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NeuRSS: Enhancing AUV Localization and
Bathymetric Mapping With Neural

Rendering for Sidescan SLAM
Yiping Xie , Jun Zhang, Nils Bore, and John Folkesson , Senior Member, IEEE

Abstract—Implicit neural representations and neural rendering
have gained increasing attention for bathymetry estimation from
sidescan sonar (SSS). These methods incorporate multiple obser-
vations of the same place from SSS data to constrain the elevation
estimate, converging to a globallynt bathymetric model. However,
the quality and precision of the bathymetric estimate are limited
by the positioning accuracy of the autonomous underwater vehicle
(AUV) equipped with the sonar. The global positioning estimate of
the AUV relying on dead reckoning (DR) has an unbounded error
due to the absence of a geo-reference system like GPS underwater.
To address this challenge, we propose in this article a modern
and scalable framework, NeuRSS, for SSS SLAM based on DR
and loop closures (LCs) over large timescales, with an elevation
prior provided by the bathymetric estimate using neural rendering
from SSS. This framework is an iterative procedure that improves
localization and bathymetric mapping. Initially, the bathymetry
estimated from SSS using the DR estimate, though crude, can
provide an important elevation prior in the nonlinear least-squares
(NLSs) optimization that estimates the relative pose between two
LC vertices in a pose graph. Subsequently, the global pose estimate
from the SLAM component improves the positioning estimate of
the vehicle, thus improving the bathymetry estimation. We validate
our localization and mapping approach on two large surveys col-
lected with a surface vessel and an AUV, respectively. We evaluate
their localization results against the ground truth and compare the
bathymetry estimation against data collected with multibeam echo
sounders (MBESs).

Index Terms—Deep learning, marine robots, simultaneous
localization and mapping, underwater navigation.
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I. INTRODUCTION

SMALL autonomous underwater vehicles (sAUVs)
equipped with sidescan sonar (SSS) are often used

for hydrogeological surveys and seabed mapping. Nonetheless,
in the absence of GPS and an a priori map of the surveyed area,
the dead reckoning (DR) estimate of their global position can
drift significantly over time. Existing underwater positioning
systems analogous to GPS, such as long baseline (LBL) and
ultrashort baseline (USBL), require external infrastructure for
the deployment of beacons/transponders. As a small-form and
low-cost sensor, SSS provides a promising and cost-effective
solution for sAUV navigation and mapping due to its ability of
generating high-resolution images with wide swath.

Traditionally, bathymetric maps are usually constructed
with multibeam echo sounders (MBESs), which can be cost-
prohibitive and too large for low-cost sAUVs. For SSS data,
the range and the azimuth angle of the returns are known, but
the information of the elevation angle is lost due to projection,
which is essential for bathymetry reconstruction. However, since
the changes of the returned intensities indicate changes of the
incidence angle, it is possible to extract information of the slope
of the seafloor from SSS data. Although reconstruction of the
seafloor from a single line of SSS imagery is mathematically ill-
posed, this problem can be constrained adequately in areas that
have been observed from multiple viewpoints. One can notice
the similarities between bathymetry reconstruction from SSS
and 3-D reconstruction from camera images, in the sense that for
optical camera images, there is also 1-D information lost during
the projection, that is, the range instead of the elevation angle. As
a result, many approaches from computer vision and computer
graphics for 3-D reconstruction using camera images can be
adapted for the same task using sonars. Examples of these are, in
the early days, shape-from-shading (SfS) techniques [1], [2], [3],
[4], and more recently, data-driven methods using convolutional
neural networks (CNNs) [5], [6] and inverse rendering based on
implicit neural representations [7], [8], [9], [10].

As for underwater navigation, simultaneous localization and
mapping (SLAM) techniques can reduce the drift in the AUV’s
DR estimate using onboard sensor measurements. Most of the
state-of-the-art graph-based underwater SLAM solutions for un-
structured environment target AUVs equipped with MBES [11].
But the limited coverage of MBES makes loop closure (LC)
detection sparse, especially due to the scarcity of distinguishable
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Fig. 1. Illustration of landmark elevation degeneracy with pure y-translation
motion, in the sensor forward-lateral-down frame. Here, we show two submaps
from two parallel survey lines with three landmarks (green dots). In the NLS
optimization, we usually fix pose xa, namely, fixing the solid red circles
(indicating the range measurements). Without any priors on landmarks, xb and
all the landmarks can move together in y-z plane, in this case, xb positive
translation along the y-axis to x′

b, landmarks moving up along the z-axis (from
solid strokes to dashed strokes), where all SSS range and bearing measurements
are still fulfilled.

features on the seabed. SSS, on the other hand, has wider
coverage, which potentially allows more LC detections between
overlapping submaps constructed from adjacent survey lines,
and can potentially resolve smaller features. However, due to
the elevation ambiguity inherent to the SSS sensor, graph-based
SSS SLAM faces elevation degeneracy (see Fig. 1), making
the overall NLS optimization rank-deficient. Such degeneracy,
similar to forward-looking sonar (FLS) [12], [13], [14], [15],
[16], results in large errors in landmark on and unrobustness in
the relative pose estimation between two LC vertices of a pose
graph when a LC is detected. The degeneracy case is especially
common in standard lawn-mower pattern1 surveys, since most
matches can only be made between parallel lines where the SSS
sees the feature from the same side but different distances.

