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Abstract: Monitoring marine life through underwater object detection technology serves
as a primary means of understanding biodiversity and ecosystem health. However, the
complex marine environment, poor resolution, color distortion in underwater optical
imaging, and limited computational resources all affect the accuracy and efficiency of
underwater object detection. To solve these problems, the YOLOv9s-SD underwater target
detection algorithm is proposed to improve the detection performance in underwater
environments. We combine the inverted residual structure of MobileNetV2 with Simple
Attention Module (SimAM) and Squeeze-and-Excitation Attention (SE) to form the Simple
Enhancement attention Module (SME) and optimize AConv, improving the sensitivity of
the model to object details. Furthermore, we introduce the lightweight DySample operator
to optimize feature recovery, enabling better adaptation to the complex characteristics of
underwater targets. Finally, we employ Wise-IoU version 3 (WIoU v3) as the loss function
to balance the loss weights for targets of different sizes. In comparison with the YOLOv9s
model, according to the experiments conducted on the UPRC and Brackish underwater
datasets, YOLOv9s-SD achieves an improvement of 1.3% and 1.2% in the mean Average
Precision (mAP), reaching 83.0% and 94.3% on the respective datasets and demonstrating
better adaptability to intricate underwater environments.

Keywords: YOLOv9s; underwater target detection; attention mechanism; upsampling
operator; loss function

1. Introduction
The development of marine resources is crucial for human economic growth. At

the same time, it is essential to effectively protect marine ecosystems during resource
development [1]. Monitoring marine organisms enables the observation of changes within
marine ecosystems. Underwater target monitoring involves the continuous observation of
underwater organisms to gather information about their activity, distribution, and growth
characteristics, providing scientific evidence for marine ecosystem protection. However,
insufficient underwater lighting and various noise interference significantly degrade image
quality, leading to challenges such as low contrast, blurring, and color distortion, which
ultimately hinders the accuracy of underwater target monitoring.

In recent years, the rapid advancement of computer vision technology has led to the
widespread adoption of deep learning-based methods for detecting underwater biological
targets, which have become the dominant approach in this field [2]. Detection methods can
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be broadly categorized into two types: two-stage algorithms, represented by SPP-net, Fast
R-CNN, and Faster R-CNN [3–5], along with single-stage algorithms, including SSD [6]
and the YOLO series [7]. Two-stage algorithms generate candidate regions before detecting
targets, offering high accuracy but requiring significant computational resources, which
limits their use in resource-constrained settings. In contrast, single-stage algorithms directly
predict target classes and bounding boxes, balancing accuracy and speed. However, they
may lose features of small targets due to their multi-layer structure. Therefore, the choice
of detection algorithm depends on the specific application requirements.

In a single-stage algorithm, the SSD algorithm locates and classifies on the feature map
of different scales, while YOLO algorithm predicts the target directly according to the image;
it minimizes computational cost and ensures high detection accuracy. Given hardware
limitations and real-time detection requirements in underwater environments, YOLO
algorithms are widely used [8]. Zhang et al. [9], building on the YOLOv4 network, proposed
an Attention Feature Fusion Module (AFFM) that integrates semantic features across
various scales, enhancing the recognition of small targets. Li et al. [10] proposed YOLO-TN
based on the YOLOv5, applying distillation and pruning to the network structure. They
used a specialized network search algorithm to optimize the YOLOv5 backbone, achieving
a lightweight model with the 12-fold increase in detection speed. Hou et al. [11] improved
the YOLOv5s algorithm by incorporating the HorBlock module within the backbone
network to enhance feature extraction capabilities and employing a genetic algorithm for
hyperparameter tuning, resulting in improved training accuracy. Chen et al. [12] developed
Underwater-YCC based on YOLOv7, embedding the CBAM attention mechanism within
a backbone network to improve detection capability and leveraging Conv2Former and
Wise-IOU to effectively extract object features, balancing the weighting of both high- and
low-quality images. Zhang et al. [13] designed CUIB-YOLO using the YOLOv8n algorithm
as its foundation, where the UIB module substitutes the BottleNeck component within the
C2f structure to reduce model parameters and incorporates the EMA attention mechanism
to enhance the feature processing capabilities. Guo et al. [14] optimized the YOLOv8
network using a lightweight FasterNet backbone to improve computational efficiency,
and proposed an FBiFPN structure to solve the lack of target features under multi-scale
variations. Cen et al. [15] designed YOLOv9-YX based on YOLOv9, integrating the C3
module and ECA attention mechanism to enhance focus on object features, incorporating
the CDown convolution module to reduce computational costs, and proposing the FSPPF
multi-scale module to effectively fuse features from different levels.

