment 7, when both the CBS and C2f modules in the backbone network
were enhanced with RFAConv, mAP50 improved by 1.1%, with a marginal increase in
parameter count and computational complexity. In Experiment 4, substituting the original
detection head with LSC_Detect resulted in a reduction in the model’s parameter count
by 0.65 M and its computational complexity by 1.6 G. In Experiment 6, after improving
the loss function, mAP50 increased by 0.3%. The results of these experiments demonstrate
the effectiveness of each of the improvement modules for underwater target detection.
Experiments 7–10 implemented all enhancements to the YOLOv8n model, yielding a final
mAP50 increase of 1.4%, alongside a decrease in parameter count and computational
complexity by 19.3% and 14.8%, respectively. Figures 8 and 9 provide an intuitive depiction
of the variations in different indicators throughout the ablation experiment. This signifies
that the enhanced model not only augmented average precision but also reduced parameter
count and computational complexity.

Table 1. Ablation study results. (✓indicates that the improvement has taken effect).

Experiments C2f-RFA RFAConv LSC_Detect DySample NWD-CIoU mAP50/% Params/M FLOPs/G

1 82.5 3.01 8.1
2 ✓ 83.4 3.04 8.4
3 ✓ 83.2 3.03 8.4
4 ✓ 82.3 2.36 6.5
5 ✓ 82.9 3.01 8.1
6 ✓ 82.8 3.01 8.1
7 ✓ ✓ 83.6 3.07 8.7
8 ✓ ✓ ✓ 83.3 2.43 6.9
9 ✓ ✓ ✓ ✓ 83.7 2.43 6.9

10 ✓ ✓ ✓ ✓ ✓ 83.9 2.43 6.9

Figure 8. mAP50 changes curve.
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Figure 9. Comparison of parameters as well as computational effort.

3.5. Loss Function Weight Assignment Comparison

To explore the effectiveness of combining NWD with CIoU and the determination of
weight α, comparison experiments were conducted on RDL-YOLO using different weight
assignments for α. The experimental findings are presented in Table 2.

Table 2. Weight assignment comparison results.

Weight Assignment Precision/% Recall/% mAP50/%

1.0 83.3 76.5 83.7
0.8 83.1 76.7 83.6
0.6 82.6 77.2 83.7
0.4 83.0 77.9 83.9
0.2 82.8 77.5 83.8
0 82.7 77.4 83.5

From the data in Table 2, it can be seen that as the value of α decreases, the detection
accuracy of the model changes. When α = 0.4, detection accuracy is highest. The experi-
mental results indicate that introducing NWD allows the model to calculate the optimal
solution for the similarity between the predicted and actual boxes, hence enhancing the
model’s accuracy in underwater target detection.

3.6. Comparison Experiment

To assess the efficacy of the enhanced model for underwater target detection, compari-
son experiments were conducted with the mainstream general object detection models, the
latest proposed underwater target detection approaches, and the most recently proposed
underwater target detection models.The experimental findings are presented in Table 3.
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Table 3. Comparison experiment results on the UPRC dataset.

Model mAP50/% Params/M FLOPs/G

Faster R-CNN 75.2 41.14 63.3
YOLOv3-Tiny [29] 79.6 12.13 18.9
YOLOX-Tiny [30] 80.1 5.06 15.4

YOLOv5n 81.5 2.50 7.1
YOLOv8n 82.5 3.01 8.1

YOLOv10 [31] 81.6 2.69 8.2
YOLOv11n 82.0 2.60 6.5

reference [32] 84.0 19.0 6.5
reference [33] 82.0 13.7 27.3
reference [34] 83.3 3.10 8.0
reference [35] 83.6 2.55 7.5
RDL-YOLO 83.9 2.43 6.9

Analyzing Table 3 indicates that the proposed algorithm, RDL-YOLO, performs better
compared to conventional model algorithms in that they offer greater detection accuracy
while utilizing reduced computing complexity and fewer parameters. Compared to the
baseline, the proposed model scores an 83.9% accuracy in detections, with an increase
of 1.4 percentage points. The proposed model is also lighter in weight, thus appropriate
for deployment in settings with restricted hardware. Compared to the most advanced
underwater target detection models, the proposed model exhibits superior performance
in both mAP and computational complexity. While the UODN has a higher average
precision compared to the proposed model, the complexity of the proposed model is far
less compared to that of UODN. As a whole, the RDL-YOLO offers an equilibrium of
performance and complexity for the model, proceeding to be more appropriate in the case
of underwater environments with restricted computational resources.

To more intuitively showcase and evaluate the performance differences between the
RDL-YOLO algorithm and the YOLOv8 baseline algorithm in underwater target detection,
Figure 10 provides a comparison of the detection outcomes of the two algorithms on
identical images.

Figure 10. Detection results before and after model improvement on the UPRC dataset.
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The figure illustrates that RDL-YOLO exhibits greater stability in target recognition
compared to YOLOv8, offering more precise bounding box localization and higher con-
fidence scores. Specifically, in the first image, YOLOv8 failed to detect the sea urchin at
label 1; in the second image, it incorrectly identified the object at label 2 on the left side as
a sea cucumber; and in the third image, it misclassified the object at label 6 at the bottom
as a sea urchin. In contrast, the improved RDL-YOLO provided correct results in all these
cases. However, both YOLOv8 and RDL-YOLO failed to detect the sea cucumber targets at
labels 3 and 7 of the second image, as well as the sea urchin targets at labels 5 and 8 in the
third image. This suggests that further improvements are needed in detection performance
under low-light conditions.

