
Academic Editor: Jorge Vazquez

Received: 29 November 2024

Revised: 21 January 2025

Accepted: 22 January 2025

Published: 22 January 2025

Citation: Janowski, Ł. Advancing

Seabed Bedform Mapping in the
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Abstract: The ocean, covering 71% of Earth’s surface, remains largely unexplored due
to the challenges of the marine environment. This study focuses on the Kuźnica Deep
in the Baltic Sea, aiming to develop an automatic seabed mapping methodology using
multibeam echosounders (MBESs) and machine learning. The research integrates various
scientific fields to enhance understanding of the Kuźnica Deep’s underwater landscape,
addressing sediment composition, backscatter intensity, and geomorphometric features.
Advances in remote sensing, particularly, object-based image analysis (OBIA) and machine
learning, have significantly improved geospatial data analysis for underwater landscapes.
The study highlights the importance of using a reduced set of relevant features for training
models, as identified by the Boruta algorithm, to improve accuracy and robustness. Key
geomorphometric features were crucial for seafloor composition mapping, while textural
features were less significant. The study found that models with fewer, carefully selected
features performed better, reducing overfitting and computational complexity. The findings
support hydrographic, ecological, and geological research by providing reliable seabed
composition maps and enhancing decision-making and hypothesis generation.

Keywords: underwater remote sensing; seabed mapping; multibeam echosounder;
object-based image analysis; machine learning; underwater landscape; geomorphological
bedforms; Puck Lagoon; Kuźnica Deep

1. Introduction
Despite covering 71% of the Earth’s surface, the ocean remains largely unexplored,

with more detailed maps available for Mars than for our own seabed [1]. This vast un-
known, often called “terra incognita” [2], is primarily due to the challenges posed by the
marine environment, which limits traditional optical remote sensing methods. To bridge
this knowledge gap, international research efforts aim to significantly enhance our under-
standing of the ocean floor by 2030 using advanced underwater acoustics, particularly
multibeam echosounders (MBESs), and autonomous underwater vehicles (AUVs) [3,4].
However, as of now, only 26% of the seabed has been mapped in high resolution [5].

MBES technology has revolutionized bathymetric data acquisition in medium and
deep waters. This study focused on the Kuźnica Deep, a poorly recognized area within
the Polish Exclusive Zone of the Baltic Sea. The main objective was to leverage MBES
technology to develop an automatic seabed mapping methodology utilizing machine
learning procedures, addressing the current lack of detailed seabed composition maps in
this region.
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In addition to bathymetric data, current MBES devices allow the measurement of
backscatter intensity from the seabed, which can provide insights into characteristics such as
sediment type and vegetation. This capability is crucial for modern benthic habitat mapping,
a multidisciplinary approach that integrates oceanography, underwater acoustics, ecology,
sedimentology, geomorphology, statistics, geoinformation, and numerical modeling. By
analyzing and interpreting hydroacoustic and ground truth datasets, this study aimed to
enhance the understanding of the Kuźnica Deep’s underwater landscape, supporting the
classification of the seabed and underwater landscape.

Shallow water environments in coastal zones are among the most productive and
valuable ecosystems on Earth. Despite its name, the Kuźnica Deep is a shallow coastal
embayment, with a maximum depth of only 9 m. This area serves as a prime example
of such an environment, characterized by favorable conditions for the growth of Zostera
marina [6]. Over the past 50 years, its development has fluctuated, but it is currently
showing an upward trend. This area has been subjected to intense anthropogenic pressure,
like dredging for beach nourishment, resulting in significant ecological changes [7]. Despite
these pressures, the Kuźnica Deep maintains high biodiversity within the region. The
hydrodynamic conditions of the Kuźnica Deep are influenced by marine water bodies
from the Gdansk Bay, with limited water exchange due to natural barriers [8]. The seabed
sediments in this area are primarily composed of fine and medium marine sands and
sandy silts, with sediment distribution closely related to the lagoon’s morphometry [9].
The deepest parts of the Kuźnica Deep are a result of anthropogenic remnants related to
dredging activities [10].

Previous hydroacoustic surveys conducted in limited areas of the Puck Lagoon primar-
ily used single-beam echosounders (SBESs) and side-scan sonar [11]. Subsequent studies
from 2009 to 2015 focused on benthic habitats and the spatial occurrence of Zostera ma-
rina [12]. One recent work presents a clustering of benthic habitats aligning with the EUNIS
2019 classification system based on GIS analysis [13]. However, none of the previous works
employed advanced remote sensing methods like MBESs.

This research was based on the high-resolution remote sensing dataset of the Puck
Lagoon, acquired within the “Pioneering Exploration of the Puck Lagoon Based on High-
Resolution Airborne and Acoustic Remote Sensing” project, financed by the Polish National
Science Centre [14]. It also utilized findings from previous geomorphological analyses [15].
By providing detailed insights into the seabed’s morphology and sediment composition,
the research sought to enhance the understanding of this underwater landscape, supporting
hydrographic, ecological, geological, and archaeological studies.

Recent advancements in remote sensing have significantly transformed the method-
ologies used for geospatial data analysis. The transition from pixel-based image analysis
to object-based image analysis (OBIA) has been particularly noteworthy, with OBIA now
being a widely adopted approach in the field [16]. Over the last twenty years, there has
been a notable shift from manual methods of mapping benthic habitats to using empirical
models. Supervised empirical models have become the norm, with the Maximum Likeli-
hood classifier being the most frequently used since 2010 [17]. Earlier methods, such as
interpolation techniques like Kriging and Inverse Distance Weighting [18], and unsuper-
vised clustering [19], were popular in the early 2000s but have been gradually replaced by
more advanced machine learning techniques.