This degeneracy is a well-known issue in triangulation, as
a result, most SSS SLAM approaches address such elevation
degeneracy by assuming the seafloor is locally flat [17], [18],
[19], and as for FLS SLAM approaches, they use the planar
assumption [20]. This assumption only works when the structure
of seafloor is relatively benign, for example, slowly sloping.
The assumption will break when dealing with complex seabed
such as rocky areas, mountains, and ridges. However, in these
scenarios, an estimate of the seafloor would be of great help
to constraining the elevation angle of the returns, serving as an

1A lawn-mower pattern that has the vehicle perform the survey as a series of
long parallel lines.

elevation prior in the NLS optimization, yielding more robust
relative pose estimation. The easiest way to estimate the rough
bathymetry is to linearly interpolate altimeter readings so that
a crude bathymetric model can be obtained, but the errors are
still quite large if the seabed is complex. On the other hand,
incorporating information from SSS data would significantly
improve the bathymetric model.

Bathymetry estimation from SSS requires accurate pose es-
timation, while SSS SLAM suffers from elevation degeneracy
without a precise bathymetric estimate. Nevertheless, one can
address such a chicken-and-egg problem by iteratively improv-
ing the estimates of the bathymetry and the pose estimation.
Following this principle, we present a framework,2 NeuRSS,
that leverages the advances of neural rendering to estimate
bathymetry from SSS [7], [8], which provides an elevation
before addressing the degeneracy in SSS SLAM problems and
showcases that one can significantly improve the AUV’s DR es-
timate and subsequently produce high-quality bathymetry using
SSS data from a standard survey.

The contribution of this work is to extend our previous
work [7], [8], [21] and combine them into a new framework.
For the sonar scattering model in [8], we extend it to be able to
model shadows. For the back-end of the SSS SLAM framework
in [21], we extend it to a submap-based optimization with a prior
map to better address the elevation degeneracy. We evaluate the
proposed NeuRSS framework numerically using two field data
sets containing both SSS and MBES collected simultaneously.

II. RELATED WORK

A. SSS SLAM

Early works used stochastic maps to estimate the AUV’s
position from SSS imagery with an extended Kalman filter
(EKF) [22], [23], [24], however, EKF-based SLAM approaches
suffer from scalability as the size of the state vector grows,
especially in a large underwater environment, e.g., an open
sea. Later, Fallon et al. [17] proposed a graph-based SLAM
framework that utilizes incremental smoothing and mapping
(iSAM) to fuse acoustic ranging and SSS measurements for
on-board applications in real time. Similarly, Bernicola et al. [18]
demonstrated using iSAM to correct trajectories with SSS
images. Issartel et al. [19], aiming to address the false SSS
data associations issue, proposed to use switchable observation
constraints in the pose graph. However, they [17], [18], [19]
all use the flat seafloor assumption for the sonar measurement
model, which prevents the NLS optimization from landmark
elevation degeneracy (pure y-translation). But the error intro-
duced by this assumption increases as the terrain gets more
complex, harming the performance of localization. In [21] and
[25], the 3-D landmark positions together with relative pose
transformation between the reference pose and current pose are
estimated in the NLS optimization with an elevation prior on
the landmark, provided by interpolating between the altitudes
of the two poses. However, the underlying assumption is that
the terrain is relatively benign.

2The source code link will be provided here upon acceptance.
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B. FLS SLAM

Another line of work that is highly relevant is FLS SLAM [12],
[13], [14], [15], [16], where the degeneracy cases are in general
more complex than SSS SLAM. Different robot motions on
this degeneracy are discussed in [12], where the majority of
the cases causing such does not exist in SSS SLAM with a
standard lawn-mower pattern, except the pure y-translation.
Westman et al. [14], [15] proposed to examine the eigenvalues
of the Jacobian matrix of landmarks to address these degeneracy
cases, whereas Wang et al. [16] modeled the terrain as Gaussian
processes (GPs) and incorporated the terrain factors into the
factor graph.

