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Abstract: Underwater object detection using side-scan sonar (SSS) remains a significant
challenge in marine exploration, especially for small objects. Conventional methods for
small object detection face various obstacles, such as difficulties in feature extraction and
the considerable impact of noise on detection accuracy. To address these issues, this
study proposes an improved YOLOv11 network named YOLOv11-SDC. Specifically,a
new Sparse Feature (SF) module is proposed, replacing the Spatial Pyramid Pooling Fast
(SPPF) module from the original YOLOv11 architecture to enhance object feature selection.
Furthermore, the proposed YOLOv11-SDC integrates a Dilated Reparam Block (DRB) with
a C3k2 module to broaden the model’s receptive field. A Content-Guided Attention Fusion
(CGAF) module is also incorporated prior to the detection module to assign appropriate
weights to various feature maps, thereby emphasizing the relevant object information.
Experimental results clearly demonstrate the superiority of YOLOv11-SDC over several
iterations of YOLO versions in detection performance. The proposed method was validated
through extensive real-world experiments, yielding a precision of 0.934, recall of 0.698,
mAP@0.5 of 0.825, and mAP@0.5:0.95 of 0.598. In conclusion, the improved YOLOv11-SDC
offers a promising solution for detecting small objects in SSS images, showing substantial
potential for marine applications.

Keywords: underwater small object detection; computer vision; YOLOv11

1. Introduction
The ocean, which covers most of the Earth’s surface, plays a vital role in numerous

fields, including marine research, resource exploration, and military operations [1]. Detect-
ing small underwater objects has become a crucial task with various applications, such as
marine archaeological exploration, environmental monitoring, and underwater defense
systems [2–4]. Small objects often have weak acoustic signatures, making them susceptible
to being masked by noise or complex seabed structures, presenting significant challenges
for detection systems. Accurate and efficient detection of these objects is essential for ensur-
ing maritime safety, advancing scientific research, and supporting underwater operations
in complex environments.

Side-scan sonar (SSS) has emerged as an ideal solution for large-scale marine detection
due to its wide coverage, high resolution, and reliable imaging capabilities [5–9]. Conven-
tional methods for detecting small objects typically rely on the manual interpretation of
sonar images to identify objects. This approach is not only time-consuming but also highly
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dependent on the operator’s expertise, resulting in inconsistent outcomes and limited
scalability. Moreover, the complex underwater environment, characterized by noise, clutter,
and varying seabed conditions, presents considerable challenges to manual detection.

To address these challenges, the integration of SSS imaging with advanced automated
detection techniques presents a promising approach to enhancing the precision and ef-
ficiency of small object detection. Detection is typically carried out using sonar systems
mounted on the hull of a ship or an underwater vehicle [10]. Sonar images produced by
SSS provide detailed morphological data of underwater objects. When combined with
sophisticated object detection algorithms, SSS images enable high-accuracy, automated
object detection. As a result, research into autonomous small object detection using SSS
imagery has attracted increasing interest in recent years.

For an extended period, research on autonomous SSS object detection has primarily fo-
cused on conventional methods [11,12]. In two-dimensional sonar images, objects generate
prominent backscatter echoes, which appear as bright regions in the sonar image. Addition-
ally, the obstruction of objects causes shadow regions behind them, where sound waves are
blocked. The interaction between bright regions and shadows is a conjugate phenomenon,
where the position of the shadow is geometrically related to both the bright region and the
sonar’s height [13–15]. This feature can be exploited for effective object detection.

Traditional underwater small object detection algorithms typically involve the stages
of feature extraction followed by classification [16]. Initially, regions of interest are extracted
from sonar images, isolating the object areas. Next, the segmented regions are used to
extract features. Finally, a classifier categorizes and identifies these extracted features.

Lopera et al. [17] first applied anisotropic diffusion filtering to reduce noise, then used
morphological methods to segment bright and shadow regions. They subsequently applied
fuzzy morphological techniques to refine the segmentation. By combining over 30 features,
including area, contours, and circumscribed ellipses, they used a Markov Chain Monte
Carlo algorithm to identify mine-like objects in both real and simulated datasets. However,
the Markov Chain Monte Carlo algorithm, while effective, is computationally intensive
and not suitable for real-time applications.

Grasso and Spina [18] proposed a non-parametric detection method based on mathe-
matical morphology to detect and estimate the density of small bottom objects in side-scan
sonar images. They addressed the challenge of noise interference across various seabed
types by designing a system that employs nonlinear filtering to estimate the seabed sig-
nal envelope. This approach enabled the segmentation of bright and shadow regions in
high-resolution images. To reduce false alarms caused by seabed disturbances, the method
considers the spatial proximity of bright and shadow regions as a necessary condition
for object presence. However, while the approach demonstrates robustness to seabed
disturbances, it requires manual adjustment of the window size of the morphological
operation and shadow distance threshold for different seabed types, highlighting its lack
of adaptability.

Over the past decade, the adoption of deep learning in this field of research has steadily
increased [19–22]. Yamada et al. [23] extracted canonical correlation features for buried
objects using a dual-channel standard coordinate decomposition method. They applied
various multi-aspect decision-level fusion techniques and employed a backpropagation
neural network to classify mines and mine-like objects among non-mine objects. However,
although multi-aspect decision-level fusion techniques can improve classification accuracy,
their reliance on images from multiple viewpoints reduces the applicability of the method.

Zhu et al. [24] proposed an automated object detection method based on deep learn-
ing in underwater SSS images. The study integrates a pre-trained convolutional neural
network with a support vector machine to achieve feature extraction and classification of
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sonar objects. Initially, SSS images are preprocessed using downsampling and histogram
equalization. During the detection stage, a matched filter is applied to segment the bright
and shadow regions of potential objects, identifying candidate regions. In the classification
stage, AlexNet is employed to extract high-dimensional feature vectors from each candidate
region. These features are then classified as objects and non-objects using a linear SVM.
The matched filter design assumes that objects exhibit distinct bright and shadow regions
with a fixed spatial relationship. However, under complex conditions such as non-uniform
seabeds or weakly reflective objects, this assumption leads to missed detections.

