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Abstract: Direction-of-arrival (DOA) estimation of underwater multipath signals plays
a indispensable role in both military and civilian underwater applications. Despite its
importance, accurately estimating DOA under multipath conditions is challenging due to
the proximity of paths in the spatial domain. Current methods struggle with this problem
in passive detection scenarios. To address these limitations, this study proposes a deep
learning (DL)-based DOA estimation framework leveraging sparse representation. First,
the approach models the array covariance matrix as an undersampled linear measurement
of the spatial spectrum. Then, a super-resolution deep shrinkage reconstruction network
(SDSR-Net) is designed to map the sparse representation of the covariance matrix directly
to the DOA. The network integrates a shrinkage module as nonlinear transformation
layers, promoting sparsity and enhancing the discrimination of features. Simulations and
experimental evaluations validated the effectiveness of the proposed method, showing that
the DOA estimation accuracy was significantly improved and able to achieve a resolution
of 0.2° in the spatial spectrum. Compared with existing methods, SDSR-Net achieved
superior performance by effectively utilizing a sparsity prior, maintaining a high-resolution
performance at signal-to-noise ratios higher than —10 dB. This work contributes a robust
and efficient solution to DOA estimation challenges in underwater environments.

Keywords: direction-of-arrival estimation; deep learning; sparse representation

1. Introduction

Direction-of-arrival (DOA) estimation is a crucial topic in various fields such as radar,
sonar, communications, and other signal processing applications [1-4]. It plays a vital role
in array signal processing, where accurate localization of sources is essential for numer-
ous applications. DOA estimation methods are generally categorized into three primary
approaches: beamforming methods, subspace-based methods, and sparsity-based meth-
ods. However, in the context of underwater acoustic channels, DOA estimation presents
significant challenges. The underwater environment is characterized by its complex, time—
space—frequency-varying nature, which includes multipath effects, transmission fading,
Doppler shifts, and propagation delays [5]. These factors make accurate DOA estimation
even more challenging, particularly in environments with high interference or significant
multipath propagation.

Previous methods have a relatively good performance in situations where the signal-
to-noise ratio (SNR) is high, but the performance of DOA degrades when the SNR is low or
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when faced with multipath scenarios. Many DOA estimation algorithms based on sparse
representation and compressed sensing (CS) theories have been developed, leveraging the
sparsity of signals in the spatial domain to achieve high-resolution DOA estimation [6,7].
Sparsity-based methods can provide accurate DOA estimates in the presence of coherent
signals, but they are computationally intensive, making them impractical for real-time or
resource-constrained applications. Moreover, in low SNR scenarios, the noise signals arriv-
ing from various directions disrupt the sparsity of the target multipath signals, significantly
impairing the accuracy and resolution of compressed sensing algorithms. Recently, several
solutions have been proposed utilizing deep learning (DL) [8-10]. These solutions employ
various types of architectures; however, these networks primarily utilize fully connected
layers and estimate source locations on coarse spatial grids.

Building on the above techniques, this paper proposes a novel approach for DOA
estimation in underwater multipath environments using a super-resolution deep shrinkage
reconstruction network (SDSR-Net). This method utilizes sparse signal recovery from quan-
tized measurements and adapts thresholds to varying noise conditions, thereby improving
the DOA estimation accuracy, particularly in low SNR scenarios. The proposed SDSR-Net
is formulated as a multi-task model to estimate both the number of sound source paths and
their corresponding arrival directions, achieving high-resolution DOA estimation across
different angular intervals.

The rest of this paper is organized as follows. Section 2 introduces the related works
about DOA estimation. Section 3 introduces the array signal model and formulates the
problem using the sparse representation theory underlying the proposed method. Section 4
details the structure of the proposed DOA estimation neural network based on sparse
features, along with the experimental setup. Section 5 presents the simulation and experi-
mental results to validate the performance of the proposed SDSR-Net. Finally, Section 6
concludes the paper.

2. Related Work

Beamforming techniques, particularly conventional beamforming (CBF), are widely
used for DOA estimation, due to their robustness against signal mismatch. However, CBF
suffers from limitations in resolution, especially when dealing with side lobe leakage, due
to a finite number of spatial sampling points determined by the Nyquist spatial theorem
(NST). The minimum variance distortionless response (MVDR) algorithm [11] offers better
resolution by minimizing the interference from undesired directions. However, MVDR’s
performance significantly degrades when the signals are highly correlated, which is a
common challenge when estimating the arrival angles of coherent signals. Additionally,
both CBF and MVDR struggle to separate closely spaced multipath signals, particularly
when small-aperture arrays are used.

