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Abstract: With deep-learning-based object detection methods reaching industrial-level per-
formance, underwater object detection has emerged as a significant application. However,
it is often challenged by dense small instances and image blurring due to the water medium.
In this paper, a Multi-Scale Feature Enhancement(MSFE) method is presented to address the
challenges triggered by water bodies. In brief, MSFE attempts to achieve dual multi-scale
information integration through the internal structural design of the basic C2F module in
the Backbone network and the external global design of the feature pyramid network (FPN).
For the internal multi-scale implementation, a LABNK module is constructed to address
the vanishing or weakening phenomenon of fine-grained features during feature extraction.
Specifically, it adopts a symmetrical structure to collaboratively capture two types of local
receptive field information. Furthermore, to enhance the information integration ability
between inter-layer features in FPN, a shallow feature branch is injected to supplement
detailed features for the subsequent integration of multi-scale features. This operation
is mainly supported by the fact that large-sized features from the shallow layer usually
carry rich, fine-grained information. Taking the typical YOLOv8n as the benchmark model,
extensive experimental comparisons on public underwater datasets (DUO and RUOD)
demonstrated the effectiveness of the presented MSFE method. For example, taking the
rigorous mAP (50:95) as an evaluation metric, it can achieve an accuracy improvement of
about 2.8%.

Keywords: underwater object detection; convolutional neural network; YOLO detection
model; multi-scale feature enhancement; local awareness operation; feature pyramid
network

1. Introduction

The oceans are rich in diverse resources and have become a significant raw material
provider for human activities and livelihoods [1]. In the context of the widespread adoption
of artificial intelligence across various fields, object detection technology provides a feasible
automation approach for underwater resource exploration. As a subfield of computer
vision, object detection technology mainly serves to locate and classify specific object
instances in image or video data. In brief, underwater exploration equipment with detection
functions can greatly reduce reliance on manual diving operations, offering advantages in
detection efficiency and safety while conserving both human and material resources.
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Traditional object detection methods have adopted the two-stage sequence mode of
feature extraction and object classification. The manual feature descriptor methods [2—4]
dominate in acquiring the inherent features of object instances. In this context, early
underwater object detection (UOD) techniques directly followed the traditional manner.
However, traditional descriptors often struggle to capture accurate feature information of
the underwater targets [5-10]. The main reason for this is that underwater images appear
blurry due to the absorption and scattering effects of water on light. In response, numerous
attempts [11-15] focus on how to integrate or fuse various feature descriptors. In summary,
traditional UOD methods have achieved some results, but they have difficulty meeting the
practical industrialization due to the disadvantage of feature extraction.

With the breakthroughs in deep learning across various tasks, Deep Learning-based
Object Detection (DLOD) methods have gradually emerged as the mainstream approach
for practical applications. In contrast to traditional feature descriptor methods, the DLOD
methods usually achieve better accuracy owing to the superior feature extraction ability of
Convolutional Neural Networks (CNNs). DLOD methods can be divided into two cate-
gories, namely two-stage and single-stage. The two-stage methods [16-19] directly inherit
the two-stage implementation of feature extraction and classification. However, they
usually achieve better accuracy but struggle with complex operations and low detection
efficiency due to the time-consuming region-proposal operation. In contrast, single-stage
methods, such as the YOLO series [20-26] adopt end-to-end detection implementation,
with simple operation and high detection efficiency. Therefore, single-stage detectors have
been the mainstream method, especially in real-time detection scenarios.

Although DLOD methods have made significant progress in real-life scenarios, the
transferable applications of existing methods often achieve poor performance in UOD appli-
cations. Recently, some studies have summarized the main challenges and solutions [27,28].
Furthermore, the study [29] focused on deep-learning techniques and how these meth-
ods can improve accuracy in underwater detection. Besides, the survey [30] particularly
emphasizes data availability and how datasets impact the development of underwater
detection methods. In general, the implementation of UOD often cannot avoid conventional
challenges in real-life scenes, such as sample scarcity, class imbalance, and noisy labels
issue [27]. Furthermore, the negative impact of the water body on light and the distribution
pattern of target instances give rise to the following additional difficulties.

*  Image-blurring issue: The absorption and scattering of light by the water typically lead
to a rapid reduction in light intensity. Under normal optical mechanisms, insufficient
light can cause image darkening and color deviation. Additionally, the fluctuation
and turbidity of a water body can further worsen the distortion of image features. For
instance, unclear water will result in warped or blurry shapes of the target.

¢ Dense small target issue: The large-scale aggregation of some aquatic organisms often
triggers the dense detection issue of small targets. For instance, the aggregation of
small-size fishes can make it difficult for detection models to distinguish individual
targets, resulting in false positive and false negative phenomena.

To address the challenges mentioned above, the attempts can be classified into
two categories. The first solution is image enhancement methods, which focus on how
to obtain clear, high-resolution images [31-34] for subsequent detection implementation.
The other mainline directly focuses on how to enhance the detection ability of existing
detectors, involving the structural design of model and loss construction of training
implementation [35-39]. To be specific, the structural design attempts to improve the
feature extraction capability of the model. For example, the design of the Backbone network
using deformable convolution [35], dilated convolution [36] and attention modules [37]; the
enhancement of the Feature Pyramid Network (FPN) using attention modules [36,38]; and
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the auxiliary detection head mechanism. In addition, the construction of the loss function
can also slightly improve the detection accuracy [35,37].