Recently, machine learning approaches like Random Forest (RF) and Support Vector
Machines (SVMs) have gained popularity due to their accuracy and ease of use. The
availability of free and open-source tools like R and Python has further facilitated this shift.
Additionally, newer methods such as Classification and Regression Trees (CARTs), and
k-Nearest Neighbors (KNN) have advanced seabed classification [20,21]. Moreover, the



Remote Sens. 2025, 17, 373 3 of 22

integration of machine learning and artificial intelligence (AI) has further enhanced these
techniques [22,23].

Deep learning, particularly convolutional neural networks (CNNs), has seen re-
newed interest in seabed mapping [24]. CNNs can automatically analyze seabed tex-
tures and terrains by learning from data, eliminating the need for manually engineered
features. This method has proven effective in various applications, including terrestrial
land cover and vegetation mapping, and is increasingly being used for seabed mapping.
The use of deep CNNs for automated classification of benthic imagery has significantly
improved the efficiency of analyzing large datasets, providing more detailed and accu-
rate maps of underwater environments [25]. As these technologies continue to develop,
we can expect significant advancements in seabed mapping, offering better insights into
underwater landscapes.

Conversely, current seafloor mapping studies based on image processing of MBES
measurements focus on increasing our understanding of multispectral analysis [26], multi-
scale analysis [27,28], textural analysis [29], geomorphometric investigations [30,31], and
the potential use of secondary derivatives for seafloor composition mapping [32]. In light
of the above, this research article addresses the following questions:

1. What are the key characteristics of backscatter intensity measurements from MBESs
in the Kuźnica Deep, and how do they contribute to seabed characterization?

2. Which geomorphometric features of MBES bathymetry are the most important for
seafloor bedform mapping of the Kuźnica Deep?

3. How do recent advancements in remote sensing, such as OBIA and machine learning,
improve geospatial data analysis for underwater landscapes like the Kuźnica Deep?

2. Materials and Methods
The Kuźnica Deep is situated in the northeastern part of the Puck Lagoon, a semi-

enclosed geographical feature in the western Gulf of Gdańsk, separated from the open
Baltic Sea by the Hel Peninsula to the northeast (Figure 1B).

To the southeast, the deep is bordered by the Seagull Sandbar, which partially emerges
during the year. To the west, it is separated by very shallow sandy shoals with mega ripple
marks, reaching depths of approximately −1 m. The Kuźnica Deep is accessible for marine
surveys from the southern part, where depths reach around −2.3 m. It spans approximately
7 km2, with depths of up to −8.62 m, making it one of the deepest areas of the Puck Lagoon.

Anthropogenic activities, such as dredging, have left visible remnants in the
bathymetry, particularly in the northeastern part of the deep, where slopes incline up
to approximately 26◦ (Figure 1C, profile a–a′). These areas, marked as ‘ant’ bedforms, con-
tain numerous anthropogenic features, such as pipes and other artificial structures. While
most of the area features a flat, uniform seabed (marked as ‘esb’; Figure 1C, profile b–b′),
it transitions to a slightly undulating seabed (‘ssb’) near the anthropogenic scours, with
small gentle sandy waves to clear sandy waves (‘usb’). Before reaching the anthropogenic
scours, the seabed locally transforms into a steep slope (‘ssl’) with inclinations of up to
25◦. In the southwestern part of the deep, near the survey entrance, there is a large area
with accumulations of organic matter (mostly dead material, ‘org’), covering 0.07 km2

(7 ha, Figure 1C, profile c–c′). The origin of these accumulations was captured in a video
recording of the surrounding area, with a sample located in the southern part of the area. A
comprehensive investigation of all described bedforms, including the methodologies used
for their determination, was provided by Janowski and Wróblewski [15] and is summarized
in Table 1.
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Figure 1. Overview of the study site: (A) location of the study area within Europe; (B) location of 
the study area within northern Poland; (C) bathymetry of the Kuźnica Deep, showing three cross-
profiles and the spatial arrangement of bedforms: ant—anthropogenic formations; org—accumula-
tions of organics; usb—undulating seabed; ssb—slightly undulating seabed; esb—flat, even seabed; 
ssl—steep slopes; (D) backscatter of the Kuźnica Deep, indicating the locations of sediments and 
sites of grab samples and video recordings. 

  

Figure 1. Overview of the study site: (A) location of the study area within Europe; (B) location of the
study area within northern Poland; (C) bathymetry of the Kuźnica Deep, showing three cross-profiles
and the spatial arrangement of bedforms: ant—anthropogenic formations; org—accumulations of
organics; usb—undulating seabed; ssb—slightly undulating seabed; esb—flat, even seabed; ssl—steep
slopes; (D) backscatter of the Kuźnica Deep, indicating the locations of sediments and sites of grab
samples and video recordings.
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Table 1. List of classes distinguished in this study with their descriptions and division into differ-
ent categories.

No Class Category Description

1 ant Anthropogenic and
Organic

This class includes features formed by human activities, such as
dredging operations. These formations often occur in the deeper

parts of the basin and have the largest spread of BBS values among
all classes, with a standard deviation of 4. They are characterized
by relatively steep slopes, typically ranging from 3◦ to 10◦. They
are important for understanding human impact on the seafloor.

2 esb Seabed

This class represents areas with a flat, even seabed, characterized
by negligible elevation variation. These areas typically occur in

deeper parts of the region, below 6 m, and have BBS values ranging
from −29.5 to −33 dB. These regions are typically stable and

feature minimal topographic relief.