The underwater environment is complex, with challenges including optical attenu-
ation, scattering, and interference from suspended particles, which result in blurred and
smaller targets. These factors place higher demands on target detection technology. As
a newer model in the YOLO series, YOLOv9 features a redesigned network architecture
based on YOLOv7 [16], significantly improving speed and accuracy. From the perspective
of improving accuracy in underwater object detection and lightweight models, this study
selects YOLOv9s as the base network. However, the feature extraction layer of YOLOv9s is
not sensitive enough to the characteristics of low contrast, blurred edges and color distor-
tion in underwater images. Additionally, the YOLOv9s involves multiple downsampling
operations, which can easily lead to the loss of target detail information, and the fixed
sampling method during the upsampling stage results in insufficient feature information.
This makes it challenging to extract key features effectively, leading to false detection or
missed detections. Therefore, it is necessary to adapt YOLOv9s to the unique characteristics
of underwater environments to improve its detection capabilities. This study proposes the
YOLOv9s-SD detection algorithm. The improvements consist of the following three parts:
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1. To suppress background interference, the inverted residual structure concept from
MobileNetV2 is leveraged to integrate SimAM and SE attention mechanisms, forming
the Simple Enhancement attention Module (SME). The downsampling AConv module
is combined with the SME attention mechanism, which enhances the focus of network
on object features.

2. To better recover feature information of the target, the DySample upsampling operator
is introduced to replace two upsampling operations in YOLOv9s. It adaptively
adjusts sampling positions, effectively restoring target edge information, and bypasses
dynamic convolution kernels to reorganize feature maps, reducing computational cost.

3. The original CIoU loss function is replaced by WIoU-v3. The WIoU mechanism
dynamically adjusts loss weights according to the target size, enabling the adaptation
to targets of different sizes and further improving the localization capability for
small targets.

Through underwater object detection experiments, YOLOv9s-SD is compared with
other object detection algorithms, verifying its effectiveness and facilitating the deployment
of underwater object detection models.

2. Materials and Methods
2.1. YOLOv9 Network Architecture

YOLOv9 [17] ranks among the latest single-stage object detection algorithms, building
upon the success of YOLOv7 with significant architectural innovations. The model consists
of four main components: the input layer, backbone, neck, and head. The backbone
based on the RepNCSPELAN4 module combines the RepConv, Cross Stage Partial (CSP),
and Efficient Layer Aggregation Network (ELAN) to optimize feature extraction and
gradient flow. RepConv utilizes re-parameterization techniques to enhance inference
efficiency, while the CSP and ELAN modules improve feature fusion and the gradient
propagation. The neck employs a Feature Pyramid Network (FPN) to fuse multi-scale
features, enhancing detection accuracy for objects of varying sizes. Finally, the head adopts
an Anchor-Free design, directly predicting bounding box coordinates and class probabilities
using a combination of Distribution Focal Loss (DFL) and Complete Intersection over Union
(CIoU) loss function.

The downsampling module reduces feature map resolution through convolutional
and pooling operations while increasing the number of channels, enabling the extraction
of higher-level semantic information and expanding the receptive field. By progressively
abstracting features from low-level (e.g., edges, textures) to high-level (e.g., shapes, seman-
tics), it provides multi-level feature representations for detection tasks. The detection head
uses the CIoU loss function to optimize bounding box predictions. CIoU loss function
improves upon traditional IoU by incorporating penalties for center-point distance and
aspect ratio, measuring overlap, the distance to center, and the width-to-height ratios. This
enhances localization accuracy, particularly for objects of varying sizes or under occlusion.

Two key innovations in YOLOv9 are Programmable Gradient Information (PGI) and
the Generalized Efficient Layer Aggregation Network (GELAN). PGI addresses information
loss in deep networks through a multi-branch architecture, including a main branch for
inference and auxiliary branches that generate reliable gradients during training. GELAN
integrates the strengths of CSPNet and ELAN, optimizing parameter utilization and com-
putational efficiency while alleviating information bottlenecks. These advancements enable
YOLOv9 to achieve superior detection accuracy and efficiency across various tasks, such as
object recognition and image segmentation.
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2.2. Algorithm Improvements

In the process of underwater target detection, issues such as target blurriness and
reduced target image size arise due to underwater optical attenuation, scattering, and
interference from suspended particles, leading to false detections and missed detections.
Furthermore, it is essential to balance detection accuracy and computational efficiency,
improving detection precision while ensuring the model remains lightweight. An enhanced
model, YOLOv9s-SD, based on YOLOv9s, is proposed in this paper to solve these challenges.