C. SSS Bathymetry Reconstruction

Early works to estimate bathymetry from SSS rely on tradi-
tional SfS techniques and Lambertian models. Notably, Coiras et
al. [4] used a Lambertian model for the sonar ensonification pro-
cess and obtained an approximation of the surface gradients from
sonar intensities by inverting the image formation. They showed
that convergence can be improved by gradually increasing the
resolution of the predicted bathymetry. Recently, data-driven
approaches [5], [6] using CNNs have been proposed to learn the
missing elevation directly from SSS images in a supervised-
learning fashion. However, the “ground truth” bathymetry is
needed for creating a training set, which is not always practical
underwater. Neural rendering [7], [8] methods that leverage the
continuity and differentiablity of implicit neural representations
have been recently proposed to fit many sidescan lines into a self-
consistent bathymetry with a global optimization. Specifically,
a multilayer perceptron (MLP) with sine activation functions,
known as SIREN [26], was used to represent the bathymetry
where the gradients of the bathymetry were constrained by SSS
intensities through a Lambertian model. Extended from [7], a
nadir model was proposed in [8] to model the nadir region in SSS
waterfall images so that the optimization can converge without
any external bathymetric data, e.g., altimeter readings. However,
acoustic shadows cannot be explained by the Lambertian model
in [8]. Furthermore, all the aforementioned works assume access
to high-accuracy navigation estimates.

III. NEURAL RENDERING FOR BATHYMETRY ESTIMATION

A prerequisite of our neural rendering pipeline is the assump-
tion that the vehicle’s trajectory is already corrected. In this sec-
tion, we present the neural rendering pipeline with an extended
Lambertian model based on implicit neural representations.

A. Implicit Neural Representation

In this approach, the bathymetry is represented using an
implicit neural representation, specifically a function Φθ :
R2 → R, which maps 2-D spatial coordinates, i.e., Euclidean
easting and northing x, y, to the corresponding height of the
seafloor h̃. This function is parameterized by a fully connected
neural network with parameters θ, specifically, a variant of an
MLP that employs sinusoidal activation functions, known as
SIREN [26].

Fig. 2. (a) Illustration of the gradient descent approach to find the intersection
between the elevation arc and the seafloor, parameterized by SIREN. (b) Example
of an SSS image in Data set 1. (c) Example of an SSS image in Data set 2, showing
the sinkhole on the seabed.

Given a SSS survey in a data set of the form
D = {Ii,xi, hi}Ni=1, containingN pings of SSS intensities Ii ∈
I, estimates of the 6-D AUV poses xi and altimeter readings
hi. Combining the positioning estimates of the AUV and hi, we
have sparse bathymetric measurements on the seafloor surface
{pxyzi }Ni=1 along the AUV trajectory in the world coordinates
Easting, Northing, Up (ENU), which can be directly used to
constrain the unknown mapping Φθ

LH =
1

|{pxyzi }|
∑
i

‖ΔΦθ (pxyzi )‖ (1)

where

ΔΦθ (p) = Φθ(px, py)− pz (2)

is the signed vertical distance to the seafloor, | · | denotes the
size of the set {pxyzi } and ‖ · ‖ denotes the L2 norm.

Besides the constraint LH from the altimeter readings, the
measured returned intensity of every pixel in the SSS images
Ii,n at given ping i and given bin n can be modeled using neural
rendering given a sidescan scattering model. The difference be-
tween the rendered SSS intensity Ĩi,n and the measured intensity
Ii,n can form the intensity loss to further constrain the surface
normal of the bathymetry Φθ

LI =
1

|{Ii,n}|
∑
Ii,n

‖Ĩi,n − Ii,n‖. (3)

The following section introduces the sidescan scattering model
and the process of neural rendering.

B. Sidescan Scattering Model

SSS emits a fan-shaped beam to the side of the AUV with
a narrow beam along the travel direction and a wide beam in
the azimuth direction, and then records the returned echos at
fixed intervals of time. The recorded backscatter intensities are
arranged in a vector, often referred to as a ping, which can
be stacked “row-by-row” as the vehicle moves along to form
a “waterfall” image [see Fig. 2(b) and (c)]. Each item in the
vector, often referred as a bin, stores the amplitude and two-way
travel time of the returns. The travel time is used to calculate
the distance of returns from the sonar array, combined with the
sound-speed profile (SVP).

Similar to [7] and [8], we use the Lambertian model for the
scattering process. For Ii,n, denoting the measured returned
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intensity from the ensonified point on the seafloor pi,n, its
returned intensity can be approximated by

Ĩi,n = KΦ(pi,n)R(pi,n) ‖cos(α)‖2 (4)

whereK is the normalizing constant,Φ is the beam pattern of the
sonar, R is the reflectivity of the seafloor and α is the incidence
angle. The incidence angle can be calculated given sonar’s pose
and the bathymetry model Φθ as follows.