3 org Anthropogenic and
Organic

Areas where organic materials accumulate, often indicating regions
of low energy where fine sediments and organic matter settle. They
are represented by a mean BBS value of −30.5 dB, with a standard

deviation of 1.9.

4 ssb Seabed

Defined by minor variations in elevation, this class represents areas
with gentle slopes and minimal relief. The standard deviation of
the slope is 0.74, the smallest among all classes. BBS values often

range from −28.5 to −26.5 dB. It differs from an undulating seabed,
which has more pronounced elevation changes, and a flat seabed,

which has negligible elevation variation.

5 ssl Seabed
This class includes areas with steep slopes, ranging from a

minimum angle of 10◦ to a maximum of 25◦. These regions are
often transitional zones between different seabed types.

6 usb Seabed

This class represents areas with undulating seabed, characterized
by small gentle sandy waves to clear sandy waves. These regions
have more pronounced elevation changes compared to the slightly
undulating seabed. The mean slope for this class is 1.4◦, while the

standard deviation of the slope is 0.92.

Detailed knowledge of the Kuźnica Deep seafloor was obtained through high-
resolution underwater remote sensing using an MBES. These measurements were con-
ducted aboard the small IMOROS 3 survey motorboat, which was equipped with a Teledyne
Reson T20-P MBES device (Teledyne Technologies, Thousand Oaks, CA, USA). The sur-
vey spanned three months, from March 22 to June 22, 2022, encompassing 21 days of
data collection.

The measurement system included GPS receivers (Trimble SPS851 and Trimble BX982
(Trimble Inc., Sunnyvale, CA, USA)), an iXBlue Hydrins Inertial Navigation System (STR,
Great Yarmouth, UK), a Reson SVP70 Sound Velocity Probe (Teledyne Technologies, Thou-
sand Oaks, CA, USA), and a Reson SVP15 Sound Velocity Profiler (Stema Systems, Houten,
The Netherlands). All measurements were performed with Real-Time Kinematic (RTK)
corrections available throughout the survey area. Data collection was managed using
QINSy 8.18 software, with the MBES configured to 999 beams, a frequency of 420 kHz,
a pulse length of 30 µs, absorption of 70 dB/km, spreading of 35 dB, a swath angle of
130–140◦, power of 220 dB, and a gain of 0 dB.

To ensure high-quality data, the MBES sensors were calibrated for time, pitch, roll,
and yaw offsets and were regularly checked. The sound velocity was measured with
the SVP15 at least every six hours, whenever environmental conditions changed, and
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before and after each measurement session. The survey ensured overlap between ship
track lines and a consistent speed of 2–2.5 m/s. The MBES data were recorded in the
PL-EVRF2007-NH vertical system and the PUWG1992 projected coordinate system, based
on the ETRS89 ellipsoid.

The raw bathymetry data from the MBES were processed using Beamworx Autoclean
1.3 software (BeamworX B.V., Utrecht, The Netherlands). This process involved applying a
Surface Spline filter to automatically eliminate outlier soundings. Additionally, the Shift
Pings to Neighbors filter was used, which adjusts survey lines to align with neighboring
lines using a best-fit algorithm, provided there is some overlap. Any remaining erroneous
soundings were manually removed. As a result, bathymetry DEM (Digital Elevation Model)
was developed in raster grid format.

For processing MBES backscatter data, Fledermaus Geocoder Toolbox (FMGT) (Qual-
ity Positioning Services BV (QPS), Zeist, The Netherlands) software was utilized. The
cleaned MBES soundings and the bathymetric surface were imported into an FMGT project.
An Angle Varying Gain (AVG) filter was applied to correct backscatter measurements
for angular variations, using a 300-pings sliding window and the “flat” algorithm. All
radiometric and geometric corrections were automatically applied with default settings.
Finally, all bathymetry and backscatter datasets were exported to surface grids in GeoTiff
format with a 0.2 m resolution.

The Bathymetry GeoTIFF was used as the primary feature for calculating secondary
geomorphometric features (or terrain attributes), as listed and referenced in Table 2. All
these features were generated using SAGA GIS software v.9.7.2 (open-source, manufactured
by international developer community), specifically utilizing the “Morphometry” and
“Lighting, Visibility” tool libraries. Additionally, MBES backscatter intensity GeoTIFF was
employed for the determination of gray-level co-occurrence matrices (GLCMs) as well
as gray-level difference vectors (GLDVs), also listed in Table 2. All texture features (or
textural attributes) were calculated in all directions using Trimble eCognition software
(https://geospatial.trimble.com/en/products/software/trimble-ecognition, Trimble Inc.,
Sunnyvale, CA, USA).

Table 2. List of secondary geomorphometric and textural features extracted in this study.

No Feature Reference

1 Slope Zevenbergen and Thorne [33]
2 Aspect Zevenbergen and Thorne [33]
3 Curvature Zevenbergen and Thorne [33]
4 Profile Curvature Zevenbergen and Thorne [33]
5 Planar Curvature Zevenbergen and Thorne [33]
6 Curvature Classification MacMillan and Shary [34]
7 Fuzzy Landform Element Classification Schmidt and Hewitt [35]
8 Morphometric Features Wood [36]
9 Multiresolution Index of the Ridge Top Flatness Gallant and Dowling [37]
10 Multiresolution Index of Valley Bottom Flatness Gallant and Dowling [37]
11 Topographic Position Index (TPI) Weiss [38]
12 Vector Ruggedness Measure (VRM) Sappington, et al. [39]
13 Geomorphons Jasiewicz and Stepinski [40]
14 GLCM Entropy Haralick, et al. [41]
15 GLCM Homogeneity Haralick, et al. [41]
16 GLCM Angular 2nd Moment Haralick, et al. [41]
17 GLCM Contrast Haralick, et al. [41]
18 GLCM Correlation Haralick, et al. [41]
19 GLCM Dissimilarity Haralick, et al. [41]
20 GLCM Mean Haralick, et al. [41]

https://geospatial.trimble.com/en/products/software/trimble-ecognition
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Table 2. Cont.