To address the recurring problem of low precision and recall in small object detection
tasks using SSS, this study aims to improve the YOLOv11 model, proposing an enhanced
version termed YOLOv11-SDC. Experiments conducted on the SIMD dataset validate the
effectiveness of the proposed model. The primary contributions of this study are outlined
as follows:

1. A new Sparse Feature (SF) module is proposed, which utilizes feature importance
ranking and channel pruning to better focus on key object features in SSS images.

2. A Dilated Reparam Block (DRB) module [25] is introduced and integrated with the
newly developed C3k2 module in YOLOv11. This combination expands the receptive
field and enhances the model’s ability to capture object features.

3. A Content-Guided Attention Fusion (CGAF) module [26] is incorporated to further
improve detection performance through multi-scale feature fusion and weighting.

2. Related Works
Numerous researchers have investigated enhancements in underwater small object

detection using YOLO-based methods. Fu et al. [27] introduced an improved YOLOv5
model for small objects detection in SSS images. They addressed high rates of missed
detections and false alarms by re-clustering anchor boxes using K-means, adding a spe-
cialized detection layer for shallow features, and incorporating SE and CBAM attention
mechanisms to improve feature extraction. However, adding a dedicated shallow feature
detection layer also introduces additional noise, making the model’s effectiveness more
dependent on the quality of the dataset.

Zhang et al. [28] proposed an enhanced YOLOv7-based approach for detecting small
objects in side-scan sonar images. Their method integrates a dedicated detection layer,
dual attention mechanisms, and a BiFPN structure for feature recombination. However,
the absence of dynamic feature selection limits its ability to emphasize subtle and weak
features of small objects, reducing its effectiveness in capturing fine details.

Tang et al. [29] developed an improved underwater object detection model based on
YOLOv8 for SSS images. Their approach incorporates three key innovations: a shallow
robust feature downsampling module for optimizing shallow feature maps, receptive field
convolution to maintain semantic information during downsampling, and a Dysample
module for enhancing feature fusion accuracy in the Feature Pyramid Network (FPN).
Nevertheless, RFCAConv does not prioritize feature importance at the channel level, which
results in critical object details being missed.

Santos et al. [30] introduced an SSS mine dataset containing numerous small under-
water objects. The authors applied YOLOv4 to this dataset, achieving 82% precision, 64%
recall, and 75% mAP in their experiments. In comparison, YOLOv11 is a newer version of
the object detection network. Rahima et al. [31] proposed YOLOv11, making architectural
improvements to the YOLO framework and achieving better object detection performance.
As illustrated in Figure 1, YOLOv11 builds upon YOLOv8 [32], incorporating the C2PSA
and C3k2 modules while maintaining the SPPF.
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Figure 1. Main modules of YOLOv11.

As illustrated in Figure 2, YOLOv11 is organized into four key modules: input,
backbone, neck, and head modules.
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Figure 2. The network structure of YOLOv11.

The input module of YOLOv11 builds upon the adaptive anchor computation tech-
nique from YOLOv8 while integrating advanced augmentation methods such as mosaic
and mixup. By adopting an anchor-free framework, YOLOv11 eliminates the need for
explicit anchor computations, enabling flexible handling of varying input resolutions. Input
images are standardized, typically resized to a resolution of 640 × 640 pixels, ensuring that
the backbone network processes consistently scaled, high-quality data.

Serving as the central component of YOLOv11, the backbone is responsible for ex-
tracting multi-scale features from the input images. Similar to YOLOv8, YOLOv11 uses
convolutional layers to downsample images, reducing spatial dimensions while increasing
channel depth. However, YOLOv11 introduces the C3k2 module, replacing the C2f module
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from YOLOv8. Additionally, the C2PSA module is included after the SPPF module to
enhance spatial attention in feature maps.

The neck module in YOLOv11 uses the C3k2 module to process features at multiple
scales, allowing for more detailed feature extraction. The flexibility of the C3k2 module is
evident in its parameterization: when set to false, it adopts a structure similar to the C2f
module, whereas when set to true, it replaces the bottleneck with the C3 module.

The head module refines the bounding-box predictions by using distributed focal loss,
which enhances the precision of predictions from a probabilistic perspective. The discrete
predictions produced by the network are mapped back into continuous coordinate space,
generating the final detection bounding boxes.

Experiments conducted with YOLOv11 on the SIMD dataset resulted in a precision of
79.1%, a recall of 65.7%, an mAP@0.5 of 71.9%, and an mAP@0.5:0.95 of 45.8%.

3. The Proposed YOLOv11-SDC Model
This section introduces the network architecture of the proposed YOLOv11-SDC

and provides a mathematical analysis of the roles played by the SF, DRB, and CGAF
modules within the network. The practical impact of these modules on feature extraction is
demonstrated using visualized heatmaps.

3.1. Network Structure

Although YOLOv11 demonstrates improvements in objects detection, it still faces
challenges in focusing on the critical features of small objects in SSS images. Specifically,
YOLOv11 struggles with identifying key features of small objects, has an insufficient
receptive field for precise detection, and exhibits limited capability in feature extraction
after multi-scale feature fusion.

To overcome these limitations, we propose YOLOv11-SDC, an enhancement of the
YOLOv11 model. In YOLOv11-SDC, a new feature selection method, SF, replaces the SPPF
module present in YOLOv11. While the SPPF module helps enhance the receptive field
and feature representation through multi-scale pooling, it does not specifically focus on
channel selection [33]. On the other hand, the SF module selects the most discriminative
channels during forward propagation, effectively reducing feature redundancy. Given
the background noise and subtle object features commonly found in SSS images, targeted
channel selection enables the model to focus on important feature channels, improving
feature contrast. By retaining only the most relevant channels, the SF module refines feature
maps before they are processed by the subsequent convolution and detection layers. This
feature sparsification helps reduce overfitting risk and enhances robustness in various
marine environments.