Assuming isovelocity SVP, the ensonified volume pi,n is at a
fixed distance (slant range) rsi,n away from the sonar, parame-
terized by the elevation angle φgi,n along an arc referred to as an
isotemporal curve [7]

pi,n = ti + rsi,nRi

[
0,− cos(φgi,n), sin(φ

g
i,n)
]T

(5)

where ti is the translation and Ri is the rotation matrix for ping
i. Given the estimated bathymetry Φθ, we can determine the
elevation angleφgi,n by using gradient descent (GD) algorithm to
find where the arc intersects with the current estimated seafloor
(see Fig. 2), assuming the arc only has one intersection with the
seafloor within sonar’s vertical sensor opening [φmin, φmax]

φk+1 = φk − λ

ri,n

d

dφ
(ΔΦθ (pi,n(φ

k)))2 (6)

where ΔΦθ (p) is the signed vertical distance to the seafloor, and
λ is the step size in the GD. Once we find the optimal φgi,n, we
can define the surface normal at pi,n with respect to Φθ, given
the gradient components ∇x,∇y

NΦθ (p) = [−∇xΦθ(px, py),−∇yΦθ(px, py), 1]
T . (7)

The ray from sonar to the isotemporal curve can be simply
defined as

r(φgi,n) = rsi,nRi

[
0,− cos(φgi,n), sin(φ

g
i,n)
]T
. (8)

Given NΦθ (p) and r(φgi,n), we can compute the Lambertian

scattering contribution, MΦθ
i,n , using cos2 of the incidence angle

MΦθ
i,n = ‖cos(α)‖2 =

(
r(φgi,n)

T N̂Φθ (pi,n)

)2

. (9)

Besides the Lambertian contribution in (4), we also model and
estimate the gain, beam pattern and reflectivity jointly with the
bathymetry, similarly as [7] and [8]. The beam pattern Φ(φ)
is modeled as a radial basis function (RBF) with kernels evenly
spread acrossφ at fixed positions. ReflectivityR(p) of the whole
surveyed area is also modeled as a 2-D RBF with kernels spread
spatially. The gain parameter Ai is estimated for each sidescan
line. Note that the assumption of a single intersection between
the arc and the seafloor may not hold in complex seafloor
geometries, such as a shipwreck. In these cases, sampling-based
techniques from [9] and [10] can be used to resolve the SSS
elevation ambiguity instead of GD.

C. Nadir and Shadows

Neither nadir area in the SSS data nor the shadows can be
explained by the Lambertian scattering model, thus, we pro-
pose to extend the traditional Lambertian model to handle both

components in the SSS data, inspired by recent advances of
volumetric rendering using neural implicit surfaces [27], [28].

Nadir area is when the sound pulse travels through the water
column before hitting the seafloor, where the corresponding
arc has no intersections with the seafloor. Since we perform
a fixed-number of steps gradient descent to calculate where
the arc intersects with the seafloor, for the nadir area, the
signed vertical distance ΔΦθ (p(φ∗)) for the optimal grazing
angle φ∗ would be far from zero. We propose to weight the
intensity for nadir area with its volume density, computed as [8]:
σ(p(φ∗)) = exp(−(ΔΦθ (p(φ∗))2)/σs), so that the volume den-
sity at nadir area is close to zero but one other wise.σs is a spread
parameter that can be manually tuned to control the smoothness
of the volume density function.

It is also well known that the shadows in the sidescan data
cannot be explained by the Lambertian model. Similarly, for the
shadows in the data, the gradient descent procedure would find
an intersection between the arc and the seafloor, but the found
intersection is occluded. Inspired by [9] and [10], we propose to
sample a few points along the ray backwards, starting from the
intersection and compute the accumulated transmittance at the
intersection T (p(φ∗)) = exp (− ∫ rs

0 ρ(u)du), which is used to
indicate if p(φ∗) is occluded. Here, the particle density ρ is com-
puted as in [9] and [10]. We useT (p(φ∗)) to weight the predicted
SSS intensity, since if T (p(φ∗)) is close to zero, it indicates that
the intersection point is occluded, which corresponds to shadows
in the sidescan images. The extended Lambertian model for the
complete intensity rendering is given by

Ĩi,n = AiΦ(φ
∗
i,n)R(φ

∗
i,n)M

Φθ
i,n (φ

∗
i,n)σ

Φθ (φ∗i,n)T
Φθ (φ∗i,n).

(10)

D. Neural Rendering Algorithm

Algorithm 1 outlines the SIREN training process using neural
rendering. The inputs are the data set D collected during the
survey and the learned parameters are{Φθ,Φ, R,Ai} containing
the bathymetry estimation Φθ parameterized by SIREN, the
beam pattern Φ parameterized by 1-D Gaussian kernels, the
reflectivity of the seafloor R parameterized by 2-D Gaussian
kernels and gains per sidescan lines Ai as scalar variables.
The initialization of Φθ can be random as in [7] and [8] or
one could apply bilinear interpolation given {xi, hi} to obtain
an initial estimate of Φθ, which in theory would fasten the
convergence of the SIREN training afterwards. Lines 2 − 15
outline the SIREN training for a fixed number of steps (K) with
a decaying learning rate. Specifically, lines 3 − 6 calculate the
height loss within a batch of random samples with batch size
MH given the current bathymetry estimate Φk