Subspace-based methods such as multiple signal classification (MUSIC) [12,13] and
estimation of signal parameters via rotational invariance techniques (ESPRIT) [14,15] are
popular alternatives for high-resolution DOA estimation. These methods exploit the or-
thogonality between the signal and noise subspaces to achieve better resolution. However,
their performance deteriorates under low SNR conditions, and they are also less effective
at resolving closely located sources. In underwater environments, traditional subspace
methods often fail to provide accurate DOA estimates in the presence of multipath sig-
nals. Therefore, several subspce-based methods combined with deep learning have been
proposed for DOA estimation [16,17].

More recently, the application of CS-based techniques for DOA estimation has gained
attention, especially by exploiting the sparsity of signals in the spatial domain. There
are several CS-based methods, such as L1 singular value decomposition (L1-SVD) [6],
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orthogonal matching pursuit (OMP), and sparse Bayesian learning (SBL) [18]. L1-SVD
introduces a CS-based framework that reformulates the nonconvex lp-norm optimization
problem into a convex /1-norm minimization problem, improving computational efficiency.
Meanwhile, SBL employs a Bayesian framework to incorporate sparsity by using a sparse
prior distribution for the signal [19-21]. While sparsity-based methods offer improved
resolution over beamforming and subspace methods, their performance is hindered at
low SNRs, where noise disrupts the sparsity of the target signal. In recent years, deep-
learning-based approaches have emerged as a promising avenue for DOA estimation,
particularly in complex environments [22,23]. Refs. [24,25] introduced three neural network
models specifically designed for DOA estimation with covariance reconstruction. Similarly,
Ref. [26] proposed a deep neural network (DNN) framework for super-resolution DOA
estimation. The algorithms proposed in [27,28] are based on multipath DOA estimation
problems. However, these networks estimate source locations on coarse spatial grids.

3. Problem Formulation
3.1. Signal Model

Assume that the uniform linear array (ULA) consists of M elements, with an inter-
element spacing of d. Let there be L independent narrowband signals incident on the
array from directions 61,0,,--- ,0;. Using the first array element as a reference, each
narrowband signal is represented as sq(n),s2(n),- -+ ,s(n). The signal received by the
m-th array element can then be expressed as

L
Z 7]2 (m— 1)dsin91+5m(n), (1)

where A = ¢/ f denotes the wavelength of the signals at carrier frequency f, and J,,(n)
represents the noise at the m-th array element. The received signal can be expressed as

y(n) = A(0)s(n) +6(n), )
where s(n) = [s1(n) sp(n)]T € cb1 represents the signal vector, [-]T denotes the
transposition operator and (5( )= [01(n),- -+, 6m(n)]T € CM*1 denotes the noise vector.
The matrix A(0) = [a(61),--- ,a(0)] € CM *L js the direction matrix, where a(6;) is the

direction vector for the i-th signal, which is expressed as
a(6;) = [1,e /ansm(? /6717”(M 1)dsm9] 3)
By collecting T time-sampling snapshots, Equation (2) can be reformulated as
Y =AS+9, (4)

where Y = [y(0),...,y(T—1)], A = A(0), S = [s(0),...,s(T—1)], and § =
[6(0),...,8(T —1)]. The objective is to estimate the DOA of each narrowband signal
from the received signal Y.

In the case of a single narrowband signal incident on the array (L = 1), the problem is
referred to as single-source DOA estimation. Under this scenario, A(0) = [a(0;)] € CM*1
and s(n) = [s1(n)]T € C'*1. When multiple narrowband signals are incident on the array

simultaneously (L > 1), the problem is referred to as multi-source DOA estimation.
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Traditional DOA estimation methods typically rely on a covariance matrix for estima-
tion. Assuming that each noise component is independently and identically distributed
additive white Gaussian noise (AWGN), the array covariance matrix can be expressed as

Ry, = Ely(n)y" (n)] = A A" + 011, 5)
where 02 = E[s(n)s"!(n)] denotes the signal power, ¢ = E[5(n)6' ()] denotes the noise
power, I is the identity matrix, and [-]H represents the conjugate transpose. The mapping
between R, and 6 is given by

£(61,6s,...,6) = Ryy. 6)