3.7. Generalization Experiment

To enhance the assessment of the RDL-YOLO model’s generalization ability, further
verification using the RUOD dataset was undertaken. The RUOD dataset [36] is specially
formulated for underwater detection tasks and covers a range of underwater detection
difficulties. The dataset covers a broad target range that includes fish, divers, starfish, sea
turtles, sea urchins, sea cucumbers, scallops, squid, and jellyfish with varying numbers of
each type of target as indicated in the figure. The collection contains 14,000 pictures and
74,904 labeled items. The dataset is randomly partitioned into training, validation, and test
sets in the ratio 8:1:1, comprising 11,200 images in the training set, 1400 in the validation
set, and 1400 in the test set.

All models underwent training and testing under identical experimental settings, as specified
in Section 3.6. The comprehensive experimental findings are presented in Table 4 and Figure 11.

Table 4. Comparison experiment results on the RUOD dataset.

Model mAP50/% Params/M FLOPs/G

Faster R-CNN 65.2 41.14 63.3
YOLOv3-Tiny 80.6 12.13 18.9
YOLOX-Tiny 82.1 5.06 15.4

YOLOv5n 83.5 2.50 7.1
YOLOv8n 84.1 3.01 8.1
YOLOv10 83.7 2.69 8.2

YOLOv11n 84.0 2.60 6.5
RDL-YOLO 85.1 2.43 6.9

Figure 11. Detection results before and after model improvement on the RUOD dataset.
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According to the table, RDL-YOLO achieves an mAP of 85.1% while maintaining a low
parameter count and computational load, representing a 1.0% improvement over YOLOv8n.
Furthermore, compared to YOLOv10n and YOLOv11n, it achieves mAP50 improvements of
1.4% and 1.1%, respectively. In Figure 11, RDL-YOLO demonstrates superior performance
in complex backgrounds. YOLOv8n exhibits both missed and false detections, as follows:
it fails to detect the cuttlefish at marker 3 and incorrectly identifies the background at
markers 1 and 2 as corals. In contrast, the improved RDL-YOLO adapts better to complex
scenarios, accurately localizing targets.These results indicate that RDL-YOLO enhances
detection accuracy while maintaining a lightweight design, exhibiting greater stability in
complex backgrounds, in particular.

4. Discussion
4.1. Findings

The experimental results show that the improved RDL-YOLO algorithm exhibits sig-
nificant performance enhancement on the UPRC and RUOD datasets by introducing the
RFAConv module, the DySample dynamic up-sampling operator, the NWD-CIoU loss func-
tion, and the lightweight detection header of LSC_Detect. Specifically, the model achieves
a mean average precision (mAP) of 83.9% on the UPRC dataset, which is 1.4 percentage
points higher than the original YOLOv8n, while the mAP on the RUOD dataset is 85.1%,
which is 1.0 percentage point higher. At the same time, the algorithm remains lightweight,
and the number of parameters and computational costs are kept at a low level, which can
meet the practical application requirements of underwater resource-constrained scenarios.

4.2. Limitations and Future Works

Although the improved model has made significant progress in terms of detection
accuracy and lightweighting, there are still limitations. As can be seen from the detection
result images, RDL-YOLO still suffers from some omissions and misdetections, especially
in the shadow part of the image where other objects are mistakenly detected as sea urchins.
In addition, underwater images generally have quality problems. Although the goal
of lightweight design was achieved, the performance of the model in real underwater
deployment scenarios has not yet been verified.

In light of the attributes of underwater settings, forthcoming efforts will concentrate
on the following three directions:

1. Combining lightweight image enhancement modules with the detector for joint train-
ing to improve detection accuracy under low-light and high-noise conditions.

2. Integrating optical and sonar image information to use multimodal data to enhance
the model’s robustness and enhance detection efficacy in intricate underwater settings.

3. Deploying and testing the model in real underwater environments to evaluate its
performance and further optimize the model structure and parameter configuration.

5. Conclusions
In this work, the RDL-YOLO algorithm is proposed by enhancing the YOLOv8n model

to fix issues associated with complex underwater environments, the blurring of images,
and high model parameters and computational complexity. RFAConv is proposed to
augment the backbone network, hence improving the model’s capacity to extract features
from complex backdrops. The DySample dynamic upsampling module is employed
to efficiently enhance the model’s proficiency in edge extraction. A lightweight shared
convolution-based detection head is proposed to implement model lightweighting. Lastly,
the integration of the NWD loss function with the CIoU loss function improves the model’s
precision in identifying small objects. Experimental results on the UPRC and RUOD
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benchmarks indicate that the proposed approach boosts the mAP value by 1.4% and
1.0%, respectively, and decreases parameters and computational complexity by 19.3% and
14.8%, respectively. These illustrate that the model is more appropriate for deployment in
constrained underwater scenarios.
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