θ . Lines 8 − 13
calculate the intensity loss within a batch of data (batch size
MI ), where line 9 applies a fixed number of steps GD to find
the optimal elevation angle φ for each sample given the current
bathymetry estimate Φk

θ . Line 10 computes the beam pattern
and reflectivity at φ given the current estimate of Φk, Rk and
line 11 calculates the corresponding Lambertian componentM ,
the volume density σ and the accumulated transmittance T of
the seafloor intersection. Lines 12 − 13 construct the intensity
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Algorithm 1: Φθ Algorithm.

loss within the batch and line 14 updates {Φθ,Φ, R,Ai} at the
same time using gradient-based optimization.

IV. SSS SLAM WITH ELEVATION PRIOR

The full 6-D AUV state is defined as [x, y, z, φ, θ, ψ] in
three Cartesian and three rotation dimensions, where absolute
measurements of the depth z, roll φ, and pitch θ, are measured
using a pressure sensor and inertial sensors, respectively. The
heading ψ is measured using a compass and integrated with
DVL measurements to propagate estimates of x and y, which
will drift over time. The motion of the AUV xi can be modeled
as a Gaussian distribution xi = N (f(xi−1,ui),Σi), where ui

is the vehicle’s control input, f(·) is its motion model and Σi is
the covariance of the additive Gaussian noise that parameterizes
the uncertainty of the DR.

A. SSS Measurement Model

A landmark on the seafloor l gives a range measurement,
namely, the slant range, rs, and a bearing measurement from
the constraint that l lays within the horizontal sensor opening in
the y–z plane. These two measurements paired together can be
written as

zm =

(
rm

0

)
= ẑm + η =

(√
π(lm) · π(lm)

(1, 0, 0) · π(lm)

)
+ η (11)

where lm ∈ R3 is the 3-D landmark in the world frame, rm is
the slant range of lm and η is the measurement noise. π(·) is
a function that transforms a 3-D landmark from world frame to
the sensor frame (denoted by s)

π(l) = sl̄ = pT−1
s · T−1

p · l̄. (12)

Here T p ∈ SE(3) denotes the AUV body pose at current ping
(denoted by p) that contains the mth keypoint, and pT s is the
transformation from AUV body frame to its sensor frame. l̄ ∈ E3

denotes the homogeneous representation of l.

Fig. 3. Factor graph formulation of the proposed framework. Left: Pose graph
of the global optimization. Right: Factor graph for submap-based relative pose
estimation with the elevation prior.

B. Submap-Based Relative Pose Estimation With a Prior Map

For a submap-based approach, we reasonably assume that
the DR error within submaps is small enough to be neglected.
Then for (12), we need one more transformation from the center
pose of the submap to the pose at the ping corresponding to the
landmark, pT c

π(l) = sl̄ = cT−1
s · pT−1

c · T−1
p · l̄ (13)

where cT s now is the sensor offset, which is usually considered
as known. Now we can describe the two-view submap-based
sonar optimization as the following. Given a submap, Sa, con-
sisting of Na sidescan pings which has an overlapping area
(containing Ms landmarks) with another submap, Sb with Nb

pings, we denote the poses of the center ping for Sa and Sb

as xa and xb, respectively. We formulate this optimization
with an a priori map as a factor graph [see Fig. 3(right)], and
estimate poses of the center of the two submaps as well as Ms

3-D point landmarks, X = [xa,xb, l1, l2, . . . , lMs
], by solving

a nonlinear least-squares (NLS) problem under Gaussian noise
with a maximum a posteriori (MAP) estimator

X∗ = argmin
X

Ms∑
m=1

‖ẑm − h(xa, lm)‖2Σam

+

2Ms∑
m=Ms+1

‖ẑm − h(xb, lm)‖2Σbm

+ ‖x̂b − xb‖2Σb
+ φx(xa) +

Ms∑
m=1

φl(lm). (14)

Here, we use the notation ‖x‖2Σ := xTΣ−1x to denote Maha-
lanobis distance. h(·) is the measurement model in (11), x̂b is
calculated from the DR data andφx(xa) is the prior onxa whose
uncertainty approaches zero, meaning we treat xa as fixed and
only adjustxb. Note thatφl(lm) is the prior on the landmarks ob-
tained from the a priori map, which is to address the degeneracy
illustrated in Fig. 1. As we discussed before, both xb and lm are
unknown and they can be simultaneously adjusted to satisfy the
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constraints without any priors on the landmarks, which means
there are no unique solutions. To tackle this degeneracy, we
propose to incorporate the information from sidescan data by
employing the neural-rendering-based techniques outlined in
Section III to construct an initial estimate of the bathymetry
as a prior, providing an elevation prior for the landmarks, which
is critical to solving the optimization robustly. The landmarks
are marginalized out and the relative pose estimation from the
MAP estimator is going to be added to the pose graph as LC
constraints for localization.