3.2. Sparse Representation

To construct a sparse measurement matrix for compressed sensing, the spatial plane
[—90°,90°] is discretized into a set of directions @ = [®1, Dy, -+, P;]|T, where L > K,
with a sampling interval of A®. The true signal source direction 6 lies within ®, ensur-
ing minimal quantization error. The array-received signal can then be expressed in an

overcomplete form:
L

y(t) = ) algsi(t) +n(t) 7)
=1
where 5)(t) = si(t) if ®; = 6, and 5;(t) = 0 otherwise. The spatial covariance matrix is

given by
L
Ryy = Ely(n)y" (n)] = Y ma(®)a™ (@) + oyl (8)
=1
where 77 = E[5;(t)sF(t)] represents the signal energy in the I/th direction, and 7 =

[1711 772/ e /nL]T

sparse. DOA estimation is achieved by recovering 7 from Ry,,.

is nonzero only at the true source locations, making the spatial spectrum #

The mth row of Ry, can be expressed as
X = Apl] + 02em )

where A,; = [a(®1)a (®1)en, -, a(Pr)a (P))en], and ey, is an M x 1 vector with the
mth element set to 1 and others to 0. Expanding Equation (9), the observed signal after
sparse representation becomes

X=A-n+o%e (10)

where X = [x1;x0;- ;xm], A = [A1; A+ Am), € = [ey;ex; -+ ;enm). Equation (10)
demonstrates that recovering the spatial spectrum 7 from X is a classic sparse linear inverse
problem. The relationship between X and % can be expressed as

n=f"(A"X) (11)

While various sparsity-driven methods exist to solve this problem, they often face chal-
lenges such as a high computational complexity and instability under low signal-to-noise
ratio (SNR) conditions. To address these limitations, we propose a deep convolutional
network that directly learns the mapping from X to . This approach leverages the repre-
sentational power of deep learning to enable accurate and efficient DOA estimation, even
in challenging scenarios.
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3.3. Theory of the Proposed SDSR-Net

Leveraging the powerful nonlinear processing capabilities of deep learning, a DL-
based method is introduced to construct a covariance matrix from the array output covari-
ance matrix. Through network training, a mapping model between the sparse representa-
tion of the covariance matrix and the sparse multipath DOA is iteratively optimized.

We propose a SDSR network for estimating sparse target arrival angles, with the
network structure depicted in Figure 1. The proposed DOA estimation method utilizes
simulated data to learn the mapping relationship between the covariance matrix and the
DOA, enabling effective DOA estimation in two steps: (1) Substitute the received signal into
Equations (8)—(10) to compute A and X. (2) Use ATX as the input to the SDSR network. The
network extracts the target spatial features through multiple layers and outputs the target
angle. The mapping model between the input of SDSR and the target angle is represented

by Equation (11).
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Figure 1. Overall architecture of the proposed SDSR-Net.

To recover the sparse spatial vector 5 from the covariance matrix X in Equation (10),
the problem of estimating # is formulated as the following optimization problem:

min gl + AMIX © Al || =1, stllylla =1 (12)

Here, [-]— denotes the negative function, defined as [z] - = max(0, —z), and ® represents
the element-wise product.

The above problem is solved using an iterative method. The first step involves
applying gradient descent to minimize the cost associated with the barrier function. By
computing the gradient of ||5||; and ||[X ® Agy]_|| — 1 with respect to #, the gradient at the
k-th iteration is given by

gk = AT (An_y - X). (13)
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Before applying gradient descent, the gradient is projected onto a unit sphere centered
at the origin, to enforce the constraints.

Sk = gi(g(m me—1) M1 (14)

Consequently, the gradient descent step can be expressed as

7 = fx—1 — T8(N)k (15)

where 7 is the descent step size.

The second step involves a shrinkage operation that applies a soft-thresholding func-
tion to reduce the magnitudes of the non-zero components of the sparse signal. The
shrinkage operator is defined as follows:

. — _ T
e = sign (i) © max([f| - 7,0). (16)

The sparsity level of 4 is enhanced through the application of soft-thresholding shrinkage.
By iteratively applying this operator, the vector progressively becomes sparser. At each
iteration, the estimates are normalized to ensure they satisfy unit-norm constraints. In
the proposed network, sparsification is achieved via a shrinkage module that adaptively
learns the soft threshold. Multiple residual modules further refine the sparsity, improve
resolution, and suppress noise.