YOLOv11-SDC also integrates the DRB module into the C3k2 module. By stack-
ing multi-scale dilated convolutions and applying post-aggregation parameter restruc-
turing, DRB combines multiple convolution branches into a large-kernel convolution.
This technique expands the receptive field, allowing the model to capture finer object
details in SSS images more effectively. Additionally, YOLOv11-SDC includes the CGAF
module. Traditional feature fusion methods often overlook the varying importance of
different feature sources and are vulnerable to noise interference. The CGAF module,
utilizing a multi-attention mechanism, adaptively assigns weights to channels, spatial
locations, and individual pixels, highlighting meaningful object features while minimizing
irrelevant information.

The architecture of the YOLOv11-SDC model is presented in Figure 3.
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Figure 3. The network structure of YOLOv11-SDC.

3.2. SF Module

Since YOLOv11 fails to emphasize the critical features of small objects, we introduce
the SF module. The SF module highlights the most relevant channels, thereby improving
the representation of essential features within an image. By incorporating global attention,
channel selection, and dimensionality reduction, SF enhances the neural network’s focus
on the object. The architecture of the SF module is shown in Figure 4, where H and W
represent the spatial dimensions of the input feature map and C indicates the number of
input channels.

Input
Feature

Global
AvegPool

Importance 
Rank

Channel 
Pruning

Refined
Feature

H×W×C H×W×Cselected

Figure 4. The structure of the SF module.

The SF module includes three key components: global feature aggregation, channel im-
portance ranking, and channel pruning. During the global feature aggregation step, global
average pooling [34–36] is applied to each channel to create a global feature representation.
The global feature for each channel is represented by yc, as shown in Equation (1), where
xc(i, j) denotes the pixel value of channel c at position (i, j) and yc is the global feature of
the channel (c).

yc =
1

H × W

H

∑
i=1

W

∑
j=1

xc(i, j), c ∈ [1, C] (1)

To make better use of the information derived from global average pooling, the average
value of the global features for each channel is calculated, then ranked. This process is
described in Equation (2).

µc =
1
B

B

∑
b=1

yc, b ∈ [1, B] (2)

where B represents the batch size and b is the index of the batch. µc indicates the average
feature of the c-th channel across the entire batch, with a matrix size of C, where each
element corresponds to the global feature value of a channel. Next, the channels are ranked
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based on their global features, and the k channels with the highest feature values are chosen.
The feature values (Sk) of these selected k channels are then calculated using Equation (3).

Sk = Select(yc, k) (3)

The output feature map is created by using the indices (ci) of the selected key channels.
This process entails choosing the most significant channels from the original feature map
and setting all other channels to zero. Sc′ denotes the feature value of the c-th channel in
the resulting output feature map. This operation is outlined in Equation (4).

Sc
′ =

{
Sc c = ci

0 else
(4)

The output feature map Y is reconstructed using Equation (5).

Y = [S′
1, S′

2, . . . , S′
c] (5)

To further demonstrate the practical impact of the SF module on feature extraction,
we conducted a heatmap visualization comparison between YOLOv11s and YOLOv11s-SF,
which incorporates the SF module, as shown in Figure 5. The heatmap overlays the model’s
attention distribution on the original image, providing an intuitive display of the areas the
model considers important during detection. In the heatmap, the color intensity represents
the level of attention, with brighter colors indicating higher attention and a higher likeli-
hood of containing objects. This visualization not only verifies whether the model correctly
focuses on the object regions but also reveals potential areas of false detection.

(a) (c) (b) 

Figure 5. Heatmap comparison, where warm colors indicate higher confidence and cool colors
indicate lower confidence: (a) original image; (b) YOLOv11s; (c) YOLOv11s-SF.

In the example shown in Figure 5, both YOLOv11s and YOLOv11s-SF successfully
detect the objects in the SSS image. However, unlike the heatmap of YOLOv11s, which
shows bright areas in the background, the heatmap of YOLOv11s-SF concentrates its bright
regions exclusively on the objects. This visualization further illustrates the role of the SF
module in channel importance ranking and channel pruning, highlighting its effectiveness
in extracting key features of the objects while reducing background interference.

3.3. DRB Module

To overcome the issue of a limited receptive field in YOLOv11 for the detection of small
objects, we introduce the DRB module. This module combines dilated convolutions [37]
with reparameterization [38] techniques to improve the model’s feature representation
ability. Dilated convolution increases the receptive field [39] by adding gaps between
elements in the convolution kernel, without introducing additional parameters.
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As depicted in Figure 6, (a) uses a dilated convolution with a dilation rate of 1,
providing each element with a receptive field of 3 × 3; (b) applies a dilation rate of 2,
resulting in a receptive field of 7 × 7 for each element; and (c) uses a dilation rate of 4,
achieving a receptive field of 15 × 15 per element.

(a) 1-dilated convolution (b) 2-dilated convolution (c) 3-dilated convolution

Figure 6. Receptive field of l-dilated convolutions, where blue represents the range of the recep-
tive field.

In DRB, the reparameterization process primarily involves converting the complex
multi-branch structure used during training into a more efficient single-branch structure
for the inference phase, which is achieved through a series of mathematical transformations
and the merging of parameters.

During training, the DRB comprises multiple parallel dilated convolution branches,
each with different dilation rates and kernel sizes. Specifically, we define Conv0 as the orig-
inal convolution branch with weights of W0, and bias b0 refers to the batch normalization
(BN) [40] layer following the backbone branch, characterized by parameters of γ0, β0, µ0,
and σ0. Convk,r denotes the k-th parallel dilated convolution branch with a dilation rate of r
and weights of Wk,r. Similarly, BNk,r represents the BN layer following each parallel branch,
with parameters of γk,r, βk,r, and σk,r. The input and output feature maps are denoted as
x and y, respectively, and are assumed to have dimensions of x, y ∈ RB×C×H×W . Here, B
represents the batch size, C is the number of channels, and H and W correspond to the
height and width of the feature maps, respectively. In the training phase, the output (y) of
the DRB is defined as Equation (6).

y = BN0(Conv0(x)) + ∑
k,r

BNk,r(Convk,r(x)) (6)

Each branch’s convolution operation is described in Equation (7).{
Conv0(x) = W0 ∗ x + b0

Convk,r(x) = Wk,r ∗ x
(7)

To streamline the model and enhance inference efficiency, DRB merges BN layers with
convolution layers in each convolution branch. The output of the BN layer for each branch
is defined in Equation (8).