No Feature Reference

21 GLCM Standard Deviation Haralick, et al. [41]
22 GLDV Angular 2nd Moment Haralick, et al. [41]
23 GLDV Contrast Haralick, et al. [41]
24 GLDV Entropy Haralick, et al. [41]
25 GLDV Mean Haralick, et al. [41]

The primary features of MBES measurements (bathymetry and backscatter) served
as the main layers for multiresolution segmentation, which is the key algorithm within
the OBIA framework [42]. This algorithm merges image pixels with similar spectral
properties, guided by parameters such as scale, shape, and compactness [43]. The process
starts with individual pixels and gradually groups these into larger segments until a
certain level of heterogeneity is reached. This ensures that the resulting image objects are
meaningful and visually coherent, much like how humans perceive images. By adjusting
the parameters to fit specific datasets, the algorithm’s effectiveness is enhanced, ensuring
optimal segmentation results. This approach helps to reduce the impact of environmental
and physical factors on high-resolution images, which can affect pixel-level measurements.
By creating image objects, OBIA provides detailed information, including texture and
shape characteristics, making it particularly effective for high-resolution remote sensing
images with diverse pixel information.

The first step of OBIA is segmentation, which was performed using a multiresolution
segmentation algorithm with the following parameters: shape—0.1, compactness—0.5,
scale—10, and image layer weights: BBS—2, DEM—1. These settings generated 211,723 im-
age objects that were small enough to capture the spatial arrangement of ground truth
control points. Additionally, since the DEM has much less spatial variability than BBS, in-
creasing the layer weight of BBS to 2 allowed for the capture of specific variations in seabed
properties. Finally, the image segments were subjected to machine learning supervised
classification and then the output areas were merged.

In addition to underwater acoustic and geomorphometric datasets, the area was
sampled using a small Van Veen grab and investigated with a GoPro camera mounted
on a custom-designed sampler. Samples were strategically collected from seven carefully
selected locations (Figure 1D). Sediment samples underwent sieve analysis, and for samples
with more than 5% of material finer than 0.063 mm, a combined sieve and hydrometer test
was performed. All these procedures were carried out in the accredited laboratories of the
Offshore Geotechnics Department at the Maritime Institute of Gdynia Maritime University.
These samples were used as a precondition for in situ validation and interpretation of
the results.

The results of the manual bedform classification developed in a previous study [15]
served as the basis for generating bathymetric control points tailored to the spatial extent
of the Kuźnica Deep. The bedform classes were determined based on a combination of
geomorphometric analysis and expert knowledge from previous studies. Each class was
defined to capture distinct morphological and sedimentological characteristics observed in
the study area. The rationale behind delineating these classes was to provide a compre-
hensive understanding of the seafloor’s physical structure. To prevent an over-density of
points in small areas and ensure an even distribution across the study area, the number of
control points was adjusted based on the percentage area of each class within the study
area (Table 3). The control points were generated using the “Create Random Points” tool in
ArcGIS software v.10.8.2 (Environmental Systems Research Institute (ESRI), Redlands, CA,
USA). A total of 49,999 control points were extracted in the research area, serving as input



Remote Sens. 2025, 17, 373 8 of 22

for the Boruta feature selection algorithm, as well as for training and validating machine
learning algorithms. The ratio between training and validation samples was set to 70/30,
and they were separated randomly using the “Subset Features” tool in ArcGIS.

Table 3. List of all control points by class with their corresponding area and their quantity.

No Class Area [%] Training Validation

1 ant 4.3690 1530 655
2 esb 78.1848 27,364 11,728
3 org 1.0509 368 157
4 ssb 15.6740 5486 2351
5 ssl 0.0188 6 3
6 usb 0.7025 246 105

To ensure that the machine learning algorithms achieved high performance, the Boruta
feature selection algorithm was applied for all secondary features, using active variables
based on control points [44]. In this modeling context, “features” refers to variables as
defined by the Boruta algorithm, and not to the shapes of actual seafloor terrain features.
Before applying the Boruta feature selection algorithm, cross-correlation was performed
for all geomorphometric and textural features developed in the study. This step was
crucial to identify and mitigate any multicollinearity among the features, ensuring that the
subsequent feature selection process was both effective and reliable. The cutoff threshold for
highly correlated features was set at 0.75 [45,46]. Only features with lower cross-correlation
were subjected to the Boruta feature selection algorithm. This algorithm is designed to select
all features that are important for a given classification task [44]. It works by iteratively
comparing the importance of original features with that of random, shadow features. This
method ensures that only the truly relevant features are retained, thereby improving the
model’s accuracy and robustness. The Boruta algorithm has been widely used due to
its strengths in handling high-dimensional data and its robustness against overfitting.
However, it can be computationally intensive and may require significant processing
time [47]. The Boruta algorithm was selected due to its effectiveness in ensuring high
performance of machine learning algorithms by retaining only the most relevant features.

After receiving the feature selection results, Trimble eCognition software was utilized
to test the following machine learning algorithms: Classification and Regression Trees
(CARTs; [48]), Support Vector Machine (SVM; [49,50]), Random Forest (RF; [51]), Bayes [52]
and k-Nearest Neighbor (KNN; [53]). These algorithms were applied to the image segmen-
tation results to enable the automatic classification of underwater acoustic remote-sensing
data. Their performance was then evaluated in the same software using error matrices and
accuracy assessment metrics [54,55]. The processing parameters of each classifier (like max
tree number, depth, kernel type, etc.) were tuned to achieve the highest possible accuracy.