4. Proposed Method
4.1. Architecture of the SDSR-Net

The overall architecture of the proposed SDSR network is illustrated in Figure 1.
The input data are first processed by a 1D convolutional (Convld) layer with a kernel
size of 3, a stride of 1, and padding of 1. Based on the output of the Conv1ld layer, the
DOA features are further extracted through a batch normalization (BatchNorm) layer and
rectified linear unit (ReLU) activation. The extracted features are then passed through
several deep residual shrinkage blocks. As shown at the bottom of Figure 1, the residual
blocks are the core components of this network. Each block consists of three Conv1d layers,
three BatchNorm layers, and two ReLU layers. The key feature of residual blocks is the skip
connection, which distinguishes them from conventional convolutional networks. In typical
convolutional networks, the gradients of the cross-entropy error are back-propagated layer-
by-layer. However, with skip connections, the gradients flow more effectively to the earlier
layers, closer to the input layer, enabling more efficient parameter updates.

Furthermore, rather than manually designing the threshold value, deep learning
allows learning it automatically. Consequently, the combination of soft thresholding and
deep learning presents a promising approach for eliminating noise-related information and
constructing highly discriminative features. As shown in Equation (16), a shrinkage module
was designed to adaptively learn the soft threshold and remove redundant information
from the input data based on this threshold. In traditional signal denoising algorithms,
determining an appropriate threshold value can be challenging, and its optimal value often
varies across different scenarios. To address this issue, the thresholds in the SDSR-Net are
automatically determined within the deep architecture, eliminating the need for manual
intervention. The output of the deep residual shrinkage block is followed by an average
pooling (AvgPool) layer and a reshape layer. Subsequently, the data are passed through
two branching networks. One branch extracts the target angles through a linear layer, with
its output representing the estimated angle rather than the spatial spectrum, in order to
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mitigate the off-grid problem. The other branch processes the features through a linear layer
and then computes the probability of the number of target angles using a softmax function.

It is important to note that the proposed method directly derives the angle value of
the target from the input spatial feature, rather than computing the entire spatial spectrum.
This approach significantly reduces the model’s learning complexity. Furthermore, it avoids
the off-grid problem commonly encountered in many DOA estimation methods that rely
on dividing the computational grid.

4.2. Dataset

To train the proposed SDSR-Net, simulated data from a 16-element uniform linear
array (ULA) were used. The direction-of-arrival was defined on a grid with a spatial reso-
lution of 1° and a maximum angle of Omax = 90°, forming a grid set D = {00, 1°,..., 900},
which included |D| = 91 grid points. One of the primary advantages of the proposed
SDSR-Net is its ability to infer the number of signal sources, as the task is framed as a multi-
class classification problem. Consequently, the training dataset was divided into two parts:
(1) Two-source data: This subset modeled multi-path signals from the sea surface. (2) Single-
source data: This subset modeled single-path signals, helping to mitigate overfitting to
multi-path data.

The number of signal sources was denoted as K. For the two-source data, pairs

of DOAs were generated from all possible combinations of D, resulting in ( “I? |

) pairs.
A covariance matrix for each pair was computed as the input to the model, with the
corresponding angles used as labels. For the two-source dataset, 4095 samples were
generated. For the single-source dataset, 91 pairs of DOAs were generated, but to balance
the sample count, the data were resampled to obtain 3000 samples. This resulted in a total
of 7095 training samples.

The training signal-to-noise ratio (SNR) ranged from —10 dB to 10 dB. Since the actual
SNR of the received signals was unknown, the model was trained using a range of SNR
values. The training data were synthesized by calculating a covariance matrix based on on-
grid DOAs, while the test dataset used off-grid DOAs. The angular spacing of the training
grid was 1°, whereas the simulated arrival angles for testing were generated with finer
spacing. Specifically, the first path’s arrival angle was defined as D; = 0° : 0.2° : 80°, and
the angular difference between the first and second paths was Af = 0.2° : 0.2° : 10°. This
resulted in a total of 20,050 pairs of arrival angles for testing. The simulation parameters
are listed in Table 1.

Table 1. Simulation parameter settings.

Parameter Value
Frequency (Hz) 100
Array interval (m) 7.5
Snapshot 1
Number of elements 16
Reference sound speed (m/s) 1500
SNR (dB) —10-1

4.3. Training Setup

The training batch size was set to 256, and the model was trained for 500 epochs. For
optimization, we employed the Adam optimizer with an initial learning rate of 1.0 x 104,
along with the settings f1 = 0.9, B2 = 0.999, and € = 1.0 x 1078, The model was
implemented using PyTorch 2.2.2 and trained on an NVIDIA RTX 4090D GPU for efficiency.

