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Abstract: Underwater target detection exhibits extensive applications in marine target
exploration and marine environmental monitoring. However, conventional images of
underwater targets present challenges including blurred contour information, complex
environmental conditions, and pronounced scattering effects. In this work, an underwater
target detection method based on YOLOV10 is designed, and the detection performance is
compared with the YOLOv5 model. Experimental results demonstrate that the YOLOv10
model has a mAP50 of 85.6% on the URPC 2020 dataset, improving the mAP50 by 1.2% than
that of YOLOvS5. This model exhibits high detection accuracy and high proceeding speed,
which provides a promising support for precise and fast underwater target detection.
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1. Introduction

Underwater target detection exhibits substantial utility across a wide array of domains,
including marine target exploration, oceanic environmental monitoring, and maritime
security. These applications are pivotal for advancing fields such as marine biology, marine
resource development, and environmental protection. As marine technology continues to
evolve rapidly, the precise and swift detection of fish, biomimetic organisms, and other
entities within the underwater environment has become increasingly critical for enhancing
underwater defense frameworks. However, the intricate and dynamic nature of underwater
environments poses significant challenges. Traditional detection methods, while effective
in certain contexts, often fall short in achieving the required accuracy and processing speed
necessary for modern applications [1-3]. Therefore, there is a pressing need for innovative
approaches that can address these limitations and provide robust solutions for underwater
target detection.

In recent years, deep learning (DL) methods have developed rapidly, which have
exhibited great advantages in computer vision, natural language processing, speech recog-
nition and target detection, etc. [4-8]. Meanwhile, DL techniques have been used for a fast
and accurate identification of underwater targets, and they assume great importance in
marine sciences. However, the traditional model for underwater target detection is usually
influenced by the underwater complex environment, which leads to less feature informa-
tion and low detection accuracy. In addition, the scale of underwater targets varies greatly
and there are occlusions between targets, which make it easy to cause missed detection and
wrong detection. To improve the detection efficiency of underwater targets, many studies
have been carried out [9-11]. Majid et al. [12] presented a computationally efficient detec-
tion network for real-time vehicle detection in UAV imagery, leveraging channel shuffling
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and grouped convolutions for enhanced speed and incorporating inception and deformable
modules to account for vehicle size and shape variations. Xiong et al. [13] revisited the
role of regular convolutions in object detection models for mobile devices, demonstrating
that their strategic placement via a neural architecture search can significantly improve the
latency-accuracy trade-off, a family of models that achieve state-of-the-art results across
various mobile accelerators. Yang et al. [14] proposed QueryDet, a novel query mechanism
that accelerates the inference speed of feature pyramid-based object detectors by first pre-
dicting the coarse locations of small objects on low-resolution features and then refining
the detections using high-resolution features guided by these coarse positions.

In the domain of object detection, the YOLOVS series and its predecessors have
achieved remarkable milestones, demonstrating substantial advancements in both accuracy
and computational efficiency. However, despite their remarkable successes, these models
exhibit certain limitations that warrant further exploration and refinement to elevate their
performance and applicability. One of the primary challenges lies in the limited capacity
of feature extraction. While the YOLOVS5 architecture leverages convolutional neural net-
works (CNNBs) to extract spatial features from input images, it may not fully exploit the rich
contextual information present in higher-dimensional feature maps. This limitation can
hinder the model’s ability to discern subtle object characteristics, particularly in complex
and cluttered scenes. Another critical issue pertains to the insufficiency of multi-scale
feature fusion. Object detection often requires the integration of features from different
spatial resolutions to accurately identify objects of varying sizes and scales. The current
YOLOVS framework, while incorporating strategies for multi-scale feature fusion, may
not optimally balance the contribution of features across different layers. Moreover, the
computational efficiency of YOLOV5, while superior to many other models, still presents a
bottleneck, particularly when deployed on resource-constrained hardware environments.
The trade-off between model complexity and computational requirements remains a signif-
icant challenge. Reducing the computational overhead while maintaining or improving
detection accuracy is essential for expanding the applicability of these models to a broader
range of devices and scenarios.