This paper introduces three key optimizations, as illustrated in Figure 1. First, the SME
attention mechanism is embedded in the YOLOv9s backbone, effectively combining spatial
and channel feature information to strengthen critical target features and enhance the net-
work’s ability to capture details in complex underwater scenarios. Second, the lightweight
DySample operator for upsampling is incorporated to substitute certain upsampling mod-
ules in the original YOLOv9s network. By dynamically generating upsampling kernels
through point sampling, DySample reduces computational overhead, improves adaptabil-
ity across different feature maps, and optimizes feature recovery capabilities. Finally, the
original CIoU loss function is exchanged for the WIoU-v3 loss function, effectively reducing
gradient gains between high-quality and low-quality samples, improving bounding box
localization precision, and enhancing detection performance for small targets.
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Figure 1. Theimproved YOLOv9s-SD network structure.

2.2.1. SME Attention Mechanism

In underwater environments, complex lighting conditions reduce the contrast be-
tween targets and backgrounds, making target features unclear. In the YOLOv9s network,
downsampling operations are employed to decrease the spatial resolution in feature maps,
reducing computational costs as well as memory usage to make the model more lightweight.
However, with low-resolution input images, repeated downsampling can easily lead to
the loss of target features. In order to improve the ability of underwater targets feature
extraction and strengthen how network layers focus on target features, this study integrates
the concept of the inverted residual structure from MobileNetV2 [18] with SimAM and
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SE attention mechanisms, resulting in the SME attention mechanism, whose structure is
shown in Figure 2a. The inverted residual structure enhances nonlinear expression capabil-
ities through a design that first expands and then reduces dimensions, while the residual
structure better preserves the information flow between low-level and high-level features.

AConv

SMEAConv

=

=

AvgPool Conv_3×3

SME AvgPool Conv_3×3

SME SimAM

Conv_1×1

DWConv_3×3 Conv_1×1 SE Contact=

（b）

（c）

（a）

Figure 2. The structural framework of each module: (a) structure of the SME attention module;
(b) AConv; (c) SMEAConv.

The SME attention mechanism processes feature maps through the SimAM attention
module to generate spatial attention features. SimAM [19] calculates the mean and variance
of feature maps along spatial dimensions and combines these with activation functions to
produce fine-grained spatial weights, highlighting important regions. This can alleviate
the impact of low contrast and blurred details in underwater environments. Additionally,
a 1 × 1 convolution is used to adjust the number of channels in the input feature map,
achieving color compensation and mitigating the impact of color distortion on feature
representation. The spatial attention features are then fused with the adjusted features,
followed by further feature extraction using depthwise separable convolution (DWConv)
and pointwise convolution. This convolution structure enhances feature extraction effi-
ciency while significantly reducing computational overhead. The fused features are further
processed by the SE [20] attention module to obtain channel-level weights. SE attention
recalibrates channel-wise feature responses, emphasizing the most informative channels
while enhancing critical features and suppressing redundant ones. In underwater scenar-
ios, color distortion and uneven lighting conditions often degrade feature representation,
and SE attention effectively addresses these issues. Finally, residual connections integrate
enhanced features into the original input features, preserving key information from the
input and ensuring feature transmission integrity.

In terms of computational cost, the SME attention mechanism is lightweight and
efficient, with minimal computational overhead. SimAM is parameter-free, requiring only
O(H ×W ×C) operations for spatial attention. The 1 × 1 convolution and DWConv further
reduce computational costs, while the SE module introduces a small number of addi-
tional parameters for channel-wise recalibration. Overall, the SME module adds less than
3% additional GFLOPs compared to the baseline YOLOv9s network, making it suitable
for resource-constrained underwater object detection tasks. As a result, SME effectively
integrates spatial and channel attention features, adaptively capturing spatial location
information of targets and strengthening critical features in each channel. The improved
structure is presented and illustrated in Figure 2c; it incorporates the SME attention mecha-
nism before the downsampling AConv module, forming the SMEAConv module, which
enables the model to focus on key target features while suppressing background noise
interference in target localization.
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2.2.2. DySample Upsampling Operator