We optimized the trainable parameters of the SDSR-Net by using the training dataset
and loss function. The final output of the model included the number of target paths,
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Num € {(0.5,0.5),(1,0), (0,1)}, which corresponded to 0, 1, or 2 paths, respectively, and
the corresponding angles of arrival, Angle € R'2. If Num is [0.5,0.5], this indicates that
there is no target, and the corresponding Angle is labeled as [—1, —1]. If Num is [1,0],
this indicates a single target, and the corresponding Angle is [61, —1|; if Num is [0, 1], this
indicates two targets, and the corresponding Angle is [0, 6,]. Therefore, we used different
loss functions for the Num and Angle estimations. The mean squared error (MSE) loss was
used for angle estimation, while for Num estimation, which can be treated as a classification
task, we applied cross-entropy loss.

5. Results and Analysis

In this section, we present extensive simulation results to verify and evaluate the per-
formance of our proposed DOA estimation model under various scenarios. The evaluation
includes three main aspects: (1) a comparison of the proposed network with existing DOA
estimation algorithms, (2) an analysis of the DOA estimation accuracy for signals arriv-
ing at different spatial angles and spatial intervals, and (3) an assessment of the model’s
performance under varying SNR conditions.

For both training and testing, a ULA with 16 elements, spaced at half-wavelength inter-
vals, was employed. This section provides an intuitive comparison of the DOA estimation
results against baseline methods, including (1) classical beamforming (CBF), (2) mini-
mum variance distortionless response (MVDR), (3) multiple signal classification (MUSIC),
(4) orthogonal matching pursuit (OMP) [29], (5) sparse Bayesian learning (SBL) [19], (6) deep
convolutional network (DCN) [30], (7) DeepFPC [31], (8) DA-MUSIC [17], and (9) Sub-
spaceNet [16]. Among these, (1)-(3) are traditional methods, (4)—(5) are compressive sensing
(CS)-based methods, and (6)—(9) are deep-learning-based methods.

5.1. Comparison of Different DOA Estimation Methods

In this subsection, we evaluate the proposed SDSR-Net with two sources positioned at
three different angle intervals: 2.2°, 5.2°, and 8.9°, respectively. The angle of arrival for the
first source varied from 0° to 80°, while the DOA of the second source spanned from 2.2°
to 82.2°, from 5.2° to 85.2°, and from 8.9° to 88.9°, respectively, all sampled in steps of 0.2°.
Each scenario used samples with an SNR of 10 dB, and for each angle interval, 401 pairs of
angles were collected for DOA estimation. These results enable a performance comparison
of the proposed SDSR-Net against existing methods. The corresponding outcomes are
presented in Figures 2 and 3.

CBF
90

80

570

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Sample index Sample index
MUSIC OMP

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Sample index Sample index

Figure 2. Cont.
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Figure 2. Comparison of DOA estimation methods with two off-grid sources with the angle intervals
of 2.2°,5.2°, and 8.9°, respectively.
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Figure 3. Comparison of the corresponding errors of off-grid sources with angle intervals of 2.2°,
5.2°, and 8.9°, respectively.

Figure 2 presents the DOA estimation results across the evaluated scenarios using
conventional methods, CS-based algorithms, and DL-based models. The straight lines in
the figure represent the true DOA values for the two sources. The results reveal that the con-
ventional algorithms, including CBF, MVDR, and MUSIC, suffered from wide beamwidths,
leading to a poor spatial resolution. Compared with the high-resolution methods such as
SBL, DCN, SubspaceNet, DA-MUSIC, and DeepFPC, the proposed SDSR-Net demonstrated
superior performance in DOA estimation. However, SBL was constrained by significant
off-grid issues, limiting its estimates to predefined grid points. When the signal angle
exceeded 60°, the performance of the SubspaceNet declined significantly. Furthermore, the
DCN and DeepFPC methods showed higher estimation errors compared with SDSR-Net,
particularly for signals arriving at larger angles.
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Figure 3 shows the estimation errors of four high-resolution algorithms compared to
the true values, offering deeper insights into their performance. It is evident that the overall
errors of the proposed SDSR-Net were the smallest, while the other deep-learning-based
methods showed larger errors. Moreover, all methods displayed significant errors near the
edges of the angular interval. Notably, the CNN and DNN algorithms exhibited substantial
error variance, with deviations reaching up to £10°. Outside the edge regions, the error
for SBL was constrained within +0.8°, while the proposed SDSR-Net achieved markedly
lower errors, limited to within +0.2°.