The You Only Look Once (YOLO) series, a pioneering framework in the realm of real-
time object detection, has achieved a remarkable milestone with the unveiling of YOLOv10
in 2024. YOLOV10 incorporates cutting-edge advancements in deep learning architecture,
optimization techniques, and computational efficiency, enabling it to outperform its prede-
cessors and contemporary models in both accuracy and speed. Rigorous benchmarking and
comparative studies have demonstrated that YOLOv10 not only achieves state-of-the-art
performance in diverse detection tasks but also sets new standards for real-time processing
in complex and dynamic environments [15]. The development of YOLOv10 underscores
the critical role of innovation in addressing the growing demands of applications such as
autonomous systems, surveillance, and environmental monitoring, where precision and
rapid response are paramount. By leveraging novel neural network designs and enhanced
training methodologies, YOLOV10 effectively mitigates challenges such as occlusion, scale
variation, and background clutter, which have historically hindered the performance of
object detection systems. Furthermore, its open-source nature fosters collaboration and
accessibility, enabling researchers and practitioners worldwide to adapt and refine the
model for specialized use cases. The success of YOLOv10 highlights the accelerating pace
of technological progress in artificial intelligence and its transformative potential across
industries. As the field continues to evolve, models like YOLOv10 exemplify the synergy
between academic research and practical innovation, paving the way for future break-
throughs in real-time object detection and beyond. This achievement not only solidifies
the YOLO series as a cornerstone of modern computer vision but also reaffirms the im-
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portance of interdisciplinary efforts in advancing the frontiers of machine learning and its
applications. YOLOv10 demonstrates its prowess in real-time detection and multi-object
recognition. However, the underwater environment often presents challenges in the form
of noise, encompassing optical disturbances and blurring caused by the medium, which
can compromise the accuracy of target detection.

In this work, the YOLOv10-based model is utilized for underwater target detection.
The performance is compared with the YOLOv5 model, where the YOLOv5 had demon-
strated commendable performance in the field of target detection, as evidenced by various
studies [16,17]. The rest of this paper is organized as follows: Section 2 introduces the
YOLO method and the YOLOv10 model. Section 3 analyzes the datasets, results, and
discussion of the experiment. Conclusions are given in Section 4.

2. Theory and Model
2.1. YOLO Algorithm

YOLO introduced the groundbreaking approach to image segmentation by employing
regression-based methods. This innovative technique revolutionized the field of target
detection, offering remarkable accuracy and high computational efficiency, making it
particularly suitable for real-time systems.

In YOLO, this grid-based approach allows for parallel and independent detection
processes across the image, which significantly enhances computational efficiency [18].
This fusion of class probability maps and bounding box predictions enables YOLO to
simultaneously generate accurate target detection bounding boxes.

One of the key advantages of YOLO is its ability to process entire images in a single
evaluation, unlike other methods that process images in regions or with sliding win-
dows [19]. This holistic approach not only speeds up the detection process but also allows
YOLO to capture contextual information across the entire image, leading to more accurate
and reliable detections.

Moreover, the YOLO architecture is designed to be lightweight and efficient, making
it deployable on a wide range of hardware, from high-performance GPUs to resource-
constrained devices. This versatility has contributed to its widespread adoption in various
real-time applications, including autonomous vehicles, surveillance systems, and mobile
devices. The detection algorithm flow of YOLO is exhibited in Figure 1.

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1. YOLO detection process.

The YOLO model performs predictions for each individual target class and generates a
confidence score that quantifies the probability of the target belonging to a specific class [20].
This predictive capability facilitates rapid and precise target identification in images.

Confidence = Pr(Object) X IOUgymmpred, (1)

where P,(Object) is the probability of the bounding box containing the target and
IOUjyythprea is the accuracy of the bounding box.
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2.2. YOLOv10-Based Underwater Target Detection Method

The YOLOV10 [12], released in 2024, represents the new and popular model in the
YOLO family, as displayed in Figure 2. This advanced iteration of the YOLO series in-
troduces a consistent dual assignment strategy, which significantly enhances its perfor-
mance by addressing one of the most critical issues in target detection models, namely
the need for non-maximum suppression (NMS) to eliminate duplicate prediction boxes
during inference.
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Figure 2. The network structure of YOLOV10.

Traditionally, NMS has been an indispensable post-processing step in target detection
models, including earlier versions of YOLO. However, NMS is computationally expensive
and can introduce latency, especially in real-time applications. YOLOv10’s innovative dual
assignment strategy eliminates the need for NMS by ensuring that each target is assigned to
only one prediction box, thereby greatly reducing post-processing time. This approach not
only accelerates inference speed but also maintains or even improves detection accuracy.