In object detection networks, feature upsampling increases feature map resolution to
restore and refine the spatial information of targets. Underwater targets are often blurred
and small, and YOLOv9s uses nearest-neighbor interpolation for upsampling, resulting in
overly smoothed images that struggle to recover details and often lose edge information.
Dynamic upsamplers address these challenges by generating content-aware upsampling
kernels through dynamic convolution. Examples include methods like CARAFE, FADE,
and SAPA [21–23]. However, these methods come with high computational costs. To ad-
dress the challenges associated with upsampling, this study introduces the DySample [24]
upsampling operator. DySample is a lightweight upsampling operator that bypasses dy-
namic convolution kernels and constructs upsampling through point sampling. Compared
to dynamic upsamplers, DySample does not require high-resolution guidance features
as input, does not need additional CUDA packages beyond Pytorch, and offers lower
inference latency, memory usage, floating-point operations, and parameter count. This ap-
proach utilizes feature information more effectively while balancing the trade-off between
performance improvement and computational cost, thereby enhancing detection accuracy
with minimal overhead. The network structure of the Dysample operator is shown in
Figure 3.

x

Placement

Grid sample

Point sampling

x'

sH

sW

2g

W

C
sH

sW

C

H

Figure 3. DySample module flowchart.

The input feature map X has a size of H × W × C, and the point sampling set S has
a size of sH × sW × 2g, where 2g represents the x-axis and y-axis coordinates. The Grid
sample function is employed to resample the input feature map X using the point sampling
set S, generating a new feature map X′ of size sH × sW × C, as shown in Equation (1):

X′ = Grid_sample(X, S) (1)

The dynamic upsampling operator DySample receives a multi-channel tensor of size
H ×W × C. It then outputs two offsets, O1 and O2, each of size H ×W × 2gs2, through two
parallel linear transformation layers. The sampling factor for O1 is set to a dynamic factor
of 0.5δ, while the sampling factor for O2 is set to the default value. To avoid instability
caused by excessive offsets, a dynamic range adjustment factor O is introduced, as shown
in Equation (2):

O = 0.5 × sigmoid(linear1(X))× linear2(X) (2)

the offsets O1 and O2 are then combined through pixel shuffle and reshaped into an offset
O of size sH × sW × 2g. Finally, the sampling set S is generated by combining the offset O
with the original data G, as shown in Equation (3). The process of generating the dynamic
point sampling set is illustrated in Figure 4.
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Figure 4. Dynamic point sampling set generation process.

S = G + O (3)

Sampling positions are adaptively adjusted by DySample in response to input features;
DySample sets the offset ranges, captures critical information, and reorganizes sampled fea-
tures to enhance upsampling performance. To preserve detailed information of underwater
targets and avoid the blurring or aliasing effects caused by traditional pixel-duplication
methods, the two upsampling modules in YOLOv9s, marked by red dashed boxes in
Figure 1, are replaced with DySample operators, improving target feature recovery and
overall detection performance.

2.2.3. WIoU-v3 Loss Function

Distant underwater targets occupy fewer pixels, resulting in smaller target areas
and making it hard to distinguish these targets from background noise. In order to im-
prove detection accuracy for these targets, selecting an appropriate loss function is crucial.
YOLOv9s employs the CIoU [25] loss function to calculate the regression loss of bounding
boxes. However, CIoU does not adequately balance complex samples and struggles with
the accurate localization of smaller targets. Additionally, the penalty terms added for
center-point distance and aspect ratio consistency based on IoU increase computational
complexity and overhead. To address these issues, we introduce the WIoU-v3 [26] loss
function to replace CIoU. This adjustment directs model focus toward the localization of
ordinary-quality boxes while improving attention to the poor-quality boxes. The WIoU-v3
formula is illustrated in Equation (9).

LIoU = 1 − IoU (4)

RWIoU = exp

(
(bgt

cx − bcx )
2 + (bgt

cy − bcy)
2

c2
w + c2

h

)
(5)

where bcx and bcy represent the center coordinates of the ground truth bounding box,

bgt
cx and bgt

cy denote the center coordinates of the predicted bounding box, and c2
w and c2

h
represent the length and width of the minimum enclosing rectangle that contains both
bounding boxes, respectively.