Overall, previous methods have achieved significant success. However, in terms
of model structure, they did not address the challenges of underwater detection from
the perspective of multi-scale feature fusion. In this case, this paper presents a Multi-
Scale Feature Enhancement (MSFE) method to boost the ability of the detector. In brief,
MSEE focuses on how to apply multi-scale feature fusion techniques to implement feature
enhancement for blurry images. In other words, the idea of MSFE always revolves around
how to integrate multi-scale feature information during the feature extraction process.
Taking the YOLO model as a benchmark framework, the MSFE method can be described
as follows.

¢  Por the image blurring issue. It conducts a multi-scale local awareness operation to
enhance the information integration ability of the basic C2F module in the Backbone
network. To be specific, anchoring the BNK submodule in C2F, the multi-scale design
adopts symmetric local awareness operations to overcome the feature vanishing or
weakening phenomenon during the feature extraction. The ‘Stage Layer 3’ and ‘Stage
Layer 4’ in Figure 1 denote its locations.

¢  For the dense small target issue. Following the multi-scale information integration
mechanism of FPN between deep and shallow features. It extra injects a shallow
branch into the FPN to supply large-scale features for subsequent prediction. This
idea is mainly supported by the fact that shallow features usually carry rich, detailed
information. The “Top Down Layer3’ and ‘- -’ in Figure 1 show this design. Formally,
this idea can be viewed as an enhancement of normal FPN structure.

In summary, the MSFE method actually achieves a double multi-scale information
integration through the internal operation design of the basic C2F module in the Backbone
network and the external global design of FPN. Taking the single-stage YOLO as the
benchmark framework, the implementation of MSFE is carried out in the lightweight
YOLOv8n. Extensive comparisons in underwater datasets demonstrate its effectiveness in
improving accuracy.
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Figure 1. The diagram of the MSFE method based on YOLOVS detector. The entire figure displays the
architecture of YOLOVS. The blue regions represent the original components in the initial framework.
To achieve feature enhancement for the detector, the MSFE achieves two structural designs, namely
LABNK and NB. For the Backbone network, the LABNK conducts a local awareness operation for
the internal BNK in the basic C2F. The purple region indicates its location. In contrast, the NB injects
a new feature branch into the FPN in the Neck region. The red region highlights its location.
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2. Related Work
2.1. Deep-Learning-Based Object Detection (DLOD) Methods

With the rise of deep-learning technology, DLOD methods have gradually become the
mainstream detection approach in practice. In contrast to the hand-crafted feature descrip-
tors used in traditional methods, the DLOD methods achieve superior performance using
learnable deep features. In this context, deep detection methods have not only achieved
significant success in detection accuracy but also demonstrated strong robustness in various
noisy environments. According to the workflow, the DLOD methods are generally divided
into two-stage and single-stage approaches.

Two-stage Method. These methods directly follow the separable implementation
pattern of feature extraction and object classification in traditional detection approaches.
The most competitive models are the R-CNN series [16-19,40], such as Fast R-CNN [17] and
Faster R-CNN [18]. The evolution of two-stage object detectors begins with R-CNN [16],
which employs proposal generation techniques to generate candidate bounding box regions
from the input image. However, it requires feature extraction for each candidate region,
resulting in high computational costs. To address this issue, Fast R-CNN turns to obtain
candidate regions on the deep feature, allowing the features of the entire input image
to be computed only once. Building upon Fast R-CNN, Faster R-CNN introduces the
Region-Proposal Network (RPN) that enables nearly cost-free region proposals. Moreover,
the RPN actually integrates region generation with the detection process. This integration
enables end-to-end training, marking an important milestone in DLOD technology.

Single-stage Method. The YOLO series [20-22,41,42], have emerged as convenient
implementations in object detection. These methods directly inherit the end-to-end nature
of deep learning. In contrast to two-stage methods, YOLOv1 [20] achieves greater efficiency
by replacing the region-proposal process with the grid division strategy on the input. In this
grid division setting, the network divides the image into regions and predicts bounding
boxes and probabilities for each region simultaneously. Although YOLO significantly
improves detection speed, it suffers from a decline in localization accuracy compared to
two-stage detectors, particularly for small objects. Subsequent versions of YOLO [23-26]
and the later SSD [43] have focused more on addressing this issue.

2.2. Underwater Object Detection Algorithms

Early UOD technology directly followed traditional object detection methods, em-
ploying a two-stage sequence mode of feature extraction and object classification. Among
them, manual feature descriptor methods like SIFT, HOG, and LBP were employed to
acquire local features (e.g., the edge, texture, or keypoint information). However, these
methods struggle in underwater scenes due to blurry images caused by light absorption
and scattering. In response, the adaptive color matching method [11] attempts to overcome
the difficulty of weakened light. Subsequent underwater target recognition algorithms
utilize fused descriptors to integrate texture, edge, or color information of underwater
targets [11-15]. Despite some success, traditional UOD methods depend heavily on manual
features, hindering their adaptation to diverse underwater environment [36] and making
them difficult to industrialize implementation.