YOLOV10 has achieved remarkable results, setting new benchmarks in target detec-
tion performance. On the COCO dataset, YOLOV10 has achieved state-of-the-art results,
demonstrating its ability to accurately detect a wide variety of targets in complex and di-
verse scenes. Similarly, on the VOC dataset, YOLOv10 has outperformed previous models,
showcasing its robustness and reliability in handling a broad range of target classes.

The YOLOV10 detection model has three components, which are the backbone, neck,
and head. The backbone is responsible for feature extraction from the input image and
includes the CBS module, SCDown module, C2f module, C2fCIB module, and the PSA
self-attention mechanism. These modules work together to enhance feature extraction and
capture spatial relationships within the feature maps. The neck employs an FPN-PAN
structure to integrate and refine the feature information from the backbone, capturing in-
formation at multiple scales and improving feature fusion. The head features a lightweight
decoupled design, implementing a consistent dual allocation strategy to address YOLO’s
reliance on NMS in post-processing [12]. This decoupling and strategy help in making
more efficient and accurate detection predictions.

We have developed an efficient partial self-attention (PSA) module, as depicted in
Figure 3a. Initially, the features, after processing through a 1 x 1 convolution, are divided
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into two segments along the channel dimension. One segment is directed to the NPSA
block, which consists of a multi-head self-attention (MHSA) module and a feed-forward
network (FFN) for further processing. Subsequently, these two segments are concatenated
and fused through another 1 x 1 convolution. Notably, we have optimized the dimensions
of the queries and keys within the MHSA, setting them to half the dimension of the values.
This reduction in dimensionality significantly decreases computational complexity while
preserving essential feature information. To further enhance computational efficiency, the
PSA module is exclusively deployed after the fourth stage, which has the lowest resolution.
This strategic placement effectively mitigates the quadratic computational complexity
associated with self-attention, avoiding excessive computational overhead. Through this
design, we have successfully integrated global representation learning capabilities into the
YOLO framework with minimal computational cost, significantly enhancing the model’s
overall performance and efficiency.
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(a)
Figure 3. The YOLOv10 updated module. (a) PSA and (b) C2FCIB module.

The C2fCIB module represents a significant enhancement to the original C2f architec-
ture by integrating a compact inverted block (CIB) in place of the traditional bottleneck
module. In the original bottleneck design, standard convolutions are employed to facili-
tate feature transformation and dimensionality reduction. However, the C2fCIB module
introduces a more efficient approach by replacing these standard convolutions with a
combination of depthwise convolutions and pointwise convolutions.

The C2fCIB module, as depicted in Figure 3b, showcases a streamlined and optimized
structure. Following this, the pointwise convolution projects the transformed features into a
higher-dimensional space, ensuring that the model can effectively capture complex patterns
and interactions among different channels. This dual approach allows the C2fCIB module
to maintain a balance between computational efficiency and expressive power, making
it particularly well-suited for resource-constrained environments while still delivering
robust performance.

The integration of the CIB within the C2f framework signifies a strategic shift towards
more efficient and scalable deep learning architectures. By leveraging the strengths of
depthwise and pointwise convolutions, the C2fCIB module exemplifies a forward-thinking
design that is poised to advance the state-of-the-art in various computer vision tasks.
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3. Results and Discussion
3.1. Dataset and Evaluation Index

In this study, we employ the URPC2020 dataset [21], which serves as a pivotal resource
for our experimental investigations. The dataset primarily encompasses research focused
on stationary marine targets, including holothurian, echinus, scallop, and starfish. These
organisms play crucial roles in their respective ecosystems, contributing to nutrient cycling
and maintaining biodiversity. This dataset is meticulously crafted to mirror the intricate
challenges inherent in detecting underwater biological targets in real-world scenarios.
By incorporating a wide array of image conditions, including variations in brightness,
background complexity, contrast, blur, and color deviation, the URPC2020 dataset aptly
simulates the diverse and often unpredictable nature of underwater environments. This
breadth of representation ensures that our model is rigorously tested and trained to perform
effectively across different depths and lighting conditions, thereby enhancing its practical
applicability. Among them, Ren et al. [22] introduced Faster R-CNN, integrating the region
proposal network (RPN) with fast R-CNN for real-time object detection, achieving accuracy
on datasets. Zhou et al. [23] proposed novel underwater object detection network AMSP-
UOD, featuring AMSP-VConv, FAD-CSP modules, and enhanced NMS, demonstrating
superior accuracy and noise immunity on URPC and RUOD datasets. Zhou et al. [24]
proposed an underwater optical detection network (UODN), enhanced with CSMB and
LKSP modules, which significantly improves feature extraction and object detection in
underwater images, outperforming 12 models on the URPC 2020 dataset.