3. Results
3.1. Feature Extraction and Cross-Correlation

Cross-correlation identified features with correlations exceeding the threshold of
0.75 across the entire feature space, as listed in Table 4. As can be seen, the procedure
helped remove 2 out of 13 geomorphometric features and 9 out of 12 textural features.
Conversely, Figure 2 presents the cross-correlation diagram for the remaining subset of
non-correlated features.
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Table 4. List of all highly correlated geomorphometric and textural features that were not utilized in
the following modeling in this study.

No Feature Type

1 Profile Curvature Geomorphometric
2 Fuzzy Landform Element Classification Geomorphometric
3 GLCM Homogeneity Textural
4 GLCM Mean Textural
5 GLCM Standard Deviation Textural
6 GLCM Contrast Textural
7 GLCM Dissimilarity Textural
8 GLCM Correlation Textural
9 GLCM Angular 2nd Moment Textural

10 GLDV Entropy Textural
11 GLDV Mean Textural
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Figure 2. Cross-correlation diagram showing non-correlated features and their statistics. Used abbrevia-
tions: GLCM_StdD—GLCM Standard Deviation; Geomorph—Geomorphons; GLDV_Ang—GLDV
Angular 2nd Moment; Plan_Curv—Planar Curvature; Curv_Class—Curvature Classification;
M_Feat—Morphometric Features; GLCM_Entr—GLCM Entropy; BBS—Backscatter mosaic;
MRRTF—Multiresolution Index of the Ridge Top Flatness; MRVBF—Multiresolution Index of Valley
Bottom Flatness; GLCM_Mean—GLCM Mean.

3.2. Feature Selection

The results of the Boruta feature selection algorithm are shown in Figure 3. It can
be seen that all the features are important, as they have higher importance than the best
shadow feature and are considered significant. No features were marked as rejected
or tentative. The features with the highest importance are the primary features (MBES
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backscatter mosaic and MBES bathymetry DEM) and some geomorphometric features,
such as Geomorphons, Aspect, and the Multiresolution Index of Valley Bottom Flatness
(MRVBF).
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M_Feat—Morphometric Features; GLCM_Entr—GLCM Entropy; BBS—Backscatter mosaic;
MRRTF—Multiresolution Index of the Ridge Top Flatness; MRVBF—Multiresolution Index of Valley
Bottom Flatness; GLCM_Mean—GLCM Mean.

From the diagram in Figure 3, it is evident that the features form groups or clusters
based on their importance. The first group may contain only the BBS feature, the second
group includes DEM, Geomorphons, and Aspect, and the third cluster adds the Multires-
olution Index of Valley Bottom Flatness, Slope, Multiresolution Index of the Ridge Top
Flatness, and VRM. These results enabled the performance of machine learning supervised
classification tasks with a better understanding of the feature space. Various models of
input features were tested, including (1) all important features, (2) only BBS, (3) the first
and second clusters, and (4) clusters 1–3 (Table 5).

Table 5. List of all input feature space models tested in this study.

No Used Features No of Features

1 All important features 17
2 Only BBS 1
3 Clusters 1–2 4
4 Clusters 1–3 8

3.3. Supervised Classification Parameters Tuning

The comparison of machine learning classification results for the four models was
initially conducted using the default settings of the classifiers, as listed in Table 6. Note that
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the naïve Bayes classifier, due to its simplicity, does not have any parameters to define and
is, therefore, not included in Table 6.

Table 6. List of all classifiers and their default settings.

Parameter CART SVM RF KNN

Normalize No No
Depth 0 0

Min sample count 0 0
Use surrogates No No
Max categories 16 16

Active variables 1/4/8/17, depending
on the model

Max tree number 50
Forest accuracy 0.01

Termination criteria type Both
Kernel type Linear

C 2
k 1

Accuracy assessment results, including the Overall Accuracy and the Kappa metrics,
are shown in Figure 4. It was found that the CART, KNN, and RF classifiers consistently
achieved the highest mean Overall Accuracy, all at around 0.88, and also exhibited high
mean Kappa values, suggesting strong agreement. In contrast, the Bayes classifier showed
moderate performance with a mean Overall Accuracy of approximately 0.64 and a moderate
Kappa value. The SVM classifier, however, was found to perform poorly, with a mean
Overall Accuracy of around 0.37 and a very low mean Kappa value close to zero, indicating
poor agreement and high variability in performance. The CART, KNN, and RF classifiers
were demonstrated to have robust and reliable performance across the models, making
them the top choices. The Bayes classifier, while not as strong, still showed reasonable
performance. However, the SVM classifier’s performance was notably weak, highlighting
its inconsistency and lack of reliability in this context.
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However, it should be noted that some parameters in default settings may not repre-
sent the full variability of the feature space, and this was the case for some of the features in
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this study. Therefore, we decided to introduce slightly changed settings (Table 7), mainly by
introducing feature space normalization in the SVM and KNN classifiers and by changing
the depth and min sample count parameters for the CART and RF classifiers.

Table 7. List of all classifiers and their slightly modified settings.