C. Incremental Smoothing and Mapping

We use a pose graph formulation for AUV localization, where
the only variables are poses, so that we could exploit the spar-
sity introduced by this formulation and solve the optimization
through iSAM [29].

The joint probability distribution of the AUV poses X =
[x1,x2, . . . ,xN ], the LC constraints Z = [z1, z2, . . . ,zM ] be-
tween two poses, and the DR constraints between successive
poses U = [u1,u2, . . . ,uN ] are given by

P (X,U,Z) = P (x0)
N∏
i=1

P (xi|xi−1,ui)
M∏
j=1

P (xbj |xaj
, zj).

(15)
A MAP estimate of the AUV poses attempts to find the most
likely x by solving the optimization incrementally so that we
can avoid the large drift over a long time.

V. FULL SYSTEM OVERVIEW

Finally, we give an overall view of the whole framework,
combining the method for SSS SLAM with the elevation prior
introduced in Section IV and the bathymetry reconstruction
using neural rendering, from Section III.

We assume data association Da = {(αm, βm, γm)}Mm=1, is
known, where the measurement of landmark lγm

is obtained
from sensor state xαm

and xβm
. Algorithm 2 outlines the

NeuRSS framework given SSS, altimeter readings, DR {x̂0
i }

and data associationDa, which can be run iteratively to improve
navigation estimates, represented by a pose graph G and the
bathymetry estimate, represented by a SIRENΦθ. Line 3 trains a
SIREN given the current navigation estimate using Algorithm 1,
where the resultant estimated bathymetry Φj

θ is used to compute
the landmarks 3-D positions Lj givenDa in line 4. Lines 5− 25
describe the iSAM algorithm to estimate the vehicle’s poses at
all pings’ timestamps (i = 1 to N ) using Φj

θ as the elevation
prior. Specifically, the pose graphG is constructed at every ping
using DR constraints between the two consecutive pings (lines
7 and 11). At the same time, if the submap Sb with size Nb

ending at the current ping i has more than thres1 landmarks
Lj
γ , which can also be observed from a previous submap Sa

with size Na, a LC is triggered (lines 12− 24). Lines 16− 22
describe that the relative pose from the center of Sa to the center
of Sb is estimated using RANSAC, where for each iteration r,
Ms landmarks are randomly sampled from Lj

γ (line 17), i.e.,

Lj
s. Given the initial estimate of x̂j

a, x̂
j
b before solving the NLS

Algorithm 2: NeuRSS Framework.

optimization, we can compute the triangulation error erbefore on

Lj
s
� (lines 18 − 19). Line 20 solves the NLS optimization using

(14) with the elevation prior φl using the Levenberg-Marquardt
(LM) algorithm to get the optimal estimate x∗,r

a ,x∗,r
b , which

are then used to compute the triangulation error erafter. After a
fixed iterations of RANSAC, if the estimated pose x∗,r∗

a ,x∗,r∗
b

that gives the smallest erafter/e
r
before, is smaller than a threshold

0 < thres2 < 1, this relative pose estimate is added to G, line
24. G is updated for every ping (line 25) until the end of the
survey to obtain the pose estimates for the full survey, {x̂j+1

i },
line 26. Lines 2 − 26 can be run several iterations until both of
the navigation estimate {x̂J

i } and bathymetry estimate ΦJ
θ are

converged.

VI. EXPERIMENTS

A. Data Sets and Vehicles

Two data sets have been collected with two vehicles (see
Fig. 4) for testing the proposed approach. A nearshore surface
vessel MMT Ping equipped with a real-time kinematic (RTK)
GPS, a hull-mounted EdgeTech 4200 sidescan and a Reson
SeaBat 7125 MBES has collected Data set 1, where the surveyed
area contains a large mountain and a ridge. Data set 2 was
collected by a Kongsberg Hugin 3000 AUV equipped with a
Honeywell HG9900 inertial navigation system (INS), aided with
a Nortek 500 kHz Doppler velocity log (DVL), an EdgeTech
2205 sidescan and a Kongsberg EM2040 MBES, where the
surveyed terrain is relatively benign with a sinkhole on the
seabed. Data set 1 was collected on the surface so that we could
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Fig. 4. MMT survey vessel ping (a) and Hugin AUV (b).

TABLE I
DATA SETS DETAILS

have GPS for accurate positioning. The MBES data are used as
the ground truth bathymetry during evaluation. Data set 2 was
collected as a part of a long mission (24 h) without any external
navigation aid, where the DR of Hugin will have inevitable
drift. However, since Data set 2 is only 12 min and given the
high quality of Hugin’s INS system, we reasonably assume the
relative trajectory error is very little within Data set 2. Therefore,
the DR data and MBES collected are used as the ground truth
for evaluation. The main characteristics of the two data sets are
summarized in Table I.