5.2. Performance at Different SNRs

This subsection evaluates the statistical performance of the proposed SDSR-Net using
Monte Carlo trials, comparing its performance with CBF, MVDR, MUSIC, OMP, SBL,
DeepFPC, and DCN. The SNR of the signal ranged from —10 dB to 20 dB in 2 dB intervals,
to assess the DOA estimation capabilities of each method. Root mean square error (RMSE)
was employed as the performance metric:

1 D K PR
RMSE = Wd;k;wk_ek)z (17)

where D, K, 6,‘3, @Z represents the number of Monte Carlo trails, number of angles, the true
value of the k-th angle, and the estimated value of the k-th angle. A smaller value of RMSE
indicates that the angle predicted by the model was closer to the true value.

To ensure the test dataset was distinct from the training dataset, off-grid angles
were used for testing. The angle 6 was defined to range from 0.5° to 60.5° in 1° incre-
ments. To differentiate the test set further, the angle of the first source was specified as
6h = 6 +randn(1,61). For the second source, 20 distinct angle intervals were sampled,
ranging from 0.5° to 10° in 0.5° steps. A total of 100 Monte Carlo trials were conducted, gen-
erating 122,000 signals. The average performance results on the test dataset are illustrated
in Figure 4.

CBF
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—— MUSIC
—6—OMmP
—8—SBL

DeepFPC

DCN
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—
V]

—
fe=}

(=2}
<

The RMSE of DOA estimation (deg)
oo

—10 -5 0 5 10 15 20
SNR (dB)

Figure 4. The RMSE of each method versus SNR.

Figure 4 presents the RMSE of DOA estimation as a function of SNR. The proposed
SDSR network consistently achieved the lowest RMSE across the SNR range from —10
to 20 dB. This superior performance is attributed to the network’s ability to effectively
separate target features from noise. At high SNRs, the performance of the CS-based algo-
rithms, such as the OMP and SBL methods, declined with the SNR, due to the limitations
of their computational grids and signal sparsity. In contrast, the errors of the other methods
remained relatively stable. In the SNR range between —5 dB and 0 dB, the performance of
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all methods, except the SDSR network, significantly deteriorated as the SNR decreased. Re-
markably, the proposed SDSR network maintained a robust performance even in low SNR
scenarios, with noticeable degradation only when the SNR dropped below —5 dB. Even in
such cases, it achieved the smallest DOA estimation errors among all evaluated methods.

To gain deeper insights into the DOA estimation performance of the different methods,
we selected two sets of test data with varying angular intervals. The first set comprised
angles of (43.55°,47.05°) with an angular interval of 3.5°, while the second set included
angles of (37.15°,43.65°) with a wider angular interval of 6.5°. The normalized bearing
recordings for each method are illustrated in Figures 5 and 6.
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Figure 5. DOA estimation in the inter-source angle 3.5° case with a SNR range of —10 dB to 20 dB.
(a) MUSIC, (b) OMP, (c) SBL, (d) DCN, (e) DeepFPC, (f) SDSR.
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Figure 6. DOA estimation in the inter-source angle 6.5° case with a SNR range of —10 dB to 20 dB.
(a) MUSIC, (b) OMP, (c) SBL, (d) DCN, (e) DeepFPC, (f) SDSR.

From Figure 5, it is evident that only SBL, DCN, and the proposed SDSR successfully
achieved separation at an angular interval of 3.5°. However, both SBL and DCN struggled
to resolve the two signal estimations effectively under low SNR conditions. In contrast,
the SDSR method demonstrated a more distinct separation of the two targets in the spatial
domain compared to DCN. Figure 6 illustrates that, at an angular interval of 6.5°, all
methods were capable of accurate DOA estimation at high SNRs. The OMP achieved
a resolution comparable to DeepFPC but exhibited less stability as the SNR decreased.
The SDSR method consistently provided high-precision DOA estimation for both small
and large angular interval targets, whereas the other methods failed to achieve such
precision for small angular intervals, due to resolution limitations and the impact of the
low SNR conditions.

5.3. Performance at Different Angle Separations

This subsection evaluates the performance of the proposed SDSR network under
varying angular intervals between the two sources and compares the RMSE across each
interval with the OMP, SBL, and DCN methods. The experiments were conducted at an
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SNR of 10 dB, with angular intervals ranging from 0.2° to 10° in steps of 0.2°. For each
scenario, the RMSE was computed as the average over 401 samples.