Consequently, the WIoU-v1 loss function can be expressed as Equation (6):

LWIoUv1 = RWIoU × LIoU (6)

The quality of the ground truth bounding box can be described by the outlier factor,
where the outlier factor β is defined as Equation (7):

β =
L∗IoU
LIoU

∈ [0,+∞) (7)
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where L∗IoU denotes the focal coefficient. A non-monotonic focusing factor r based on β

can be constructed, and its formula is defined as Equation (8):

r =
β

δαβ−δ
(8)

The hyperparameters δ and α are adjusted to suit different models, and the values of α

and δ are determined through experimental tuning based on the literature. Here, α is an
empirical value with a default of 1.9, while δ is tuned based on the dataset characteristics
and model convergence behavior in later stages. A faster convergence rate indicates the
effective learning of high-quality samples, and increasing δ emphasizes medium- and
low-quality samples. In this study, the dataset contains many low-quality samples, and
the model converges quickly, as demonstrated in Figure 7. Consequently, δ is set to 3.
Finally, this non-monotonic focusing factor r is applied to the WIoU-v1 loss function to
obtain WIoU-v3.

LWIoUv3 =
β

δαβ−δ
× LWIoUv1 (9)

WIoU-v1 was designed as an attention-based prediction box loss, while WIoU-v3
builds upon it by introducing a focal coefficient. This addition reduces the weighting of
high-quality samples in the loss through the outlier factor β, dynamically adjusts the gradi-
ent gain of bounding boxes, and focuses on medium-quality anchor boxes to strengthen
localization performance. Moreover, WIoU-v3 avoids calculations involving aspect ratios,
making it more computationally efficient than CIoU. As a result, the WIoU-v3 loss func-
tion dynamically optimizes weighting for small targets, significantly enhancing detection
accuracy for YOLOv9s-SD.

3. Experiments and Results
3.1. Experimental Dataset

The dataset used in this study is the URPC [27] dataset, which contains four categories
of marine organisms: holothurian, scallop, echinus, and starfish. A total of 6753 images are
included; however, due to the effects of light absorption and scattering in underwater envi-
ronments, the image quality is relatively low. To better simulate real underwater conditions,
training the model with low-resolution images helps to enhance the algorithm’s general-
ization ability. Considering the limited computational resources available in underwater
applications, using low-resolution images reduces inference computational costs, making
the algorithm more lightweight and practical for deployment. Accordingly, the dataset was
filtered, and some images with resolutions exceeding 1920 × 1280 were excluded to better
reflect real-world conditions, given the blurriness and low contrast of underwater images.
Ultimately, 4549 images were retained and split into a training set and a test set in a 7:3
ratio. Table 1 provides statistics on image resolutions. Figure 5 shows the statistical data of
biological quantities.

Table 1. Dataset resolution statistics.

Resolution/Pixels Number of Images

586 × 480 44
704 × 576 38
720 × 405 3205

1920 × 1080 645
2048 × 1536 21
2560 × 1440 32
3840 × 2160 2768
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Figure 5. The statistical data of the quantities of four types of organisms.

3.2. Experimental Settings and Evaluation Metrics

All experiments were carried out under the operating system Windows 10 with the
following experimental equipment: GPU Nvidia GeForce A5000 (16 GB); and experimental
environment: Pytorch1.13.0+Python3.11+CUDA11.3. The experimental parameters were
set as follows: input image size of 640 × 640, an initial learning rate of 0.01, momentum
set to 0.937, weight decay coefficient of 0.0005, 300 training epochs, and a batch size of
16. For underwater biological detection, six metrics were employed to accurately evaluate
the model performance, including Precision (P), Recall (R), Average Precision (AP), Mean
Average Precision (mAP), Giga Floating Point Operations (GFLOPs), and model size. The
relevant calculation formulas are as follows.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

AP =
1

∑
i=0

P(Ri) · ∆Ri (12)

mAP =
1
n

n

∑
i=1

APi (13)

In this formula, TP represents the quantity of positive samples correctly identified, FP
represents the quantity of negative samples misclassified into the positive category, and FN
indicates the quantity of positive samples incorrectly classified into the negative category.

3.3. Analysis of Experimental Results

To validate the efficacy of the improved algorithm, the baseline YOLOv9s along with
the improved YOLOv9s-SD models were trained on the same dataset. Table 2 presents the
final experimental results.
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Table 2. Comparative results of YOLOv9s and YOLOv9s-SD.