DLOD algorithms provide significant advantages over traditional UOD methods,
especially in their ability to automatically learn and extract features related to the object
region in underwater images. In recent years, numerous studies [35-39] have focused on
modifying existing model architectures and loss functions to improve the performance of
object detection in challenging environments. For example, the Backbone network was
designed using space-to-depth convolution [44], the new network architecture [45-47],
and the attention module [44]; the FPN was enhanced through spatial convolution down-
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sampling [44]. Moreover, model performance could be further improved by designs of
loss function [44—48]. In addition to the above improvements, the use of the Transformer
architecture has also significantly enhanced the detection performance [49,50].

In addition to the above innovations, researchers have also made significant advance-
ments in image enhancement techniques. For instance, the co-training algorithm combining
image enhancement and object detection [32] mitigated background interference from im-
age degradation using an underwater image enhancement module before the detection
network. The underwater image processing and object detection algorithm based on the
deep CNN method [33] improved underwater detection by preprocessing images with
Max-RGB and grayscale methods. The MSEMCN algorithm [34] improved accuracy by
integrating the MobileCenterNet model with image enhancement techniques, effectively
enhancing the quality of input images and enabling more precise detection.

3. Methodology
3.1. Overview of the MSFE Method

Given the efficiency advantages of the YOLO models in the detection task, this paper
adopts the YOLOVS detector as the benchmark architecture. In line with the end-to-
end design of the YOLO series, the YOLOVS retains the sequential construction of three
modules: the Backbone network, Neck region, and Head region. Figure 1 illustrates its
overall architecture. As the foundation of feature extraction, the Backbone is responsible
for extracting feature information from the input image. In contrast, the Neck region
indicates the FPN, which provides feature information for subsequent prediction through
the multi-scale information fusion of deep and shallow features. Finally, the Head outputs
the class and localization of the object instances.

To address the image blurring and dense small target issue in UOD, two structural
designs are proposed to improve the detection capability of the model in this paper. The
core idea focuses on how to integrate multi-scale feature information during the feature-
extraction process. Two key points are summarized as follows.

(1) The structural design of the basic C2F module in the Backbone network. To
enhance the information acquisition ability of basic C2F, a multi-scale perception operation
is applied to the internal submodule BottleNecK (BNK) in C2F. This design aims to increase
its sensitivity to blurred object instances. Finally, the reconstructive C2F is applied to the
last two modules of the Backbone. Intuitively, the “Stage Layer 3” and “Stage Layer 4” in
Figure 1 locate the application of this design. More details are presented in Section 3.2.

(2) The reconstruction of the FPN module. The main function of FPN is to integrate
the deep and shallow features to exact effective information. In this setting, this paper
further adds a shallow branch into the FPN framework. We expect that the extra branch
can supply more large-scale features for subsequent prediction. The red box and ‘- -” in the
top region locate this design in Figure 1. A further explanation is presented in Section 3.3.

3.2. The Structural Design of C2F Module

As an evolution version of normal DarkNet in YOLO detection models, the CSPDark-
Net has been the mainstream structure of the Backbone network from the YOLOv5 model.
Taking the CSPDarkNet as the benchmark structure, the YOLOvS8 network further enhances
its feature-extraction ability. The main design concept is that it adopts the C2F (CSPDark-
net to 2-Stage FPN) module to replace the C3 module. This module can enrich gradient
flow information by multi-branch structure while maintaining a lightweight structure. In
the Backbone region, the C2F module is applied after the convolution layers to further
enhance and refine the extracted feature. In the Neck region, the C2F module is applied
before prediction to optimize the feature maps and reduce redundant information. To give
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an intuitive diagram, the overall structure of the C2F has been illustrated in Figure 2a.
Furthermore, the core component, namely BottleNecK (BNK), has been shown in Figure 2b.

0 Acal e
_GO i +
Chunk @ ®—>

F,

out Fb
(a) The overall architecture of C2F module. (b) The vanilla design of internal BNK.

Figure 2. The diagram of the C2F module and the initial design of the internal BNK (BottleNecK).
(a) The overall architecture of the C2F module. (b) The vanilla structure of the internal BNK.

3.2.1. Introduction of the Initial C2F Module
(1) The overall architecture of the C2F module

According to the diagram in Figure 2a, the workflow of the C2F can be briefly described
as follows. Given an input feature F;;, € RHEXWXC “the first step is to transform it as
F, € REXWxC'/2 and F, € RIXWxC'/2, through a Cy(-)-based feature extraction and
subsequent channel segmentation operation (chunk), in which the Cy(-) is a convolution
layer. Second, the feature branch Fy, is utilized to generate a new feature F,, through the
forward computation of the BottleNecK (BNK) submodule. Third, the features F,, F,,, Fy,
are concatenated (Concat) as the combination [Fa, Fy, Fb] in terms of channel. Finally, the
feature group will be further learned as the output feature Foyt via a channel compression
of the convolutional layer Cy(-). The entire process is formalized as follows.