Figure 7 illustrates the RMSE of the DOA estimation for the two sources. The angle
of the first source was 20°, the angle of the second source was larger than the first source.
The results show that OMP, SBL, and the proposed SDSR methods achieved similar RMSEs
at large angle intervals. However, the performance of OMP and SBL degraded rapidly
as the angle interval decreased. Notably, while both the DCN and SDSR methods could
accurately estimate the DOAs in scenarios with small angle intervals, the SDSR method
consistently achieved a lower RMSE.

—+—OMP
—O—SBL
—v— DA-MUSIC
Subspace
—&—DCN
—A— Proposed

10|

0 2 4 6 8 10
Angle interval (deg)

Figure 7. Performance of OMP, SBL, DCN, DA-MUSIC, SubspaceNet, and the proposed SDSR
network on two sources with angle intervals from 0.2° to 10°.

The RMSE of DOA estimation (deg)

To further evaluate the performance, we compared the effect of the angle on the
performance of the proposed method against other methods, using the same angle interval.
The angle interval was set to 4°, with an SNR of 10 dB. The angle of the first source ranged
from 0° to 80°, with a step size of 0.2°. For each value of 6§, the RMS error was averaged
over 50 samples. The results are shown in Figure 8.
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Figure 8. Performance of OMP, SBL, DCN, DA-MUSIC, SubspaceNet, and the proposed SDSR
network on two sources with an angle interval of 4°.
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Figure 8 illustrates that all methods exhibited error growth in the angular edge re-
gion. However, when the estimated angle exceeded 60°, the RMSE of the compressed
sensing-based OMP and SBL algorithms increased rapidly, while the deep-learning-based
algorithms maintained relatively stable errors. In the range of [O°,80°], the RMSE of
our proposed SDSR network remained small, ranging between [1.01°,6.74°], while the
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RMSE of the DCN method ranged between [1.66°,11.29°]. In the angular edge region, the
OMP and SBL methods performed worse, with RMSE values between [1.61°,36.9°] and
[1.13°,25.91°], respectively.

To further demonstrate the DOA estimation performance of the proposed method,
Figure 9 shows a spatial spectrum comparison in one-source and two-source scenarios.
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Figure 9. Spatial spectra in one-source and two-source scenarios with DOA estimation methods. First

row: one-source scenario. Second row: two-source with a small angle interval of 3.6°. Third row:
two-source with a large angle interval of 9°.

This experiment evaluated the performance of the various algorithms in three DOA
estimation scenarios. In the first case, there was a single source, as shown in the first
row of Figure 9, with a true DOA of 21°. In this case, all of the DOA estimation methods
successfully estimated the true value of the target angle, though the conventional meth-
ods exhibited varying levels of beamwidth. However, these errors were avoided by the
high-resolution algorithms based on compressed sensing and deep learning, all of which
achieved a high-accuracy DOA estimation of the target source. The second case involved
two targets with a very small angle interval, as shown in the second row of Figure 9. The
true DOA angles were 26.6° and 30.2°, respectively. In this case, all methods except SBL
and our proposed method could only estimate one target, missing the other one. The third
case involved two targets with a large angle interval, as shown in the third row of Figure 9.
The true DOA angles were 48.8° and 57.8°. In this scenario, the conventional methods
lacked sufficient resolution, leading to errors in both angles.

Figure 9 provides a clear visual representation of the spatial spectrum for all three
cases, highlighting the differences in DOA estimation accuracy between the proposed SDSR
network and the conventional methods. In the one-source scenario, the methods exhibited
varying degrees of resolution, with the SDSR network showing superior performance in
terms of accuracy and noise suppression. In the two-source scenario with small angle inter-
vals, the SDSR network effectively resolved both sources, even with closely spaced sources,
while the other methods struggled with accurate estimation, due to limited resolution or
grid-related issues. The SDSR method also performed well in scenarios with larger angle
intervals, while the conventional methods failed to accurately estimate the DOAs, due to
limited resolution. This comparison emphasizes the effectiveness of the SDSR method in
dealing with complex DOA estimation challenges, particularly in challenging cases where
conventional methods struggle.
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5.4. Experimental Results

To evaluate the DOA estimation performance of our proposed method in a real-world
deep-sea environment, experimental observed signals were chosen for testing. The depth
of the experimental area was approximately 4200 m, and a 16-element VLA spaced at 7.5 m
was deployed near the seafloor. The first hydrophone in the VLA was positioned at a
depth of 4022.5 m. The sampling rate of the observed signals was 16 kHz, with the sources
situated at a depth of 200 m. The target approached the VLA from a distance, moved above
the VLA, and then moved away from it. The initial and final horizontal distances between
the target and the VLA were 7.02 km and 15.85 km, respectively.