Model P/% R/% mAP50 (%) mAP50:95 (%) GFLOPs Size/MB

YOLOv9s 81.9 75.6 81.7 50.6 39.6 14.3
YOLOv9s-SD 83.6 76.7 83.0 52.1 40.5 14.4

The experimental data indicate that the YOLOv9s-SD model achieves an increase of
1.7% in precision, 1.1% in recall, 1.3% in mAP50%, and 1.5% in mAP50:95%, with only a
2.27% increase in computational cost. These results demonstrate that the YOLOv9s-SD
model improves detection accuracy for underwater targets, particularly in capturing targets
in low-resolution images. Furthermore, the model size increases by just 0.7%, maintaining
its lightweight nature and meeting the deployment requirements for underwater target
detection. Detailed experimental results are presented in Figure 6.

Figure 6. Experimental detection results before and after YOLOv9s improvement; (a) real label;
(b) YOLOv9s detection results; (c) YOLOv9s-SD detection results.

The detection results in Figure 6b show that the original model missed detections
for starfish at positions 1⃝, 2⃝, and 5⃝, and falsely detected a holothurian at position 3⃝
and a starfish at position 4⃝. Additionally, the model did not detect the holothurian at
position 7⃝. By incorporating the self-developed SME attention mechanism module, the
improved model effectively reduces false detections and enhances detection capability
in scenarios where the target and background are similar. However, both the YOLOv9s-
SD model and the YOLOv9s model failed to detect scallops at positions 6⃝, 8⃝, and 9⃝,
indicating that the detection performance for smaller targets, such as scallops, still requires
further improvement.
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3.4. Attention Mechanism Comparison Experiment

For the purpose of verifying the effectiveness of different attention mechanisms,
common attention mechanisms including CA [28], SE, ECA [29], SimAM, CBAM [30],
MLCA [31], and SCSA [32] were individually added to the same location for comparative
experiments. The experimental findings are detailed in Table 3.

Table 3. Comparison experiment of different attention mechanisms.

Model mAP50 (%) mAP50:95 (%) GFLOPs Size/MB

YOLOv9s 81.7 50.6 39.6 14.3
+CA 82.0 50.8 39.6 14.3
+SE 82.0 50.8 39.6 14.3

+ECA 81.9 50.8 39.6 14.3
+SimAM 82.1 50.6 39.6 14.3
+CBAM 81.7 50.7 39.6 14.3
+SCSA 81.9 50.8 39.6 14.3

+MLCA 82.0 50.9 39.6 14.3
+SME 82.3 51.1 40.5 14.4

Based on the data presented in Table 3, the addition of various attention mechanisms
improves the accuracy of underwater target detection with minimal changes to model size
and computational cost. CBAM, which combines channel and spatial attention, did not
improve mAP50%, likely due to its difficulty in handling the low contrast and complex
backgrounds typical of underwater environments. ECA increased the mAP50% by 0.2% by
enhancing channel-wise features but lacks spatial modeling, limiting its effectiveness for
small and low-contrast targets. SCSA achieved a 0.2% increase in mAP50% by combining
spatial and channel-wise attention and leveraging the collaborative potential of multi-
semantic information, while its performance is constrained by the noisy and low-visibility
conditions of underwater scenes. CA, SE, and MLCA achieved a 0.3% increase in mAP50%,
with CA and SE focusing on channel-wise relationships and MLCA capturing cross-layer
dependencies, making them effective for multi-scale targets but less suited to the dynamic
nature of underwater environments. SimAM further improved mAP50% by 0.1% through
its parameter-free design, offering a computationally efficient solution, while its simplicity
limits its ability to solve the diverse and complex features present in underwater scenes.
Finally, SME outperformed all others, increasing mAP50% by 0.6% and mAP50:95% by
0.5%. SME combines the strengths of SimAM and SE, making it particularly effective
for detecting small and low-contrast targets in underwater scenarios. This comparison
highlights the superiority of SME in underwater target detection.

To better visualize the enhanced feature extraction capabilities of the SME attention
mechanism, the fifth layer within the network employed the LayerCAM [33] algorithm,
and the results were visualized using heatmaps. The visualization results are shown in
Figure 7.

The visualization results indicate that the added SME attention mechanism more
effectively integrates spatial and channel features of the image, enhances feature extraction,
and suppresses background interference in target localization. Consequently, incorporating
the SME attention mechanism markedly improves detection accuracy.
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（a） （b） （c） （d） （e）

Figure 7. Displaying heatmap visualization results of different attention mechanisms using
LayerCAM algorithm: (a) raw image; (b) YOLOv9s; (c) YOLOv9s+SE; (d) YOLOv9s+SimAM;
(e) YOLOv9s+SME.