BN(Conv(x)) = γ
Conv(x)− µ√

σ2 + ϵ
+ β (8)

In Equation (8), ϵ is a small constant added to prevent division by zero. After the BN
layer is fused with the convolution layer, the equivalent convolution layer parameters are
obtained, as shown in Equation (9).
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W ′ = γ W√
σ2+ϵ

b′ = γ
(

b−µ√
σ2+ϵ

)
+ β

(9)

During the inference phase, DRB merges fused convolution branches into a single
convolution layer. All branch convolution kernels (W0′ and Wk,r) are superimposed onto
a larger convolution kernel, and the bias terms (b0′), so bk,r′ is accumulated. The merged
single convolution layer has weights of Wd, as illustrated in Equation (10).Wd = W ′

0 + ∑k,r W ′
k,r ⊙ Mk,r

bd = b′0 + ∑k,r b′k,r

(10)

where ⊙ denotes elementwise addition and Mk,r is a matrix used to embed convolution
kernels (Wk,r′) with different dilation rates into a larger convolution kernel (Wd), ensuring
that the convolution operations of each branch do not spatially overlap. The output of DRB
during the inference phase, denoted as Y, is presented in Equation (11).

Y = Wd ∗ x + bd (11)

Figure 7 illustrates the differences in attention between YOLOv11s and YOLOv11s-
DRB, which incorporates the DRB module. The comparison shows that, compared to
YOLOv11s, YOLOv11s-DRB expands the receptive field to capture a broader range of input
features, enabling it to better capture global information. As a result, it more accurately
identifies the central positions of objects and reduces background interference.

(a) (b) (c) 

Figure 7. Heatmap comparison, where warm colors indicate higher confidence and cool colors
indicate lower confidence: (a) original image; (b) YOLOv11s; (c) YOLOv11s-DRB.

3.4. CGAF Module

To address the insufficient feature extraction capability of YOLOv11 after multi-scale
feature fusion, we introduce the CGAF module. The core idea of the CGAF module is to
extract attention weights across multiple scales and dimensions, then fuse two input feature
maps to generate the output feature map. CGAF consists of three components: spatial
attention (SA), channel attention (CA), and pixel attention (PA). The input feature map is
assumed to be x, y ∈ RB×C×H×W . As defined in Equation (12), an elementwise addition of
x and y is performed to form X. All subsequent attention computations (SA/CA/PA) are
based on X. Finally, the learned attention map is used to fuse x and y again.

X = x + y (12)
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SA aims to identify the most relevant spatial locations in the input feature map
for further processing. This is accomplished by combining average-pooled and max-
pooled [41] feature maps along the spatial dimension, followed by convolution to produce
a spatial attention map. Initially, channel-wise average pooling, as defined in Equation (13),
is applied to reduce the information from C channels into a single-channel representation.

Xavg(b, 1, h, w) =
1
C

C

∑
c=1

X(b, c, h, w) (13)

Subsequently, channel-wise max pooling, as described in Equation (14), is carried out
to determine the maximum activation value at each spatial position across all channels,
resulting in an additional single-channel feature map.

Xmax(b, 1, h, w) = max
c=1,...,C

X(b, c, h, w) (14)

The average-pooled and max-pooled feature maps are subsequently merged along the
channel dimension, as shown in Equation (15).

Xconcat = concat(Xavg, Xmax) (15)

Finally, a convolution is applied to Xconcat. The convolution kernel slides over the
H× spatial dimensions, blending and weighting the information from Xavg and Xmax.
By learning the parameters (Ws) and the bias (bs), the convolution kernel automatically
determines the optimal weighting scheme. This produces the output feature map (Spos),
which captures the importance of each spatial location, as defined in Equation (16).

Spos = Ws ∗ Xconcat + bs, Spos ∈ RB×1×H×W (16)

Based on this, SA offers a combined representation of the “overall intensity” and “local
saliency” at each spatial position.

Since different channels in the input feature map often capture distinct feature patterns
or semantic information, not all channels hold the same level of importance for a specific
task. CA evaluates the relative importance of each channel by first calculating the global
activation strength through global average pooling. It then applies a sequence of dimen-
sionality reduction, non-linear activation, and dimensionality expansion, allowing the
model to learn channel relationships and assign varying weights. Specifically, as defined
in Equation (17), CA computes the average of the input feature map (X) along the spatial
dimensions to produce Xs.

Xs(b, c, 1, 1) =
1

H × W

H

∑
h=1

W

∑
w=1

X(b, c, h, w), Xs ∈ RB×C×1×1 (17)

A two-layer 1 × 1 convolutional network is then applied to the channels. The first
convolutional layer, as defined in Equation (18), reduces the dimensionality from C to
C/r, thereby decreasing the number of parameters and helping to prevent overfitting.

Wc1 ∈ R
C
r ×C×1×1 and bc1 ∈ R

C
r are the weights and biases of the first 1 × 1 convolutional

layer, while U ∈ RB×C
r ×1×1 denotes its output. r is a hyperparameter known as the

reduction ratio. It controls how much the channel dimension C is compressed before
being restored to its original size, thereby reducing both the model’s parameters and
computational cost.

U = Wc1 × Xs + bc1, U ∈ RB×( C
r )×1×1 (18)
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As defined in Equation (19), this is followed by a ReLU [42] activation function, which
enhances the model’s non-linear fitting ability.

U′ = ReLU(U) (19)

Finally, as defined in Equation (20), the second convolutional layer is employed to
restore the dimensionality back to the original channel count (C), producing the channel

attention weights (Cch) for the input feature map. Similarly, Wc2 ∈ RC×C
r ×1×1 and bc2 ∈ RC

correspond to the second 1 × 1 convolutional layer.