Comprising four primary classes of underwater biological targets—holothurians,
scallops, starfish, and echinoids—the URPC2020 dataset offers a comprehensive visual
repository of these species in various settings. With a total of 5543 images, each capturing
these organisms under differing imaging conditions, the dataset provides an extensive and
diverse training ground for our target detection model. This rich and varied dataset is
essential for cultivating a robust and generalizable model capable of accurately identifying
these underwater species despite the complexities and anomalies present in real-world
underwater imagery.

Furthermore, the inclusion of such a broad spectrum of imaging conditions within the
dataset is crucial for addressing the unique challenges posed by underwater photography.
Water absorption and scattering of light lead to significant variations in image quality and
color fidelity at different depths, which can profoundly impact the performance of computer
vision models. By training our model on this diverse dataset, we aim to mitigate these
challenges and enhance the model’s ability to detect targets consistently and accurately
across various underwater conditions.

To facilitate the training and evaluation of the model, the dataset is divided into a
training set and a test set using an 8:2 ratio. Specifically, 4434 images are randomly selected
to form the training set, which is used to train the target detection model. The remaining
1109 images are designated as the test set, which is used to evaluate the model’s perfor-
mance in terms of accuracy and robustness. This division ensures that the model is trained
on a large and diverse set of images while allowing for a thorough and representative
evaluation on a separate set of unseen data.

In this work, the confusion matrix, which serves as a prevalent method for evaluating
the performance of classification models, is adopted for evaluation, as displayed in Table 1.
The confusion matrix comprises predicted labels and actual labels, categorizing all samples
into four distinct classes. These classes include true positive (TP), indicating the number
of samples accurately predicted as positive and are indeed positive; false positive (FP),
representing samples incorrectly predicted as positive while being negative; false negative
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(FN), denoting samples wrongly predicted as negative despite being positive; and true
negative (TN), signifying samples correctly predicted as negative and are indeed negative.

Table 1. Confusion matrix.

' ' Reference
Confusion Matrix True False
o Positive TP FP
Prediction Negative FN TN

In this experiment, the mean average precision (mAP) is employed as a critical metric
to evaluate the performance of the model. The mAP is a composite metric that is closely
related to both precision and recall rate, providing a comprehensive assessment of the
model’s ability to correctly identify and localize targets across different classes. This metric
is particularly useful in target detection tasks, as it helps to quantify the overall effectiveness
of the detection system in terms of both accuracy and completeness.

Precision measures the proportion of predicted positive instances (detected targets)
that are correct, while recall rate quantifies the proportion of actual positive instances that
are correctly identified by the model. The mAP integrates these two metrics by averaging
the area under the precision-recall curve (PR curve) for each class and then taking the
mean across all classes. This approach ensures that the model’s performance is evaluated
holistically, considering both false positives and false negatives, and the calculation formula

is as follows:
1

AP = / p(r)dr, )
0
ZNzl AP(n)
AP —e=n=1""" "/
m N , 3)
.. TP
Precision = TP+ EP’ 4)
TP
Recall = —————
eca TP+ EN’ (5)
TP+ TN
A pr—
Uy = TP TN + FP+ FN’ (6)
2 % Precisi
F1 — score — x Precision X Recalll @)

Precision + Recall

3.2. Comparative of Different Methods for Underwater Target Detection

In this research, all experiments are carried out with the operating system Windows
11. Our work is developed with the PyTorch 2.0.1 deep learning framework and with the
GPU of NVIDIA GeForce RTX 3090 (Chengdu, China). The batch size is set to eight, and
the epoch is set to 200.