3.5. Ablation Experiment

To validate the effectiveness of every modified module, YOLOv9s served as the
baseline model for the ablation experiments. Detection performance was analyzed on the
URPC dataset, and the ablation experiment results are illustrated in Table 4. In the table,
✓signifies the introduction of the module, whereas × signifies its exclusion.

From the results in Table 4, it can be observed that adding the SME attention mecha-
nism improved mAP50% by 0.6%. The Average Precision (AP) for each target increased,
with starfish and scallop showing AP improvements of 0.6% and 0.9%, respectively.
This enhancement improved the model’s capability to extract target features from com-
plex backgrounds.

Table 4. Ablation study.

Experiments SME DySample WOUv3 mAP50
(%) Holothurian (%) Starfish

(%)
Scallop

(%)
Echinus

(%)

1 × × × 81.7 80.4 88.1 66.3 92.0
2 ✓ × × 82.3 80.9 88.7 67.2 92.4
3 ✓ ✓ × 82.6 81.6 87.9 68.1 92.7
4 ✓ ✓ ✓ 83.0 81.8 88.5 69.2 92.6

Introducing the DySample upsampling module further increased mAP50% by 0.3%.
The AP for holothurian increased by 1.2%, scallop by 1.8%, and echinus by 0.7%, reach-
ing its best performance. The network’s capability to restore target feature information
was strengthened. However, the AP for starfish slightly decreased due to the DySample
upsampling module’s inability to effectively restore its edge contour information. Further-
more, replacing the CIoU loss function with WIoU-v3 resulted in an additional mAP50%
improvement of 0.4%, further optimizing the localization performance of bounding boxes.
While echinus experienced a slight decrease in AP, the AP for other targets increased. In the
dataset, Figure 5 shows that echinus is the most abundant and has distinct color features,
making it easier to identify. The WIoU-v3 loss function focuses on balancing the weights
of some low-quality samples, prioritizing their anchor boxes, which contributed to the
decrease in AP for echinus.

When all modules were incorporated into the model, its overall performance reached
its best, with mAP50% improving by 1.3% compared to the original model. Notably, the
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model improved significantly detection accuracy for small targets and those with similar back-
grounds, with the AP of holothurians and scallops increasing by 1.4% and 2.9%, respectively.

3.6. Comparison Experiment

To further validate the detection performance of the YOLOv9s-SD model, several
widely used object detection algorithms were selected for comparison, including YOLOv5s,
YOLOv7-tiny, YOLOv8s, YOLOv10s [34], and YOLOv11s [35]. The training and testing
of all the models were conducted under the same experimental conditions. Detailed
comparison results can be found in Table 5 and Figure 8.

Table 5. Comparison experiment.

Model P/% R/% mAP50 (%) mAP50:95 (%) GFLOPs Size/MB

YOLOv5s 81.5 74.8 80.5 48.7 19.0 16.0
YOLOv7-tiny 81.3 74.2 78.7 44.5 13.2 12.3

YOLOv8s 83.2 73.2 80.6 50.0 23.6 19.0
YOLOv10s 83.1 74.6 80.4 50.2 24.8 15.7
YOLOv11s 81.9 75.6 81.3 49.3 21.6 19.2
YOLOv9s 81.9 75.6 81.7 50.6 39.6 14.3

YOLOv9s-SD 83.6 76.7 83.0 52.1 40.5 14.4

The experimental results indicate that YOLOv9s-SD demonstrates superiority across
multiple performance metrics compared to other models. YOLOv9s-SD achieved a preci-
sion (P) of 83.6% and a recall (R) of 76.7%, showing improvements in both metrics, which
indicates a higher number of correctly identified samples and excellent performance. Its
mAP50% and mAP50:95% reached 83.0% and 52.1%, respectively, outperforming other
models. Additionally, while maintaining high accuracy, YOLOv9s-SD has a size of 14.4 MB
and a computational cost of 40.5 GFLOPs. In comparison with traditional models such as
YOLOv5s and YOLOv8s, the smaller size of the YOLOv9s-SD model enhances its adapt-
ability for lightweight deployment in underwater target detection tasks. Therefore, under
conditions of limited underwater computational resources, the proposed improved model
meets the requirements for accuracy and a lightweight design, making it suitable for
underwater environments.