F, — F —
‘ b b M [FaerIFb] i} Fout (1)

In line with Equation (1), it is clear that the terminal feature Foy; is actually produced
from three types of features, which include the initial transformation results F, and Fy, of
input Fi,, as well as the evolution form F,, of the F,,.

In summary, the C2F improves the feature diversity by multi-branch construction of
intermediate features. In contrast to the initial F, and Fy,, we find that it turns to supply a
new feature Fy, for the terminal output. In view of parameter updates, this multi-branch
structure can enrich the gradient flow information from loss functions during training.

(2) The initial BNK submodule in C2F

For the internal operation of BNK, Figure 2b illustrates its workflow. In which a
residual architecture is used to generate the additional feature Fy, for C2F. In brief, taking
the Fy, as input feature, the F,, is produced with the combination (sum) of the F, and its
evolution version F;, where the evolution feature F; is acquired through a serial CNN
parameter set (1, v) in a residual branch. Formally, it can be formalized as follows.

u 0
Fo P o R R R @)
Fb — Fb
According to Equation (2), we can find that the BNK actually uses a residual branch
to conduct a simple repair of the original F;,. In this setting, the branch becomes the only
support or reliance to increase feature diversity. This is obviously unfavorable to extract rich
feature information. For example, the initial BNK can play a positive role in real-life scenes.
However, when encountering image blurring issues, the simple residual construction often
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struggles to capture detailed information, such as the high-frequency edge details. This
drawback may trigger a low adaptability of detectors in underwater environments.

3.2.2. The Design of the Local Awareness BNK (LABNK)

In this subsection, we present a local awareness (LA) design for the initial BNK, namely
LABNK. In brief, taking the initial BNK as a benchmark framework, it no longer directly
reuses the input feature but extracts new features through the LA operation. This avoids
the single dependence of terminal output on the residual branch. The key LA operation
is inspired by the HCF-Net [51] in the infrared object detection task in which one of the
attention modules is constructed with the multi-scale element-wise multiplication operation
to enhance the blurry information in the infrared images.

(1) The overall architecture of the LABNK module

Figure 3a illustrates the internal structure of the LABNK module. In terms of frame-
work, the LABNK completely follows the residual construction of the initial BNK.

{Ec}* n
au Channel ‘ @ @ Space ﬂ
ﬂ ¢] Placement ‘ Dot Cos( ) Placement
Fb Fb b qu g FIFZ
(a) Local awareness design of the BNK. (b) local awareness (LA) operation.

Figure 3. The schematic diagram of the local awareness enhanced BottleNecK submodule (LABNK)
and the mechanism of the internal local awareness (LA) module. (a) The workflow of LABNK.
Formally, it conducts the symmetrical awareness operation with p = 2, 4. (b) The principle of the
internal LA module. It adopts two weighting operations to highlight the fine-grained information.

To be specific, instead of the simple copy of input feature F,, the LABNK employs
a symmetrical LA operation to obtain critical information from Fy,. In other words, it
conducts a patch-wise (2 x 2 and 4 x 4) feature enhancement to the critical information in
Fy,, namely LA (p = 2) and LA (p = 4). Subsequently, the values from different branches are
combined through the summation, i.e., F, = Fo— + Fpes + F, + Fo. Finally, the output
feature F, is obtained through the spatial channel attention module (CBAM). Formally, its
overall workflow is represented by the following mapping expression.

F, > F, > F,

LA(p=2 _

R e R R N 3)
LA(p=4)

F, | S

In summary, unlike the initial BNK, the LABNK does not reuse the input F, for numer-
ical supplementation. Instead, it employs the local awareness (LA) operation to complete
a precise feature extraction through a local-aware enhancement operation. In addition,
LABNK utilizes the intermediate feature F,, in the residual branch as the information source
for the output and employs CBAM [52] to integrate multiple feature types. Since the CBAM
is commonly used to integrate various types of feature information, its working principle
is not detailed here. The following section provides a detailed discussion of the local
awareness operation, which serves as the core component of the LABNK.

(2) The internal operation of the local awareness (LA) module

As shown in Figure 3b, the LA module consists of three main steps: channel placement,
feature weighting, and space placement. The workflow is described as follows.

(i) Channel Placement: The unfold operation is employed to transform the input
feature Fy, from a high-dimensional spatial feature into a lower-dimensional channel feature.
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(ii) Feature Weighting: The aim of this operation is to conduct the enhancement of
critical information in Fy,. It performs weighting operations on internal component of

F,, at the channel level, following the algorithmic flow: F, LS F, ﬂ cos(B,a - Fp).
The two FC modules are weight generation modules similar to the SE channel attention
mechanism [53], which are used to generate weight coefficient vectors « and B. During the
weight generation, the dot product and cosine similarity are employed, respectively.

(iii) Space Placement: This operation performs a conversion from channel-level fea-
tures to spatial-level features. Its goal is to restore the low-dimensional features to high-
dimensional ones in order to match the initial dimension.