Cch = Wc2 × U′ + bc2, Cch ∈ RB×C×1×1 (20)

Channel attention and spatial attention are combined. This results in an initial
pixel attention map (P1). As defined in Equation (21), it considers both channel and
spatial dimensions.

P1 = Spos + Cch (21)

Then, X and P1 are concatenated along the channel dimension. For each sample (b),
channel (c), and spatial position (

(
h, w

)
), a two-channel vector is constructed to form

Z′ ∈ RB×2C×H×W . A learnable linear mapping is then applied to Z′. In the experiment, the
mapping is implemented via a convolution operation with a kernel size of 7 × 7. For the
c-th channel of the output, the convolution uses parameters of Wc ∈ R2×7×7 and bias (bc).
As defined in Equation (22), when the center of the convolution kernel aligns with position(

h, w
)

, the linear response at
(

h, w
)

is given by

Lc(b, h, w) =
2

∑
i=1

3

∑
u=−3

3

∑
v=−3

Wc(i, u, v) · Z′(b, 2c + i, h + u, w + v) + bc. (22)

(
u, ν

)
ranges from −3 to 3, representing the 7 × 7 neighborhood centered at

(
h, w

)
.

One channel of Z′ is derived from X, and the other is derived from P1. The mapping
for each channel is performed independently. Finally, as defined in Equation (23), a
sigmoid function [43] is applied to the linear response (Lc(b, h, w)) to convert it into an
attention weight.

P2(b, c, h, w) = σ(Lc(b, h, w)) =
1

1 + e−Lc(b,h,w)
(23)

For the input feature map (x, y ∈ RB×C×H×W), the features are uniformly com-
bined via x + y. The result is further fused with P2 through Equation (24) (◦ represents
elementwise multiplication).

P3 = X + P2 ◦ x + (1 − P2) ◦ y (24)

Finally, a 1 × 1 convolution is applied to P3 for a linear mapping.
With the introduction of the CGAF module, YOLOv11s was extended to form

YOLOv11s-CGAF. As shown in Figure 8, the addition of the CGAF module enables the
model to effectively reduce attention on background regions through multi-scale feature
fusion and weighting. The bright regions in the heatmap are more concentrated on the
object locations. Compared to YOLOv11s, YOLOv11s-CGAF demonstrates a more precise
distribution of bright regions, along with a significant improvement in object recogni-
tion confidence.
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(a) (b) (c) 

Figure 8. Heatmap comparison, where warm colors indicate higher confidence and cool colors
indicate lower confidence: (a) original image; (b) YOLOv11s; (c) YOLOv11s-CGAF.

4. Experiments
This section presents the evaluation metrics used in the experiments, the hardware

and hyperparameter configurations, and the dataset. It also determines the optimal num-
ber of feature channels retained by the SF module. Furthermore, ablation experiments
demonstrate the superiority of the proposed YOLOv11-SDC.

4.1. Model Evaluation Metrics

In object detection tasks, performance metrics such as Intersection over Union(IoU) [44],
precision [45], recall [46], and mAP [47] are commonly used to evaluate a model’s perfor-
mance on a given dataset. During experiments, the model predicts a set of bounding boxes
for the input images, each with an associated confidence score. In the object detection
process, the predicted bounding boxes are compared and matched with the ground-truth
bounding boxes to evaluate prediction accuracy. As defined in Equation (25), the IoU metric
is calculated as the ratio of the overlap between the predicted and ground-truth boxes to
the area of their union.

IOU =
DetectionResult ∩ GroudTruth
DetectionResult ∪ GroudTruth

(25)

Precision quantifies the proportion of true-positive predictions among all predicted
instances. After setting an IoU threshold (0.25 in our experiment), the predicted bounding
boxes are matched with the ground-truth boxes. A prediction is considered a true positive
(TP) if the predicted bounding box meets the IoU threshold and the predicted category is
correct. If the model predicts an object that is not present in the ground truth or assigns
the wrong category, the prediction is considered a false positive (FP). Conversely, if a
ground-truth object is not detected by the model, it is categorized as a false negative (FN).
The definition of precision is expressed as Equation (26).

Precision =
TP

TP + FP
(26)

Recall measures the model’s ability to identify all true targets in an image. It calculates
the proportion of ground-truth objects successfully detected by the model. The definition
of recall is expressed as Equation (27).

Recall =
TP

TP + FN
(27)

The Precision–Recall (PR) curve represents the trade-off between the precision of
correctly identifying positive instances and the recall of detecting all positive instances. In
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this curve, precision is plotted on the vertical axis, while recall is shown on the horizontal
axis. Average Precision (AP) [48] represents the area under the PR curve, condensing it into
a single scalar value. The definition of AP is expressed as Equation (28).

AP =
∫ 1

0
Precision(Recall)dRecall (28)

For tasks with multiple object categories, average precision (AP) is computed indi-
vidually for each category. The mAP is then derived by averaging the AP values across
all categories. The definition of mAP is expressed as Equation (29), where N is the total
number of categories.

mAP =
1
N

N

∑
i=1

APi (29)

4.2. Experimental Environment

The experiment was carried out on a Windows 11 operating system, using PyCharm as
the development environment. The YOLOv11s framework from Ultralytics was modified
and optimized to address the challenges associated with object detection in SSS images.
The hardware configuration used in the experiment is provided in Table 1.

Table 1. Hardware configuration.

Name Configuration

CPU Intel(R) Core(TM) i9-14900KF
GPU NVIDIA GeForce RTX 4090 D

Memory 96GB

The software configuration is shown in Table 2.

Table 2. Software configuration.

Name Configuration

Python 3.10.14
Pytorch 2.2.2
CUDA 12.1

4.3. Model Hyperparameter Settings

The hyperparameters used for training are shown in Table 3.

Table 3. Hyperparameter settings.