Parameter CART SVM RF KNN

Normalize Yes Yes
Depth 3 3

Min sample count 4 4
Use surrogates No No
Max categories 16 16

Active variables 1/4/8/17, depending
on the model

Max tree number 500
Forest accuracy 0.01

Termination criteria type Both
Kernel type Linear

C 2
k 1

The accuracy assessment results for the model runs with the customized settings,
including Overall Accuracy and Kappa metrics, are presented in Figure 5. In Model 1, it
was observed that KNN achieved the highest performance with an overall accuracy of 0.91
and a Kappa of 0.75, while SVM performed the worst with an overall accuracy of 0.53 and
a Kappa of 0.02. In Model 2, RF was identified as the best classifier with an overall accuracy
of 0.84 and a Kappa of 0.53, whereas Bayes was noted to have the lowest performance with
an overall accuracy of 0.35 and a Kappa of 0.10. For Model 3, KNN again emerged as the
top performer with an overall accuracy of 0.91 and a Kappa of 0.74, while Bayes had the
poorest performance with an overall accuracy of 0.64 and a Kappa of 0.36. In Model 4,
KNN was found to be the best classifier with an overall accuracy of 0.94 and a Kappa of
0.84, and SVM was identified as the worst with an overall accuracy of 0.84 and a Kappa
of 0.53.
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Overall, KNN was consistently noted to perform well across all models, often achiev-
ing the highest accuracy and Kappa values. In contrast, Bayes and SVM were observed to
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perform poorly in most models, with Bayes being the worst in Models 2 and 3, and SVM in
Models 1 and 4.

Finally, the last approach involved testing further modified settings of supervised
classifiers. In this attempt, the parameters for depth and minimum sample count were
increased, and the maximum categories parameter for CART and RF was adjusted to match
the known number of classes of ground-truth control points. Additionally, the kernel type
for SVM was changed from linear to rbf (radial basis function), and the k factor in KNN
was increased to 2 (Table 8).

Table 8. List of all classifiers and their further modified settings.

Parameter CART SVM RF KNN

Normalize Yes Yes
Depth 5 5

Min sample count 6 6
Use surrogates No No
Max categories 6 6

Active variables 1/4/8/17, depending
on the model

Max tree number 500
Forest accuracy 0.01

Termination criteria type Both
Kernel type rbf

C 2
gamma 0

k 2

Qualitative results for the main parameters of accuracy assessment are shown in
Figure 6. It was found that the SVM classifier achieved the highest mean Overall Accuracy
at 0.90, followed closely by the CART and RF classifiers, both with a mean Overall Accuracy
of approximately 0.89. KNN also performed well with a mean Overall Accuracy of around
0.86. The Bayes classifier showed moderate performance with a mean Overall Accuracy of
approximately 0.64. In terms of Kappa, the SVM classifier again led with the highest mean
value of 0.71, indicating strong agreement. CART and RF classifiers also showed high mean
Kappa values of around 0.67, while KNN had a mean Kappa value of approximately 0.65.
The Bayes classifier had a moderate mean Kappa value of around 0.38.
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The standard deviation for Overall Accuracy and Kappa was relatively low for the
CART, RF, and SVM classifiers, indicating consistent performance. KNN showed a slightly
higher standard deviation, suggesting some variability in its performance. The Bayes classi-
fier had the highest standard deviation, indicating the most variability in performance. The
SVM classifier demonstrated the best overall performance, both in terms of mean Overall
Accuracy and Kappa, with consistent results. CART and RF classifiers also performed very
well, showing high accuracy and agreement with low variability. KNN performed well but
with slightly more variability. The Bayes classifier showed moderate performance with the
highest variability among the classifiers.

3.4. Analysis of Accuracy Assessment

The results were analyzed quantitatively to determine the best model and classifier
based on Overall Accuracy and Kappa for each approach. In Approach 1 (default settings
of classifiers), the KNN classifier in Model 4 was identified as the best, with an Overall
Accuracy of 0.91 and a Kappa of 0.76. For Approach 2 (slightly modified settings of
classifiers), the KNN classifier in Model 4 was found to be superior, achieving an Overall
Accuracy of 0.94 and a Kappa of 0.84. In Approach 3 (further modified settings of classifiers),
the SVM classifier in Model 4 was deemed the best, with an Overall Accuracy of 0.93 and a
Kappa of 0.80.

In comparison, the best performance of the RF classifier was observed in Approach 3,
Model 4, with an Overall Accuracy of 0.91 and a Kappa of 0.75. The best performance of
the CART classifier was observed in Approach 3, Model 4, with an Overall Accuracy of 0.91
and a Kappa of 0.74. Moreover, the best performance of the Bayes classifier was consistently
observed in Model 4 across all three approaches (there are no parameters to define in the
Bayes classifier), with an Overall Accuracy of 0.79 and a Kappa of 0.54. However, these
results were lower compared to the best classifiers in each approach, particularly the KNN
classifier in Approach 2, Model 4, which had the highest Overall Accuracy and Kappa
among all classifiers and approaches.

Based on the analysis, Model 4 demonstrated the highest performance across all sce-
narios. Consequently, the error matrices and accuracy assessment results from Model 4 for
the classification methods were further examined to provide insights into misclassifications,
overclassifications, and other interpretations of accuracy results.