In summary, the LA module involves applying two sequential weighting operations to
feature components in low-dimensional channel mode. As shown in Figure 3a, this paper
employs the p =2 and p = 4 settings to perform the local (patch-wise) weighting operation.
This module enhances the model’s ability to capture detailed information by selective
emphasis on key information or suppression of irrelevant information. This method is
crucial for addressing the issue of weakened feature information of small targets and blurry
target boundaries in underwater images.

3.3. Small Receptive Field Detection Layer

The superiority of DLOD methods mainly stems from the robust feature extraction
ability of the Backbone network, which provides strong support for subsequent detection
implementation. In brief, owing to extensive training data, the CNNs are able to integrate
the semantic information of the input image. However, the dimension compression of
features in the Backbone network often leads to the vanishing or weakening phenomenon
of feature information. This has been a critical bottleneck to detection performance.

To address the above issue, the FPN structure [54-57] combines shallow and deep
features to integrate detail and semantic information, significantly improving detection
performance. The multi-scale feature joint framework has become the mainstream approach
in detection models. For example, the YOLO series generally adopts a three-branch FPN
structure, which generates three types of detection heads, namely the 20 x 20, 40 x 40, and
80 x 80 size, as shown in Figure 1. However, this usual three-branch mode often struggles
with extremely small targets. In this case, some additional branch setting may serve as a
feasible solution, such as the four-branch attempts in the drone detection field [58-60].

As the stated image blurring and dense small target issue in the introduction, the
normal FPN setting is no longer sufficient to handle the worsening conditions under the
water detection scene. This motivates us to inject an additional shallow feature branch
into the normal FPN structure. Taking the YOLOvVS as a benchmark framework, the top
region in Figure 1 shows this idea. Formally, the red “Top Down Layer3’ and ‘- -” in Figure 1
illustrate the forward propagation of the features extracted from the Stem Layer.

As shown in Figure 1, the new 160 x 160 feature from the Stem Layer has been
injected into the Neck region, providing richer detailed information by combining with
the deeper features. For the operational detail, this branch still follows the symmetrical
construction form of the FPN structure. To be specific, it still receives assistance from
small-scale features from deeper layers and provides large-scale features of the current
layer for subsequent detection branches. This symmetrical addition plays a crucial role in
improving the model’s ability to detect dense small targets, and the effectiveness of this
auxiliary branch is validated through the ablation study in the experimental section.

3.4. Loss Function

For model training, the bounding box regression loss L.y and category loss L, are
utilized for parameter update. The overall loss is presented in Equation (4).



Symmetry 2025, 17, 63

90f19

Ligtar = Lreg + Lejs (4)

where the regression loss Lyeg consists of CloU loss and DFL loss. The two parts of the loss
are represented by Equation (5) and Equation (6), respectively.

02 (0,157)

CIoU = IoU — 5
c

—av (5)
where IoU represents the intersection ratio of the two bounding boxes; ¢ denotes the
diagonal length of the smallest closed box covering both bounding boxes; p(-) refers
to the Euclidean distance; b, b$' represent the coordinates of the centers of the pre-

dicted and actual boxes, respectively; a is the weight coefficient; and

— v
(I-ToU)+v

2
v = 42 (arctan — arctan %) measures the difference in the shapes of the predicted

st
and actual boxes.

DFL(S;, Siv1) = —((yir1 — y) 10g(Si) + (v — yi) 10g(Siv1)) (6)

where S; and S 1 represent the predicted values of the network output and the proximity
region, respectively. Similarly, y, y;, and y;,1 denote the true label value, the integral value
of the label, and the integral value of the proximity label.

The category loss, denoted as L, is calculated using the binary cross entropy loss
(BCE Loss), as described in Equation (7).

n

Lo = — 2 Yolui-log p(d) + (1 y1)-log(1 — p(3,)] ?)
i=1

where y; represents the true label, and ; denotes the predicted value of the sample.

3.5. Effect Validation of the Two Structural Components

This section validates the effect of different methods on the public DUO dataset.
Taking the YOLOv8n as the benchmark model, Figure 4 illustrates the test performance
trends under various settings. To be specific, the brown forked () curve draws the test
accuracy of the YOLOv8n. The blue triangle (A) curve represents the accuracy trend
with the LABNK-based YOLOvS8n. The yellow dot () curve illustrates the effect of the
additional shallow branch (New Branch, NB). Finally, the red square([]) curve illustrates
the collaborative effect of both methods (LABNK + NB).

*  The individual validation of LABNK and New Branch: For the LABNK, its positive
effect on performance improvement becomes gradually apparent after 150 iterations.
In contrast, the additional shallow branch yields noticeable improvements as early as
the 50th epoch. In summary, the trend of test performance trend in Figure 4 indicates
that both operations can significantly enhance the detection accuracy of the model.

¢ The collaborative validation of LABNK and New Branch: In contrast to the baseline
method, the combination of the two operations (LABNK + NB) shows a more pos-
itive effect from the 80th epoch. This indicates that there is no conflict between the
two operations. Furthermore, we can see that their functional overlap is not significant.
For example, taking the NB method as the baseline, the combined setting provides a
greater accuracy advantage across the entire training process. One main reason is that
both operation items perform multi-scale feature enhancement at different levels. The
LABNK focuses more on fine-grained operations within the convolutional module. In
contrast, the NB emphasizes the feature fusion mechanism across different layers.
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Figure 4. The test performance trends of different methods during training on the DUO dataset.