B. SIREN Training Details

In this work, we leave the architecture of SIREN as it is in [6],
a 5-layer MLP with hidden layer size 128. As for the sidescan,
we downsample all the raw data to 512 bins from 5734 bins (Data
set 1) and 20816 bins (Data set 2), where all 512 bins are used in
the loss calculation. All positional data is normalized to [−1,1].
For SIREN’s initialization, instead of initializing the weights
randomly as in [6], we first train SIREN for ten epochs using
the heightmap linearly interpolated from the sparse altimeter
readings, so that the training later could converge faster. As for
the training hyperparameters, we train 800 epochs using Adam
optimizer with a learning rate 2× 10−4 that linearly decays
by a factor of 0.995 every 2 epochs. For each mini-batch, we
randomly selected 200 SSS pings and 800 altimeter readings.
For the GD, we optimize 30 steps with λ = 2.0. To compute the
transmittance T , we sample 30 points along the ray backwards
2 m.

C. Evaluation of the NeuRSS Framework

In this section, we seek to assess and validate the amenability
of the proposed NeuRSS framework on large industrial-scale

TABLE II
SLAM ATE (M)

surveys. For this, we have designed two sets of experiments. For
both experiment setups, we corrupt the ground truth trajectory
by adding Gaussian noise to the yaw of the vehicle, 5e− 3 rd/s,
to simulate the vehicle’s navigation estimates (DR) that inherent
cumulative drift. As for the front-end, we generate the “perfect
data association” using ground truth trajectory and bathymetry.
We first construct SSS submaps every 200 pings along the
trajectory, and for two submaps that have sufficient overlaps
(usually from sections of two parallel adjacent track lines), we
use SIFT features to extract feature points from one SSS submap,
the reference frame. Then we associate the feature points in the
reference waterfall image to their 3-D landmarks coordinates
using ground truth bathymetry (sidescan draping [30]) and then
projected them back to the other SSS submap, the current frame.

In Experiment 1, we have gauged the effects of the landmark
elevation prior in the back-end NLS optimization and the SLAM
performance on both data sets. We run the NLS optimization on
the corrupted trajectory with three setups: no landmark elevation
prior, an elevation prior provided using linear interpolation
between the altimeter readings of reference frame and current
frame, and the elevation prior given by the estimated SIREN
bathymetry from SSS using our neural rendering approach. The
results of the optimization have been compared based on two
error metrics, relative translation error (RTE) translation and
absolute trajectory error (ATE), against the ground truth.

In Experiment 2, we have demonstrated how the proposed
approach can be used iteratively to improve navigation estimates
and subsequently for bathymetric mapping with SSS. On both
data sets, we have applied J = 2 iterations of Algorithm 2
starting from the corrupted trajectory ({x̂0

i }, DR). We compare
the estimated trajectories and bathymetric maps against their
ground truth, respectively.

VII. RESULTS

A. Exp 1: Elevation Prior on NLS Optimization

As mentioned in Algorithm 2, line 24, a threshold thres2 is
used to determine if the relative pose estimation from NLS opti-
mization should be added to the pose graphG as LC constraints.
This parameter controls whether a LC constraint is considered
to have a robust relative pose estimate after optimization. Fig. 5
shows the RTE with different thres2 for all submap pairs from
Data set 1 after NLS optimization using no elevation prior,
linear interpolated elevation prior or the elevation prior from
the estimated SIREN bathymetry from SSS. We can observe that
the relative pose estimation is not robust at all when no elevation
prior is provided, indicating the elevation degeneracy case. Note
that we obtain much more robust performance on relative pose
estimation when we use Algorithm 1 to estimate bathymetry and
treat it as a map known a priori, providing the elevation prior.
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TABLE III
RESULTS WITH SIREN

Fig. 5. Mean and standard deviation of the RTE at thres2 = 0.5,
0.6, 0.7, 0.8, 0.9. Black bars are the DR errors before optimization. Red bars
and green bars are errors after optimization using SIREN estimates and linear
interpolation of altimeter readings as the elevation prior, respectively. Blue bars
are the errors without using any elevation priors.

This indicates that the converged bathymetry estimated from
SSS using neural rendering, though having errors due to the inac-
curate positioning, still provides a more valuable approximation
compared to simply interpolating all the altimeter readings, due
to the rich information extracted from SSS imagery.

Table II shows the ATE when we run the full system (for
one iteration) using both data sets, where we can also observe
that using the proposed method as the elevation prior gives the
smallest trajectory error (in bold) in both cases. Note that the
terrain in Data set 1 is much more complex than Data set 2, which
is the main reason that the performance using linear interpolation
to provide the elevation prior is much worse than that using our
estimated SIREN bathymetry on Data set 1 (6.232 m versus
2.074 m), compared to Data set 2 (2.551 m versus 2.060 m).