For Approach 1 using KNN, high misclassifications were observed in the ‘ssb’ and ‘usb’
classes, while the ‘org’ class exhibited low producer accuracy, indicating many samples
were misclassified into other classes. Overclassification was noted in the ‘esb’ class, which
had a high user accuracy but still showed some overclassification into ‘ssb’ and ‘org’
(Figure 7a). In Approach 2 using KNN, misclassifications were significantly reduced,
especially in the ‘org’ class, which showed improved producer accuracy. The ‘usb’ class
also performed better with higher producer accuracy. Overclassification in the ‘esb’ class
was minimal, with a high user accuracy (Figure 7b). For Approach 3 using SVM, severe
misclassification was noted in the ‘org’ class, which had very low producer accuracy. The
‘usb’ class also showed poor performance with low producer accuracy. Overclassification
was present in the ‘esb’ class, which had a high user accuracy but still showed some
overclassification into ‘ssb’ and ‘org’ (Figure 7c). In Approach 3 using RF, the ‘org’ class
had low producer accuracy, indicating many samples were misclassified. The ‘usb’ class
showed no correct classifications, indicating a major issue. Overclassification was seen in
the ‘esb’ class, which had a high user accuracy but still showed some overclassification
into ‘ssb’ and ‘org’ (Figure 7d). For Approach 3 using CART, severe misclassification was
noted in the ‘org’ class, which had very low producer accuracy. The ‘usb’ class showed
minimal correct classifications. Overclassification was present in the ‘esb’ class, which
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had a high user accuracy but still showed some overclassification into ‘ssb’ and ‘org’
(Figure 7e). In the Bayes approaches (1–3), the ‘org’ class had moderate producer accuracy
but low user accuracy, indicating many samples were misclassified. The ‘usb’ class showed
poor performance with low user accuracy. Overclassification was seen in the ‘esb’ class,
which had a high user accuracy but still showed some overclassification into ‘ssb’ and
‘org’(Figure 7f).
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Remote Sens. 2025, 17, 373 16 of 22

In summary, the KNN classifier showed good overall performance, especially in
Approach 2 with high accuracy and Kappa values. SVM performed well overall but
struggled with certain classes like ‘org’ and ‘usb’. RF generally showed good performance
but had issues with specific classes like ‘usb’. CART had a similar performance to RF, with
good overall accuracy but struggled with certain classes. Bayes methods had lower overall
accuracy and Kappa, indicating more misclassifications and overclassifications compared
to other methods.

3.5. Seabed Bedform Maps

These analyses allowed the preparation of seabed bedform maps of the Kuźnica Deep
(Figure 8). Because the result based on the Bayesian classifier was much lower performance,
it was not presented in this figure.
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4. Discussion
4.1. Implications of the Results

The feature selection results from this study have several important implications for
geomorphometric and textural analysis, as well as for the broader field of machine learning
in geospatial research.

By applying the Boruta feature selection algorithm, the study ensured that only the
most relevant features were retained. This process helps in reducing the dimensionality of
the dataset, which can significantly enhance the performance of machine learning models.
Models trained on a reduced set of relevant features are generally more accurate and robust,
as they are less likely to overfit and can generalize better to new data. The clustering of
features based on their importance, as identified by the Boruta algorithm, provides valuable
insights into the relationships between different geomorphometric and textural features.
This improved interpretability can help to understand the underlying processes and pat-
terns in the data, leading to more informed decision-making and hypothesis generation.

The Boruta feature selection algorithm identified several key geomorphometric fea-
tures from MBES bathymetry that are critical for seafloor bedform mapping. Features like
Geomorphons, Aspect, and the Multiresolution Index of Valley Bottom Flatness were found
to be highly important. These features help in distinguishing different seafloor types and
understanding the spatial distribution of sediments, thereby aiding in accurate seafloor
composition mapping [45,56].

Conversely, the importance of textural features was much less significant compared to
the geomorphometric alternatives. Given the highest value of MBES backscatter, which
significantly outperformed all other secondary features, it is quite surprising that none of
the textural features (generated from BBS) ranked higher [57,58]. Therefore, in the case of
Kuźnica Deep, textural features did not have as high discriminatory power as backscatter.

It should be kept in mind that GLCMs/GLDVs are calculated for specific directions.
While this study calculated all textural features in all directions, it is also possible to
generate GLCMs in specific directions (0◦, 45◦, 90◦, 135◦), which may impact the feature
space. However, considering that the calculation of any Haralick texture feature is very
processor-intensive due to the GLCM calculation, performance may suffer. In this study,
we calculated only GLCMs/GLDVs in all directions. Future studies may consider other
variants of GLCMs/GLDVs [41]. It is important to note that backscatter measurements
can be significantly influenced by the orientation of the multibeam survey lines relative to
the seafloor, the data collection settings, and the sonar frequency [59]. Consequently, the
ability of a backscatter dataset to accurately characterize substrates may be impacted by
the specific methods used during data collection.

Overall, the feature selection results underscore the importance of careful and system-
atic feature selection in geospatial analysis. By enhancing model performance, improving
computational efficiency, and providing better interpretability, these results contribute to
the advancement of machine learning applications in geomorphometry and beyond. The
analysis indicated that including all features (Model 1) does not necessarily lead to the best
performance. In fact, Model 4, which included only the eight most important features, often
showed better performance than Model 1. This suggests that further selection (after feature
selection) can play a crucial role in improving classifier performance. By focusing on the
most important features, it is possible to achieve high accuracy and Kappa values while
potentially reducing computational complexity and overfitting [60]. Therefore, it is not al-
ways necessary to consider all important features for classification, and a well-thought-out
feature selection process can lead to more efficient and effective models [32,61,62].

From analyses of supervised classification qualitative results, it can be concluded
that RF and KNN are reliable choices for classification tasks, as they consistently deliver
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high accuracy and Kappa values across different settings [63]. CART also proves to be a
strong performer, though slightly less robust than RF and KNN. Bayes, while not the top
performer, provides moderate results that could be useful in certain contexts. Conversely,
SVM demonstrates the need for careful parameter tuning to achieve optimal results, as
its performance varied significantly across the different approaches [64]. This analysis
highlights the importance of tuning classifier settings to achieve the best performance
and suggests that some classifiers are more sensitive to these changes (SVM) than others
(KNN/CART/RF).