4. Experiments
4.1. Underwater Object Detection Datasets

This section evaluates the effectiveness of the proposed method on two publicly
available datasets: DUO [61] and RUOD [62]. The DUO dataset includes 7782 labeled
underwater images with four identities: echinus, starfish, scallop, and holothurian. The
pre-set training data with 6671 images is used to learn the parameters of the model. In
addition, the test set with 1111 images is used to conduct model evaluation. Similarly, the
RUQOD dataset contains 14,000 labeled underwater images with ten identities. The training
and test sets consist of 9800 and 4200 images, respectively.

4.2. Experimental Setting

(1) Environment configuration: The hardware platform and parameters of the envi-
ronment used in the experimental training phase are shown in Table 1.

Table 1. Parameters of Environment and Hardware Platform.

Environment Version
Operating System Ubuntu 20.04
CUDA Version 11.7
CPU Intel(R) Core(TM)i7-12700KF@3.6GHz
GPU GeForce RTX 3090
Display Memory 24G
Python Version Python3.9.17
Deep-Learning Framework Pytorch 2.0.1

(2) Training Settings: None of the experiments in this paper used pretrained weights.
The specific parameters for training are detailed in the left half of Table 2. To prevent
overfitting, the training process employed the model’s default data augmentation methods.
The settings used for data augmentation are also shown in the right half of Table 2.
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Table 2. Training Setting and Data Augmentation Method in the YOLOv8n.
Training Setting Value Data Augmentation Value
optimizer SGD (weight decay = 5 x 10~%) (hsv_h, hsv_s, hsv_v) (0.015,0.7,0.4)
batch size 16 translate 0.1
epoch 300 scale 0.5
initial training rate 0.01 fliplr 0.5
image size 640 x 640 mosaic 1.0

(3) Evaluation metrics: In this paper, we evaluate the model’s performance using five
metrics: mAP(50), mAP(50:95), Params, Detection Time, and FLOPs. mAP(50) represents
the mean Average Precision at an Intersection over Union (IoU) threshold of 0.5, while
mAP(50:95) denotes the mean Average Precision averaged over IoU thresholds ranging
from 0.5 to 0.95 in increments of 0.05. Additionally, Params measures the model’s complex-
ity, and Detection Time assesses its real-time performance. FLOPs are also utilized to assess
the model’s computational efficiency. The formula for mAP is given in Equation (8).

1 K
mAP = — ) " AP(k) (8)
K k=1

where K is the total number of identities in the dataset. AP represents the value of the area
under the precision (P) and recall (R) curves for a single identity. P focuses on prediction
accuracy, measuring how many of the predicted positive samples are actually correct. R
focuses on detection comprehensiveness, indicating how many of the true positive samples
are correctly identified by the model. The formula for P and R is given in Equation (9).

©)

P =TP/(TP +FP)
R=TP/(TP +FN)

where the above equation is the precision equation based on the confusion matrix, TP
indicates that the predicted value is a positive sample and the true value is also a positive
sample; FP indicates that the predicted value is a positive sample, but the true value is a
negative sample; FN indicates that the predicted value is a negative sample, the true value
is also a negative sample.

4.3. Ablation Study on the DUO Dataset

To validate the contributions of the two components of the MSFE method to detection
accuracy, this section sequentially evaluates the performance improvements by the LABNK
module and the New Branch (NB) measure, using YOLOv8n as the baseline model. Specifi-
cally, the model is trained for 300 epochs on the DUO training set, following the training
setup described in Section 4.2.

¢ Interms of AP for each identity: The individual use of both components, compared to
the baseline method, yields a positive effect, with the NB component achieving better
results in detecting holothurian. Additionally, the combination of two components also
demonstrates a slight advantage in accuracy for some identities, except for holothurian.
This suggests that the combined approach may not provide a universal improvement
across all identities.

* In terms of comprehensive performance: Based on mAP(50) and mAP(50:95), the
individual use of the two components has resulted in improving performance com-
pared to the baseline model, as shown in Table 3. Furthermore, compared to using
LABNK and NB as individual benchmarks, the combination of both components
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achieves the greatest improvement. This is primarily due to the synergistic effect of
the two multi-scale feature enhancement operations.

Table 3. The Comparison of Ablation Experiments with Different Setups.

AP
No. LABNK NB mAP (50) mAP (50:95)
Holothurian Echinus  Scallop Starfish
1 X X 83.1% 91.9% 65.3% 91.9% 83.0% 63.8%
2 v X 84.1% 92.1% 68.8% 92.4% 84.3% 64.2%
3 X v 85.3% 92.2% 68.2% 92.5% 84.5% 65.5%
4 v v 84.7% 92.6% 70.8% 93.3% 85.4% 66.6%

4.4. Visualization Validation

To provide a more intuitive validation of the MSFE method, this section employs
the visualization of attention heatmaps to verify its effectiveness. As described in the
Grad-CAM [63] study, attention heatmaps effectively reflect the regions of interest in the
input space, therefore facilitating the understanding of the model’s decision basis.