Parameter Configuration

Learning rate 0.009
Weight decay 0.0005

Batch size 32
Optimizer SGD
Image size 640 × 640

Epochs 600

Figure 9 illustrates the impact of different numbers of training epochs on the model’s
performance. Through experimental validation, 600 epochs were identified as the most
suitable number of training iterations.
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Figure 9. Evaluation metrics with different numbers of epochs.

4.4. Number of Feature Channels Retained by the SF Module

As introduced in Section 3.2, the SF module enhances the focus on key object features
through channel importance ranking and pruning. Therefore, the number of retained
feature channels impacts the model’s detection performance. As shown in Table 4, we
conducted experiments to evaluate YOLOv11s-SDC’s performance in terms of precision,
recall, mAP@0.5, and mAP@0.5:0.95 by retaining 16, 24, 32, 40, and 48 channels, respectively.

Table 4. Comparison of evaluation metrics with different numbers of retained feature channels.

Number Precision Recall map@0.5 map@0.5:0.95

16 0.899 0.701 0.771 0.546
24 0.892 0.709 0.786 0.576
32 0.934 0.698 0.825 0.598
40 0.908 0.708 0.822 0.596
48 0.867 0.701 0.807 0.58

The experimental results show that the model’s detection performance is similar
when retaining 16 and 24 channels. When the number of retained channels increases to
32, the precision of YOLOv11-SDC improves by 3.5% and 4.2% compared to retaining 16
and 24 channels, respectively, while the recall decreases by 0.3% and 1.1%. Additionally,
mAP@0.5 improves by 5.4% and 3.9%, and mAP@0.5:0.95 increases by 5.2% and 2.2%.

As the number of retained channels increases to 40, the recall improves by 1% com-
pared to retaining 32 channels, but the other three metrics decline, with precision notably
dropping by 3%. When the number of retained channels further increases to 48, all four
metrics decrease compared to retaining 40 channels.

The significant improvement in precision and the slight decrease in recall when
retaining 32 channels indicate that the model achieves a better balance between precision
and recall. Moreover, the mAP@0.5 and mAP@0.5:0.95 values reach their highest levels
under this configuration. Therefore, we selected 32 as the number of retained feature
channels for the experiment.
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4.5. The SIMD Dataset

The SIMD dataset utilized in this study was obtained from https://figshare.com/
articles/dataset/i_Side-scan_sonar_imaging_for_Mine_detection_i/24574879 (accessed on
28 October 2024). It contains 1170 SSS images collected by an AUV equipped with SSS, of
which 304 include objects. Since the original dataset has already been augmented by the
authors, only 154 of the 304 object-containing images are unprocessed SSS images.

To ensure the reliability of detection performance, the 154 unprocessed images were
divided into training, validation, and testing sets in a 70:15:15 ratio, while the remaining
augmented images were added to the training set. The basic configuration of the dataset is
shown in Table 5.

Table 5. Dataset split settings.

Dataset Images Instances

Train 1123 558
Test 24 55
Val 23 54

The object distribution within the dataset is illustrated in Figure 10.

(a) (b) (c)

Figure 10. The statistical results of the SIMD dataset: (a) bar chart of object counts by category;
(b) normalized distribution of object locations; (c) normalized distribution of object sizes.

4.6. Experimental Results and Analysis

The proposed YOLOv11s-SDC model was tested on the dataset presented in Section 4.3
to evaluate its performance. After 600 training epochs, the model achieved convergence. As
illustrated in Figure 11, box_loss measures the difference between the predicted and ground-
truth bounding boxes, with smaller values indicating better detection accuracy. cls_loss
assesses the gap between the predicted and true class labels, where lower values reflect
improved classification accuracy. Moreover, dfl_loss converts the continuous coordinate
prediction task into a discrete probability distribution prediction, enabling more accurate
localization of coordinates. Smaller values indicate superior prediction accuracy.

As depicted in Figure 12, the YOLOv11s-SDC model exhibits significant enhancements
in object detection for SSS compared to the original YOLOv11s. Notably, the accuracy for
MICLO rose by 5.1%, while NOMBO experienced an impressive increase of 16.1%. Overall,
the accuracy across all categories, evaluated using the mAP@0.5 metric, improved by 10.6%.

Additionally, this study compares the proposed model with several popular models,
including YOLOv5s, YOLOv8s, YOLOv9s, YOLOv10s, and YOLOv11s, evaluating its
superiority in four evaluation metrics.

The experimental results, displayed in Figure 13, highlight that YOLOv11s-SDC out-
performs all other models across these four metrics at every training stage. The performance

https://figshare.com/articles/dataset/i_Side-scan_sonar_imaging_for_Mine_detection_i/24574879
https://figshare.com/articles/dataset/i_Side-scan_sonar_imaging_for_Mine_detection_i/24574879
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curves of YOLOv9s and YOLOv8s are relatively similar, with the two models showing close
metrics after convergence in the later stages of training. Except for recall, the three other
metrics of these two models are only slightly below those of YOLOv11s-SDC. YOLOv11s
achieves a higher recall but exhibits the lowest precision, reflecting the model’s inability to
balance precision and recall effectively. The overall performance of YOLOv5s is slightly
lower than that of YOLOv8s, YOLOv9s, and YOLOv11s. YOLOv10s shows low perfor-
mance across all four metrics during most of the training stages, making it the least effective
model in this experiment, with noticeable gaps in recall and mAP@0.5 compared to the
other models.

Figure 11. Training and validation losses and metric progression.

(a)
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(b)

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 12. Precision–recall curve: (a) YOLOv11s-SDC; (b) YOLOv11s.

It is important to note that the authors of the SIMD dataset achieved 82% precision, 64%
recall, and 75% mAP in their experiments. In comparison, our experiment achieved 93.4%
precision, 70.1% recall, and 82.4% mAP, further emphasizing the superior performance of
the proposed YOLOv11-SDC model.
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Figure 13. Evaluation and comparison of metric curves of YOLOv11s-SDC and baseline models.