In the case of a fixed IoU threshold of 0.5, the performance metrics of the URPC2020
dataset trained with the YOLOv10 and YOLOVS5 algorithms are illustrated. The results of the
YOLOvV10 and YOLOvV5 models’ predictions on underwater images are exhibited in Figure 4.
Based on the illustration in Figure 4, YOLOv10 exhibits a marked enhancement in object
detection precision compared to its predecessor, YOLOV5. This advancement is reflected
in higher intersection over union (IoU) values, indicating a closer alignment between
the detected bounding boxes and the actual boundaries of the targets. Furthermore, the
clarity of the IoU plots has improved, suggesting that the model may now handle complex
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scenarios more effectively by minimizing artifacts and confusion arising from overlapping
objects, thereby offering more accurate and dependable detection outcomes.

r

L o
holothurian 0.37 3 S

i3

|

(b)
Figure 4. Prediction results of underwater target detection: (a) YOLOV5; (b) YOLOV10.

In this study, Input X comprises the original image, the category of the detection target,
and the location of the detection target. As for each image, the category and positional
information of its detection targets should be stored in TXT files, which should be uniformly
housed within another designated folder. Upon the reception of input images, both the
YOLOV10 frameworks undergo an initial preprocessing stage that involves uniformly
resizing the images to a standardized dimension of 640 x 640 pixels. After each training
session, the model’s optimal weight file is automatically saved in the ‘weights’ folder, with
the filename ‘best.pt’. When it is necessary to utilize these optimal weights, they can be
loaded and invoked by running the ‘val.py” script.
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A confusion matrix is utilized to provide further insights into the model’s performance
across different classes of underwater biological targets. Figure 5 presents the confusion
matrix, where the rows correspond to the real labels (actual classes of the targets in the test
images) and the columns represent the predicted categories by the model. The diagonal
elements of this matrix indicate the number of correct detections for each class, thereby
reflecting the accuracy of the model in identifying those specific targets.

1 1
0 0 0 0.15 0.9 holothurian 0.18 0.9
0.8 0.8
0 0.45 0.7 echinus 047 0.7
06 = 06
Q@
0 0.21 0.5 % scallop 0.18 0.5
@
04 o 04
0.01 0.19 0.3 starfish 0.17 0.3
0.2 0.2
0.24 0.1 0.17 0.14 0 0.1 background 0.23 0.09 0.19 0.13 0 0.1
0
holothurian  echinus scallop starfish  background holothurian  echinus scallop starfish  background
True True
(a) (b)

Figure 5. The confusion matrix of four targets: (a) YOLOV5; (b) YOLOV10.

From the confusion matrix, it can be observed that the detection accuracies for the four
classes of underwater biological targets are as follows: holothurian at 76%, echinus at 91%,
scallop at 81%, and starfish at 85%. These percentages denote the proportion of correctly
identified instances for each class in the test set.

Upon analyzing the confusion matrix, it becomes evident that the primary source of
classification errors stems from the model’s confusion between targets and background
elements. This phenomenon can be attributed to several factors inherent to underwater
imaging. Firstly, underwater environments are characterized by low visibility due to factors
such as water turbidity, which can make it difficult for the model to distinguish between
targets and their surroundings. Additionally, the varying illumination conditions and color
shifts caused by water absorption can further complicate the differentiation between targets
and the background.

To provide a more comprehensive comparison, the performance metrics of YOLOv10
are evaluated against the widely used YOLOvV5 and concurrently undertake a comparative
analysis with the Faster R-CNN [22], AMSP-UOP [23], and UODN [24] object detection
models. As depicted in Table 2, the performance metrics, specifically the mAP50, show
significant improvements. Our model achieves an mAP50 score of 0.856, which represents
a substantial enhancement compared to the baseline.

Table 2. Comparison of URPC2020 dataset detection accuracy with YOLOv10 and YOLOV5.