For the implementation, the RUOD dataset is used as the benchmark. We separately
obtain the baseline detector (YOLOv8n) and the MSFE-based detector following the training
setup in Section 4.2. Subsequently, several representative examples from the test set are
selected to compare the differences in attention region between the two detectors.

4.4.1. Comparative Validation in Blurry Scenario

For the image blurring issue, this subsection selects five underwater images from
the test set under low-light conditions to compare the attention difference between the
two detectors. The original images and their corresponding attention heatmaps are shown
in Figure 5, in which the depth of the color in the heatmap indicates the intensity of the
attention. For instance, deeper colors (red and yellow) indicate stronger attention in that
region. The breadth of the heatmap indicates the range of attention to the target region.

According to the comparison in Figure 5, the following conclusions can be drawn.

¢ Small-sized targets: (i) Normal background: Taking the three images in the first and
second rows as references, the baseline model (YOLOv8n) often exhibits insufficient
attention to the target, which clearly increases the risk of missed detections. In
contrast, with the support of LABNK and NB, the MSFE method demonstrates a
stronger attention intensity on small-sized targets. In addition, it reduces unnecessary
attention on non-target regions in terms of attention breadth. (ii) Weak background-
target differentiation: In the third row, both models exhibit fuzzy attention regions.
However, we can find that the MSFE method provides a clearer distinction between
the background and target regions. For instance, the YOLOvVS8n fails to detect the sea
urchin target (highlighted by the yellow circular annotation in the middle image).

e Large-sized targets: For the large-sized targets with occlusion, taking the cuttlefish
instance in the fourth row as the reference, the baseline model shows insufficient
attention to the target region, which may lead to difficulty in clearly identifying the
boundary information of different target instances. In contrast, the MSFE provides
a more comprehensive assessment of the target region. In this case, the sufficient
attention supply is beneficial for acquiring the target’s boundary information.
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(a) Test input images. (b) Heatmaps from YOLOvS8n. (c) Heatmaps from MSFE.

Figure 5. The comparative validation with the visualization of attention heatmap in blurry scenes.
(a) Original test images. (b) The visualized results from the initial YOLOv8n model. (c) The visualized
results from the MSFE-based YOLOvS8n.

4.4.2. The Comparative Validation in Dense Scenario

For the dense small target issue, five images from the test set are used to verify
the differences in the attention regions between the two models. Figure 6 visualizes the
heatmap and detection results from two models.

(a) Test input images. (b) Heatmaps from YOLOv8n. (c) Heatmaps from MSFE.

Figure 6. The comparative validation with the visualization of attention heatmap in dense scenes.
(a) Original test images. (b) The visualized results from the initial YOLOv8n. (c) The visualized
results from the MSFE-based YOLOvS8n.
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As shown in Figure 6, both models show significant improvements in distinguishing

between targets and backgrounds under sufficient lighting conditions. However, regarding

the multi-scale target problem, the following conclusions can be drawn.

Non-multi-scale situation: Referring to the images in the first two rows, the initial
YOLOvV8n shows weak attention on the target, similar to the situation shown in
Figure 5. To confirm this case, the missed and false detection targets are specifically
annotated in the third image of the first row (highlighted by the yellow circular anno-
tations). In contrast, the MSFE method shows much stronger attention on the target.

Multi-scale situation: Taking the images in the third and fourth rows as examples,
when there are large scale (size) differences between different targets, the MSFE clearly
demonstrates a more global capture of the feature information of large-sized targets.
For instance, the MSFE performs a more comprehensive feature assessment for the
key head region of a large-sized jellyfish target, which evidently enhances the model’s
generalization capability when dealing with multi-scale target instances.

4.5. General Comparison on the DUO Dataset

To provide a comprehensive performance evaluation, this subsection compares dif-

ferent methods on the public DUO dataset. Specifically, this section compares the MSFE
method with recent underwater object detection methods. In addition, we list the test
results of some regular detection models. All comparison results are listed in Table 4.

Table 4. The General Comparison of Mainstream Models on the DUO Dataset.

Model mAP (50) (151;‘;15)) Params/M FLOPs/G  Time/ms
Faster R-CNN [37] 83.0% 63.5% 414 210.3 125.0
Cascade R-CNN [37] 83.5% 64.8% 69.2 236.0 62.5
RetinaNet [37] 81.7% 61.9% 36.4 207.0 58.8
YOLOv5n 81.2% 60.2% 1.8 4.1 2.1
YOLOv6N [23] 80.8% 60.5% 4.7 11.4 3.4
YOLOX-nano [22] 71.1% 46.0% 3.8 2.6 2.9
YOLOv7-tiny [24] 81.9% 59.9% 6.0 13.1 2.7
YOLOvVS8n [25] 83.0% 63.8% 2.8 8.1 3.3
YOLOv9t [26] 84.0% 64.5% 2.6 10.7 6.3
CIM-DAIM [64,65] 77.0% — 26.1 118.9 7.6
YOLOv7-CHS [66] 84.6% 65.5% 32.0 40.3 31.3
Deformable-DETR [37] 84.4% 63.7% 40.0 200.7 52.6
MSFE-YOLOvS8n 85.4% 66.6% 3.1 12.2 5.7