4.7. Ablation Experiments

Ablation experiments were performed to further assess the performance improve-
ments resulting from the integration of the SF, DRB, and CGAF modules into the YOLOv11s-
SDC model. The study examined the training performance of the YOLOv11s, YOLOv11s-SF,
YOLOv11s-DRB, YOLOv11s-CGAF, YOLOv11s-SF+DRB, YOLOv11s-SF+CGAF, YOLOv11s-
DRB+CGAF, and YOLOv11s-SDC models across four evaluation metrics.

As seen in Figure 14, introducing the SF, DRB, and CGAF modules into YOLOv11s indi-
vidually results in performance improvements across most evaluation metrics, particularly
precision, compared to YOLOv11s. The only exception is that YOLOv11s-CGAF shows
a slightly lower recall than YOLOv11s. YOLOv11s-SF, YOLOv11s-DRB, and YOLOv11s-
CGAF exhibit similar performance in terms of precision and recall. Notably, YOLOv11s-
DRB demonstrates good performance in both mAP@0.5 and mAP@0.5:0.95.

With the SF, DRB, and CGAF modules integrated together, YOLOv11s is extended
to form YOLOv11s-SDC. The precision curve for YOLOv11s-SDC remains higher than
that of the other models for most of the training, ultimately reaching the highest value. In
the later stages of training, it also shows better stability and converges more effectively.
Likewise, YOLOv11s-SDC demonstrates higher recall than the other models throughout the
majority of the training process, with the best convergence occurring in the later stages. In
terms of the mAP@0.5 metric, YOLOv11s-SDC consistently outperforms the other models.
Even under the stricter mAP@0.5:0.95 metric, YOLOv11s-SDC continues to maintain its
advantage, with its curve surpassing all others, indicating superior detection performance.

To validate the necessity of combining the SF, DRB, and CGAF modules,we conducted
comparative experiments on YOLOv11s, YOLOv11s-SF+DRB, YOLOv11s-SF+CGAF, YOLO
v11s-DRB+CGAF, and YOLOv11s-SDC.
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Figure 14. Evaluation metrics comparison curve of YOLOv11s-SDC and single-module models.

As shown in Figure 15, integrating any two of these three modules into YOLOv11
improves all four evaluation metrics relative to the original YOLOv11 model. Furthermore,
incorporating all three modules into YOLOv11 results in the YOLOv11-SDC model, which
achieves better performance across four evaluation metrics compared to using any two
modules. The precision curve for YOLOv11s-SDC remains higher than those of the other
models for most of the training, ultimately reaching the highest value. In the later stages of
training, it also shows better stability and converges more effectively. Likewise, YOLOv11s-
SDC demonstrates higher recall than the other models throughout the majority of the
training process, with the best convergence occurring in the later stages. In terms of the
mAP@0.5 metric, YOLOv11s-SDC consistently outperforms the other models. Even under
the stricter mAP@0.5:0.95 metric, YOLOv11s-SDC continues to maintain its advantage,
with its curve surpassing all others, indicating superior detection performance.

As shown in Table 6, YOLOv11s-SF and YOLOv11s-DRB outperform other baseline
models in terms of precision and recall, while YOLOv11s-CGAF ranks just below YOLOv9s.
Both YOLOv11s-SF and YOLOv11s-DRB achieve higher mAP@0.5 compared to other
baseline models. In terms of mAP@0.5:0.95, YOLOv11s-DRB and YOLOv11s-CGAF exceed
all other baseline models, with YOLOv11s-DRB demonstrating a particularly significant
lead. After incorporating the SF, DRB, and CGAF modules into YOLOv11s, its performance
surpasses that of improvements using any two of these modules. By integrating the SF, DRB,
and CGAF modules, YOLOv11s-SDC achieves superior performance in four evaluation
metrics, surpassing all the models in the experiment.

YOLOv11s-SDC shows a 14.3% increase in precision, a 4.1% increase in recall, a
10.6% improvement in mAP@0.5, and a 14% increase in mAP@0.5:0.95 compared to
YOLOv11s. These results further demonstrate the advancements introduced by the
YOLOv11s-SDC model.
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Figure 15. Evaluation and comparison of metric curves of YOLOv11s-SDC and dual-module models.

Table 6. Evaluation metric comparison table of YOLOv11s-SDC and other models.

Model Precision Recall map@0.5 map@0.5:0.95

YOLOv5s 0.814 0.607 0.678 0.434
YOLOv8s 0.729 0.668 0.746 0.473
YOLOv9s 0.878 0.605 0.726 0.49

YOLOv10s 0.789 0.545 0.642 0.425
YOLOv11s 0.791 0.657 0.719 0.458

YOLOv11s-SF 0.882 0.685 0.727 0.478
YOLOv11s-DRB 0.886 0.676 0.762 0.561

YOLOv11s-CGAF 0.856 0.607 0.71 0.494
YOLOv11s-SF+DRB 0.9 0.693 0.759 0.581

YOLOv11s-SF+CGAF 0.826 0.693 0.757 0.518
YOLOv11s-DRB+CGAF 0.873 0.681 0.771 0.572

YOLOv11s-SDC 0.934 0.698 0.825 0.598

Figure 16 compares the detection performance of YOLOv11s-SDC and YOLOv11s. The
results show that the proposed YOLOv11s-SDC model not only attains higher classification
accuracy but also exhibits a better recall rate compared to YOLOv11s.
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(a) (b) (c)

Figure 16. Example of detection result comparison: (a) original image; (b) YOLOv11s-SDC;
(c) YOLOv11s.

5. Analysis of Limitations
Section 4 demonstrated the superior performance of YOLOv11s-SDC compared to

other models. To further analyze its performance comprehensively, this section conducts
a qualitative comparison of the visual differences between correct detections, missed
detections, and false detections across different models. Additionally, the trained YOLOv11s-
SDC model is applied to noisy SSS images to further evaluate its noise resistance capabilities.

5.1. Qualitative Analysis

Using Figure 17 as an example, the differences in small object detection performance
across various models are compared. The SSS image in Figure 17 contains three MILCO
objects and six seabed interference objects. For clarity, the six interference objects are
numbered from 1 to 6, where 2 is a large interference object and the others are small
interference objects.