The study demonstrates how recent advancements in remote sensing technologies,
such as OBIA and machine learning algorithms like KNN and RF, improve geospatial data
analysis. These technologies enable the extraction of detailed and relevant features from
large datasets, enhancing the precision and reliability of underwater landscape analysis.
The integration of these advanced methods allows for more sophisticated and accurate
mapping of the Kuźnica Deep. The implications of this study highlight the significance of
feature selection and advanced machine learning techniques in improving the accuracy and
efficiency of geospatial data analysis, particularly for nearshore underwater landscapes
like the Kuźnica Deep [65–67].

4.2. Comparison with Hierarchical Classification Approach

Benthic habitat mapping often employs hierarchical classification approaches to sys-
tematically categorize seabed features from the largest to the smallest scales [28]. This
method involves multiple levels of classification, starting with broad categories such as
major geomorphological features (e.g., continental shelves, slopes, and basins) and progres-
sively refining down to more specific features like sediment types, biological communities,
and microhabitats. Each level of the hierarchy provides a more detailed understanding
of the seabed, allowing for precise mapping and analysis [68]. The integrated classifica-
tion approach adopted in this study, which combines both geomorphological and other
categories, offers a comprehensive understanding of seabed features. By classifying all
features together in one round, this approach avoids the potential pitfalls of hierarchical
classification, such as the misclassification of features due to scale-dependent criteria. This
comprehensive method ensures that the classification is robust, reproducible, and reflective
of the actual seabed conditions, making it a valuable tool for benthic habitat mapping.

4.3. Limitations of the Research

The determination of the ‘org’ class, representing accumulations of organic matter,
presents several limitations and challenges. Firstly, organic accumulations exhibit a high
degree of complexity and variability in their acoustic signatures due to differences in
composition, density, and distribution. This variability makes it difficult for automated
classifiers to consistently distinguish these features from other seabed types. Additionally,
the limited ground-truth data available for training the classifiers may have contributed to
lower accuracy in identifying the ‘org’ class. Although a larger dataset of control points
was used, the inherent variability in organic accumulations requires more extensive ground
truth data to improve classification accuracy. Furthermore, the sensitivity of machine
learning classifiers to parameter settings can impact their performance, as evidenced by the
varying results across different classifiers and parameter adjustments. Lastly, the features
used for classification, such as backscatter intensity and geomorphometric attributes, may
not fully capture the unique characteristics of organic accumulations. Future research
should explore additional features or alternative data sources to enhance the classification
of this complex seabed feature. These challenges highlight the need for ongoing refinement
of classification methods to achieve more accurate and reliable results.
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4.4. Reference to Main Research Questions

This research provided answers to the questions raised in the Introduction. The
Kuźnica Deep features a flat, uniform seabed in most areas, transitioning to a slightly
undulating seabed near anthropogenic scours. The northeastern part has slopes inclining
up to 30◦, with numerous anthropogenic features like pipes and artificial structures. The
southwestern part contains a large area with accumulations of organic matter, covering
0.07 km2 (7 ha).

The MBES backscatter mosaic was one of the primary features with high importance
for seabed characterization. It captured specific variations in seabed properties, which were
crucial for the segmentation and classification processes in OBIA and machine learning
tasks. The MBES backscatter was identified as having the highest value among the features,
significantly outperforming other secondary features. This indicated that backscatter
intensity measurements were crucial for distinguishing different seafloor types, thereby
aiding in accurate seafloor composition mapping [69,70].

The most important geomorphometric features included Geomorphons, Aspect,
MRVBF, Slope, MRRTF, and VRM. These features, along with MBES backscatter mosaic
and MBES bathymetry DEM, formed clusters based on their importance and contributed
significantly to the classification tasks.

Recent advancements in remote sensing technologies, such as OBIA and machine
learning algorithms, improve geospatial data analysis by enabling the extraction of detailed
and relevant features from large datasets. These technologies enhance the precision and
reliability of underwater landscape analysis, allowing for more sophisticated and accurate
mapping. OBIA and machine learning improved geospatial data analysis by enabling
detailed segmentation and classification of seabed features. The use of multiresolution
segmentation algorithms and supervised classification tasks allowed a better understanding
and mapping of the underwater landscape. Machine learning models, such as KNN, RF,
and SVM, have shown robust performance in classifying seabed features. The use of
different approaches and modified settings improved the accuracy and reliability of the
classification results.

The improved classification methods and feature selection processes can be applied
to similar environments, enhancing the accuracy and reliability of seabed mapping and
analysis. The findings underscore the importance of careful and systematic feature selec-
tion in geospatial analysis, which enhances model performance, improves computational
efficiency, and provides better interpretability. This contributes to the advancement of
machine learning applications in geomorphometry.

5. Conclusions
This study provides a comprehensive analysis of modeling methods applied to the

characterization of the underwater landscape of the Kuźnica Deep, utilizing advanced re-
mote sensing technologies. The key characteristics of bathymetry and backscatter intensity
measurements from MBES were identified, significantly enhancing seabed mapping accu-
racy. Crucial geomorphometric features derived from MBES bathymetry were highlighted,
offering valuable insights for classifying seafloor bedforms.

The integration of OBIA and machine learning techniques has markedly improved
the sophistication of seabed geospatial data analysis, enabling more precise and detailed
underwater landscape assessments. These advancements support a wide range of hy-
drographic, ecological, and geological research, offering a robust framework for future
studies in the Kuźnica Deep and similar environments. The findings underscore the impor-
tance of leveraging cutting-edge technologies to advance our understanding of complex
underwater ecosystems.
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