(Ours)

In terms of accuracy metrics: The MSFE exhibits a more notable advantage over
other methods in both mAP(50) and mAP(50:95) metrics. In contrast to the baseline
method (YOLOVS8n), it achieves an accuracy improvement of 2.4%. Compared to
the recent underwater detection method (YOLOv7-CHS) in 2023, it also achieves an
accuracy gain of approximately 1.0%. It is worth mentioning that the report of the
MSEFE method is built upon the lightweight YOLOv8n model. Therefore, it has the
potential to achieve higher accuracy when applied to other large models.

In terms of other metrics: The MSFE method shows a slight trade-off trouble between
accuracy and efficiency. To be specific, for the benchmark YOLOv8n model, the
auxiliary modification results in an increase of 0.3M in parameters and an additional
computational cost of 4G in FLOPs. In this case, other conventional small models
without a specific design for underwater object detection demonstrate better detection
efficiency, such as the YOLOv5n, YOLOv6n, YOLOX-nano, and YOLOvOt.
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4.6. Comprehensive Performance Comparison Based on RUOD Dataset

This subsection further evaluates the MSFE method on the RUOD dataset. Similar to
the previous comparison, the MSFE is compared with existing underwater object detection
methods and several conventional small YOLO models. Table 5 lists the comparison results.
According to the reports, a comparative conclusion is reached as follows.

Table 5. The General Comparison of Mainstream Models on the RUOD Dataset.

Model mAP (50) mAP Params/M FLOPs/G  Time/ms
(50:95)
Faster R-CNN [67] 81.8% 52.8% 414 246.0 114.3
Cascade R-CNN [67] 81.1% 54.8% 69.2 271.2 90.9
RetinaNet [67] 79.3% 50.7% 36.4 2734 68.2
YOLOvV5n 80.6% 53.9% 1.8 4.2 2.5
YOLOv6n [23] 80.2% 56.6% 4.6 115 3.3
YOLOX-nano [22] 70.2% 42.8% 3.8 29 35
YOLOv7-tiny [24] 81.5% 55.1% 6.1 13.1 2.6
YOLOv8n [25] 82.9% 58.5% 2.8 8.1 34
YOLOvV9t [26] 83.3% 59.3% 2.6 11.7 6.7
DETR [68] 82.6% 54.7% 15.9 62.0 25.0
MarineYOLO [69] 80.5% 44.6% 20.6 10.9 13.9
MSFE-YOLOv8n 84.8% 61.3% 3.1 12.3 5.8
(Ours)

¢ Interms of accuracy metrics: In contrast to reports on the DUO dataset, all methods
show a decline in test accuracy on the RUOD dataset. One possible reason is that
the RUOD dataset contains 10 identities, making it more challenging than the DUO
dataset, which has only 4 identities. To check the effect of MSFE, we observe that it
gains similar improvements for the YOLOv8n. Moreover, it achieves an accuracy gain
of about 1.5-2.0% over the best YOLOv9t in terms of mAP(50) and mAP(50:95). This
further highlights its positive effect in handling underwater blurry images.

* In terms of other metrics: Taking small YOLO models as the baseline, the MSFE
method exhibits similar disadvantages to the situation on the DUO dataset in terms of
parameter count, computational cost, and detection time. The main reason is that the
MSEFE injects an additional LA module and a new feature branch into the initial BNK
module and FPN, respectively. This drawback further gives rise to the disadvantages
in terms of FLOPs and detection time. Fortunately, the MSFE method still maintains a
certain efficiency advantage over other underwater detection methods. This is due to
the fact that earlier methods inherently employed larger models.

5. Conclusions

In this paper, we present a Multi-Scale Feature Enhancement (MSFE) method for
underwater object detection. It attempts to address the challenges of dense small instances
and image blurring from the perspective of multi-scale feature fusion. For the Backbone
network’s internal structure, a multi-scale local awareness operation was applied to enhance
the information integration capability of the basic C2F module. To facilitate the information
integration of FPN between deep and shallow features, an additional shallow branch was
introduced to provide large-scale features for subsequent predictions. In summary, the
two structural designs, namely LABNK and NB, focused on internal fine-grained operations
within the convolutional layers and external inter-layer collaboration, respectively.

Extensive experiments on two public datasets have demonstrated the effectiveness of
the presented MSFE method. The attention heatmap visualizations provided supportive
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evidence for its rationale. Furthermore, an ablation study was provided for individual
validation and collaborative validation of both operation items.

Although the MSFE method has made some progress in underwater object detection, it
does not involve other challenges such as class imbalance, noisy labels, and color distortion.
Moreover, the parameter increments introduced by two structural designs have led to a
decrease in detection efficiency. Overall, the main trend in underwater object detection
methods should be to improve detection accuracy while ensuring low computational cost.
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