To obtain the true values of the arrival paths in this real environment, the acoustic
toolbox Bellhop [32] was used in Matlab to simulate the underwater acoustic multipath
environment. The water sound speed was calculated using the Munk profile, and the
environment parameter settings are listed in Table 2. The simulation setting is depicted in
Figure 10. The eigenrays included the direct path, and the once- and twice-reflected paths
by the surface and bottom of the water.

Surface

Figure 10. The setting of the simulation scenario (SD =200 m, RD = 4022.5 m, and Water Depth = 4200 m).

Table 2. Environment parameter settings.

Parameter Value
Frequency (Hz) 100
Water Depth (m) 4200
Source Depth (m) 200
Receive Depth (m) 4022.5
Array element number 16
Array depth interval (m) 7.5
Bottom Sound Speed (m/s) 1600
Bottom density (g/cm®) 1.6
Bottom attenuation coefficient (dB/A) 0.15

In Bellhop, we could obtain information about the number of paths, and the amplitude
and time delay of each path by setting the marine environmental parameters.

The eigenrays of the two sources that connected the source and receiver are shown in
the left of Figure 11. It can be seen that the signals emitted by the source traveled through
multipath propagation before impinging on the array. The underwater channel impulse
responses of the source generated by Bellhop are depicted in the right of Figure 11. It is
shown that the direct (D) paths were the strongest, the once-reflected paths were the second
strongest, and the multiple-reflected paths had severe energy attenuation. In our simulations,
the paths from —90° to 0° were ignored and only the D and the SR paths were considered,
which dominated the strongest paths.
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Figure 11. The eigenrays and underwater channel impulse responses of the simulation scenario
(SD =200 m, RD = 4022.5 m, and Range = 10 km).

Figure 12 presents the DOA estimation results for real data processed using conven-
tional methods, CS-based methods, and DL-based methods, respectively. These results
allow a direct comparison of the performance of the proposed SDSR method in a challeng-
ing, realistic underwater acoustic setting, demonstrating its ability to effectively estimate
DOAs in dynamic and complex environments.
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Figure 12. DOA estimation of MUSIC, OMP, DeepFPC, SBL, DCN, and proposed SDSR network on
the experimentally observed data. The blue dots in the figures represent the true value of the angle of
the SR path, and the yellow dots represent the true value of the angle of the D path.

From Figure 12, it is illustrated that all methods were able to estimate the spatial
trajectory of the target during its motion. However, it is worth noting that, when the target
angle lay in the direction of the VLA endfire, all methods struggled to discriminate between
the direct (D) path and the surface reflection (SR) path. In this case, besides the sound
from the D path, there was another energetic sound arriving at the VLA from the SR path.
Despite this, the DOA estimation results from the conventional methods and compressed
sensing-based methods failed to capture the multipath information.

In contrast, the deep-learning-based methods successfully show the separation of
the multipath signals. Among these methods, our proposed SDSR method exhibited the
highest accuracy in estimating the DOAs of both the direct and surface reflection paths.
This demonstrates the effectiveness of the SDSR model in handling complex scenarios
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where multipath interference occurs, particularly in underwater acoustic environments
where the presence of such multipaths can significantly complicate the estimation task.

6. Conclusions

In this paper, we proposed an efficient sparsity-based DOA estimation algorithm. The
core idea involves transforming the DOA estimation problem into a sparse linear inverse
problem using a spatially overcomplete formulation. We then described the structure and
training procedure of the SDSR network, which significantly improved the spatial resolution
in DOA estimation and demonstrated robust performance under low SNR conditions.

Compared to conventional iterative-based sparse recovery algorithms, the SDSR-Net
requires only feedforward calculations, enabling real-time direction finding, which is crucial
for many practical applications. Additionally, the deep residual shrinkage network integrates
the shrinkage modules as trainable components, allowing it to automatically adjust the
thresholds, without needing expert knowledge of signal processing. This feature not only
simplifies the system but also enhances the model’s adaptability to various scenarios.

The learning and generalization abilities of the shrinkage module contribute to its com-
petitive, and often superior, performance in DOA estimation, especially under challenging
conditions such as low SNR of —10 dB or angle separations as small as 0.2°. The results
from both simulations and real-world experiments clearly demonstrated the superiority of
the proposed method over existing techniques.
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