Figure 8. The mAP50% curve for each model.
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3.7. Generalization Experiments

To further validate the generalization performance of the YOLOv9s-SD model, experi-
ments were conducted using the Brackish [36] dataset. Organisms are classified into six
categories: fish, small fish, crabs, shrimps, jellyfish, and starfish. The dataset contains a
total of 2465 images, with low resolution and a uniform size of 960 × 540. Additionally, the
statistical distribution of the number of organisms is shown in Figure 9. The dataset was
split into a training set and a test set in a 7:3 ratio. All models were trained and tested under
the same experimental conditions as in Section 3.2. The detailed experimental outcomes
are displayed in Table 6 and Figure 10.

Figure 9. The statistical data of the quantities of six types of organisms.

Table 6. Comparison experiment.

Model P/% R/% mAP50 (%) mAP50:95 (%) GFLOPs Size/MB

YOLOv5s 96.3 87.3 94.2 70.8 19.0 17.6
YOLOv7-tiny 90.4 78.9 84.7 52.9 13.2 11.7

YOLOv8s 94.1 89.1 93.3 71.4 23.6 21.4
YOLOv10s 95.1 85.8 92.8 70.3 24.8 15.7
YOLOv11s 92.3 90.8 90.4 69.7 21.6 18.2
YOLOv9s 92.7 89.0 93.1 70.0 39.6 14.3

YOLOv9s-SD 94.9 89.0 94.3 72.2 40.5 14.4

（a） （b） （c）

Figure 10. Experimental detection results before and after YOLOv9s improvement; (a) real label;
(b) YOLOv9s detection results; (c) YOLOv9s-SD detection results.
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The experimental results indicate that YOLOv9s-SD achieved the best overall perfor-
mance. Compared to the YOLOv9s model, it achieved a 1.2% improvement in mAP50%
and a 2.2% increase in mAP50:95%. Additionally, compared to the YOLOv5s and YOLOv8s
models, its mAP50% improved by 0.1% and 1%, respectively. In Figure 10, it is shown that
the YOLOv9s model has a problem in that it sometimes fails to detect targets , while the
improved YOLOv9s-SD model can detect more small fish targets. Therefore, the improved
model satisfies the demands of underwater target detection tasks.

4. Discussion
The detection experiment results on the two datasets reveal that the YOLOv9s-SD

algorithm still has certain shortcomings. On the URPC dataset, targets such as scallops,
which appear smaller due to imaging factors, result in missed detections. This indicates
that the detection performance of the YOLOv9s-SD algorithm for smaller targets needs
further improvement. Additionally, although the self-developed attention mechanism
has enhanced the algorithm’s ability to extract target features, while more effective tar-
gets were detected on the Brackish dataset, not all targets were successfully identified,
and the precision of the model still requires further enhancement. Most of the missed
targets are smaller in size, with indistinct features that are difficult to differentiate from the
background. To enhance the ability of the model to effectively extract these features and
improving detection accuracy for such targets. Future research can leverage the imaging
characteristics of underwater environments to effectively utilize color information [37] for
image enhancement. By applying image enhancement techniques to preprocess underwater
images, the quality of the images can be improved, better highlighting the detailed features
of the targets. This approach will benefit underwater object detection tasks.

5. Conclusions
To address the complexity of underwater scenarios and the challenges posed by

blurred and small targets, which limit the feature extraction capabilities of target detection
algorithms, we propose the YOLOv9s-SD algorithm. The SME attention mechanism is
integrated into the AConv downsampling module to enhance target feature extraction
capabilities. A lightweight DySample upsampling operator is introduced to restore target
details, and the WIoU-v3 loss function is employed to improve localization accuracy for
small targets. Validation on the UPRC and Brackish datasets shows that the proposed
algorithm increases mAP50% by 1.3% and 1.2%, respectively. This demonstrates its ability
to be deployed in resource-constrained underwater environments and effectively achieve
target detection in such scenarios. The proposed method has significant potential applica-
tions in marine ecological monitoring, underwater resource exploration, and autonomous
underwater vehicle (AUV) navigation. By providing an efficient and accurate target de-
tection solution, this research contributes to the advancement of underwater robotics and
supports sustainable marine ecosystems. Despite its promising performance, YOLOv9s-SD
has certain limitations. For example, detecting extremely small targets in highly noisy
environments remains challenging.

Considering the characteristics of underwater environments, future research can focus
on optimizing the model’s structure and designing more efficient attention mechanisms.
Advanced data augmentation techniques can be explored to enhance the robustness and
accuracy of algorithms in underwater settings. Furthermore, integrating domain adaptation
methods to improve generalization across diverse underwater environments could be a
valuable direction.
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