Model Holothurian Echinus  Scallop Starfish mAP50 FLOPs
Faster RCNN \ \ \ \ 0.802 209G
AMSP-UOP \ \ \ \ 0.827 624G
UODN \ \ \ \ 0.840 439G
YOLOV5s 0.75 0.90 0.83 0.84 0.844 479G

YOLOV10s 0.76 0.91 0.81 0.85 0.856 248G
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For the URPC2020 dataset, the overall improvement in mAP50 is noteworthy. Com-
pared with the YOLOVS5, Faster R-CNN, AMSP-UOP, and UODN models, the mAP50 score
of YOLOV10 has increased from 0.802, 0.827, 0.840, and 0.844 to 0.856; the predicted accu-
racy increased by 1.2-6.3%. This improvement indicates that YOLOv10 is more effective in
accurately detecting and localizing targets in the underwater environment. This significant
improvement in mAP50 indicates that YOLOV10 is more effective in accurately detecting
and localizing targets within the challenging underwater environment. The enhanced pre-
cision can be attributed to YOLOv10’s advanced architecture, which likely includes refined
feature extraction mechanisms, optimized loss functions, and improved object localization
techniques. The improvement can be attributed to YOLOv10’s refined architecture, which
likely incorporates advanced feature extraction mechanisms and optimized loss functions,
enabling it to better handle the complexities inherent in underwater imagery, such as low
contrast, turbidity, and occlusions.

To better illustrate the performance outcomes of YOLOv5 and YOLOV10 across vari-
ous dimensions, we present evaluation metrics such as precision, recall, and the F1 score,
as depicted in Figures 6-8. The precision, recall, and F1 score of YOLOv10 unequivocally
demonstrate superior model performance across various metrics. Specifically, YOLOv10
achieves a markedly higher precision rate, signifying an enhanced accuracy in its pos-
itive predictions. This notable improvement is especially critical in contexts where the
implications of false positives are profound, such as in real-time object detection systems
and safety-critical applications where the reliability of detections is paramount. The el-
evation in precision exhibited by YOLOvV10 not only drastically reduces the instances of
incorrect detections but also significantly augments the overall reliability, efficiency, and
robustness of the model. Furthermore, the superior recall and balanced F1 score high-
light YOLOV10’s comprehensive capability to maintain a high level of performance in
identifying all relevant instances while minimizing false negatives. This multi-faceted
enhancement underscores YOLOv10’s suitability for demanding applications requiring
both high accuracy and robust generalization.

Precision-Confidence Curve 110 Precision-Confidence Curve
1.0 .
0.8 0.8
0.6 0.6
& S
7} @
g ]
a o
0.4 0.4
—— holothurian —— holothurian
024 echinus 0.2 1 echinus
—— scallop —— scallop
—— starfish —— starfish
= Gl elasses 0040501 = all classes 1.00 at 0.993
0.0 - : . . 0.0 - - . :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence
(a) (b)

Figure 6. The precision confidence curve: (a) YOLOVS5; (b) YOLOv10.
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Recall-Confidence Curve Recall-Confidence Curve
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Figure 7. The recall confidence curve: (a) YOLOvV5; (b) YOLOvV10.
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Figure 8. The F1 score confidence curve: (a) YOLOV5; (b) YOLOV10.

In summary, the comparison with YOLOVS5 clearly demonstrates the superior perfor-
mance of YOLOvV10, particularly in the context of the URPC2020 dataset. The 1.2% increase
in mAP50 underscores the model’s effectiveness in addressing the challenges of under-
water target detection and its potential for widespread application in marine science and
technology. In FLOPs, YOLOv10 demonstrates an enhancement over YOLOV5, reducing
from 47.9 G to 24.8 G. Not only does YOLOvV10 expedite the object localization process and
facilitate the development of lightweight models, but it also accomplishes this task with
greater precision.
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4. Conclusions

In summary, YOLOvV10 has made significant strides in the field of object detection,
showcasing exceptional speed, high precision, robust multiscale detection capabilities,
and a lightweight design, making it an ideal choice for applications. Especially in the
detection of underwater targets, the YOLOv10-based method illustrates better performance
for underwater target detection. For the URPC2020 dataset, there is an overall of 85.6% in
mAP50, accompanied by a substantial increase of 1.2% than that of the YOLOv5 model. In
terms of mAP50 performance, the detection accuracy for the holothurian category demon-
strates an enhancement of 1.0, while the scallop category shows a 1.0% improvement by
using YOLOV10, where it gives a promising method for applications of underwater target
detection. Future research on YOLOvV10 for underwater target detection will focus on en-
hancing the model’s adaptability to complex underwater environments, encompassing the
challenges of low visibility, the refractive and scattering effects of light, and the interference
caused by diverse underwater backgrounds.
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