1

3

2

4

5

6

Figure 17. SSS image containing objects and interference.
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Figure 18 shows the detection results of YOLOv5s, YOLOv8s, YOLOv9s, YOLOv10s,
YOLOv11s, and YOLOv11s-SDC. The results indicate that none of the models mistakenly
identified interference objects other than 3 as targets, demonstrating their ability to resist
false positives when dealing with large seabed interference objects. However, the models
differ in their ability to resist false positives with small interference objects.

YOLOv9s successfully detected all objects, but the low confidence scores of the de-
tections make it unsuitable for applications requiring high confidence. YOLOv5s and
YOLOv11s-SDC both identified all three small objects with high confidence but mistakenly
classified 3 as a MILCO. YOLOv8s and YOLOv10s detected two of the three objects, with
YOLOv8s also misclassifying 3. YOLOv11s detected only one object, with no false positives.

(a) (b) (c) 

(d) (e) (f) 

Figure 18. Visual comparison of detection results from different models: (a) YOLOv5s; (b) YOLOv8s;
(c) YOLOv9s; (d) YOLOv10s; (e) YOLOv11s; (f) YOLOv11s-SDC.

Due to the limited features and low contrast of small objects in SSS images, espe-
cially when small interference objects with similar shapes and echo shadows are present,
YOLOv11s-SDC still exhibits instances of misdetection.

5.2. Noise Resistance Capability Analysis

To further evaluate the performance of YOLOv11s-SDC on high-noise SSS images and
analyze its noise-resistance capability, we used the SSS image shown in Figure 19a. This
image, containing two MILCO objects and one NOMBO object, was modified by applying
Gaussian noise of low and medium intensity to simulate real-world conditions. The
detection results of YOLOv11s-SDC were then compared under three scenarios: without
additional noise, with low-intensity noise, and with medium-intensity noise.

When no additional noise was applied, YOLOv11s-SDC correctly detected and classi-
fied all three small objects. After applying low-intensity Gaussian noise, YOLOv11s-SDC
was still able to detect and correctly classify one MILCO object and one NOMBO object,
but the confidence scores decreased, and one MILCO object was missed. The missed
MILCO object was extremely small, with poorly defined bright and shadow regions, mak-
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ing its features nearly indistinguishable after the low-intensity noise was added. When
medium-intensity Gaussian noise was applied, YOLOv11s-SDC could no longer detect any
small objects.

(a) (b) 

(c) (d) 

Figure 19. Detection results of YOLOv11s-SDC on SSS images with different levels of noise: (a) origi-
nal image; (b) without additional noise; (c) with low-intensity noise; (d) with medium-intensity noise.

This result indicates that YOLOv11s-SDC has a certain level of noise resistance but
is limited in its ability to handle high-noise SSS images, resulting in inadequate detection
performance under such conditions.

5.3. Discussion

This section analyzes and compares the visual differences between correctly detected
objects, missed objects, and misclassified objects across various versions of YOLO base
models and YOLOv11-SDC. It provides an in-depth examination of the performance
limitations of YOLOv11-SDC when encountering interference objects that resemble actual
objects. Additionally, simulated noise experiments were conducted to evaluate the noise-
resistance capability of YOLOv11s-SDC, revealing its detection limitations in high-noise
sonar application scenarios.

Due to the challenges of data acquisition, this experiment simulated real high-noise
conditions by artificially applying Gaussian noise to SSS images. However, this approach
introduces discrepancies compared to real-world data, which also limits the completeness
of the analysis.

It is important to note that the quantity and quality of SSS data are major factors
limiting model performance. Underwater sonar image collection is both costly and in-
efficient, resulting in limited datasets for research and analysis [49]. The SIMD dataset
used in this study represents five years of effort by its authors; however, the dataset size
remains constrained.
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6. Conclusions
To overcome challenges in SSS images, such as the similarity between small objects

and background textures and the difficulty in feature extraction, this study proposes an
enhanced network based on YOLOv11 named YOLOv11-SDC.

Experiments revealed that the newly introduced SF module can automatically extract
relevant object features by ranking channel importance and removing low-importance
features via channel pruning. This reduces background interference, allowing the model
to concentrate more on object-related information in complex scenes. Additionally, this
study combined the DRB module with the traditional C3k2 module. By incorporating
dilated convolution, the model’s ability to capture local features is effectively enhanced.
Reparameterization is employed to reduce convolutional kernel parameters, decreasing
the model’s computational burden. In the YOLOv11-SDC network, a CGAF module is
integrated before the original detection module. This module performs joint attention
modeling on the spatial, channel, and pixel dimensions of the feature maps, adjusting the
weights of each region, channel, and pixel accordingly. As a result, the CGAF module
improves the model’s ability to recognize and localize objects, especially in SSS images
where objects are small, the background is complex, and object contrast is low.

This study used four evaluation metrics: precision, recall, mAP@0.5, and mAP@0.5:0.95.
Comparison experiments with YOLOv5, YOLOv8, YOLOv9, YOLOv10, and YOLOv11
demonstrated that YOLOv11-SDC outperforms all existing baseline models across these
metrics. When replacing the newly proposed SPPF module in YOLOv11 with the SF mod-
ule introduced in this study, the YOLOv11s-SF network shows improvements of 9.1%, 2.8%,
0.8%, and 2% in precision, recall, mAP@0.5, and mAP@0.5:0.95, respectively, compared to
the YOLOv11s network on the SIMD dataset, confirming the effectiveness of the SF module.
Ablation experiments further validated that the YOLOv11-SDC network achieves superior
detection performance, highlighting its advantages.

Finally, a qualitative analysis was conducted to explore the performance limitations of
YOLOv11-SDC when dealing with interference objects that resemble target objects. The
simulated noise experiments further indicated that the detection performance of YOLOv11-
SDC is influenced by SSS imaging quality, suggesting room for improvement in its noise
resistance. In future work, we will focus on acquiring datasets with diverse small objects
and varying SSS image qualities to further optimize the proposed YOLOv11-SDC model.
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