B. Exp 2: Iterative Refinement of Navigation and Mapping

Table III shows the SLAM ATE (m) and the error (m) on
reconstructed bathymetry Φj

θ at each iteration, j = 0, 1, 2. In-
specting the ATE, on both data sets, we can observe that another
iteration (j = 2) could further improve the trajectory estimates,
but again, the improvement on Data set 2 is less than that on Data
set 1, due to the terrain in Data set 2 being relatively benign and
the features on the seabed mainly being clustered around the
sinkhole. We can also notice that the errors on the estimated
bathymetry in Table III also decrease each iteration because of
the better estimates on the positioning of the SSS, resulting in a
final 0.069 m MAE on Data set 1 and 0.284 m MAE on Data
set 2. Fig. 8 shows the estimated trajectory compared against
the ground truth (red) for Data set 1, the entire mission in (a)
and zoom-in section in (b), where it illustrates how our proposed
approach can iteratively improve the navigation estimates from

Fig. 6. Final estimated bathymetry from data set 1. (a) Bathymetry from SSS.
(b) Bathymetry from MBES.

Fig. 7. Final estimated bathymetry from data set 2 (AUV trajectory in blue).
Note that we use the SSS trajectory to create a boarder of the reconstructed area
because the quality outside of the boarder degrades fast due to under-constraints.
(a) Bathymetry from SSS. (b) Bathymetry from MBES.

DR ({x̂0
i }, blue) with ATE 9.751 m to {x̂1

i } (orange) with ATE
2.074 m and {x̂2

i } (green) with ATE 0.822 m.
Fig. 6 shows heightmaps of the final estimated bathymetry

from SSS,Φ2
θ, and the ground truth bathymetry constructed from

MBES, for Data set 1. We can see that the topographic details
of the mountain and the ridge are fairly well reconstructed. We
zoom in and show the ridge in 3-D as a mesh in Fig. 9, where one
can notice the effect of sonar pose estimates on the quality of
the reconstructed topology. We can observe that,Φ2

θ, in Fig. 9(b)
manages to reconstruct more details on the abyssal hills on top of
the ridge compared toΦ1

θ in (a). However, compared to MBES in
(c), we can see the limits of the proposed approach, even though
the MAE over the whole surveyed area is less than 10 cm.

For Data set 2, the final estimated bathymetry is shown in
Fig. 7(a) with AUV transit in blue, together with the ground
truth in (b). Note that the sinkhole can be clearly seen in
the estimated bathymetry, but the shape and dimension have
noticeable errors, compared to the bathymetric map from MBES.
This is largely because reconstructing bathymetry from SSS is an
ill-posed optimization problem, especially in this case, where we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



XIE et al.: NeuRSS: ENHANCING AUV LOCALIZATION AND BATHYMETRIC MAPPING 9

Fig. 8. Optimized trajectory estimates of the vehicle (orange and green), DR estimates (blue), as well as the ground truth for mission 1.

Fig. 9. Zoomed in sections of bathymetry in Data set 1. (a) Φ1
θ from SSS. (b) Φ2

θ from SSS. (c) Bathymetry from MBES.

lack sufficient repeated observations from different viewpoints
(unlike the case in Data set 1, see Fig. 8). For similar reason, we
can also see that the quality of the reconstructed bathymetric map
deters at the perimeter. However, one can reasonably speculate
that the reconstruction quality could improve given more survey
lines, for example, perpendicular to the ones in Fig. 7.

VIII. CONCLUSION

We have presented NeuRSS, a neural rendering-based frame-
work for reconstructing bathymetry from SSS data and DR
estimates in a self-supervising manner. The proposed framework
has been tested on two field data sets collected with different
robots. We demonstrated that the bathymetric estimates from
SSS using neural rendering play an important role in addressing
the elevation degeneracy in the NLS optimization for estimating
the relative poses between two submaps. Compared with inter-
polating between altimeter readings, the elevation prior provided
by incorporating SSS with neural rendering results in much more
robust optimization, especially when the terrain is complex, as in
Data set 1. We also show that the proposed approach can be run
iteratively to improve navigation and bathymetric estimates for
high-quality bathymetric mapping using SSS data from standard
surveys.

The current major limitation of this work is that we did not
address the data association problem in the front-end of the SSS
SLAM pipeline. Automatic data association in SSS imagery is
still an active and open research question, largely due to the
unique challenges that come from the special sensor modality
of SSS. In [21] and [25], canonical transformation under flat

seafloor assumption has been applied to SSS images to re-
duce geometric and radiometric distortions before feature-based
matching [21] and dense matching [25]. One possible future
work is to incorporate the bathymetric estimates from neural
rendering into SSS canonical transformation and apply similar
matching approaches for automatic data association.

Another possible future work is to use MBES and SSS
data for AUV SLAM and superresolution bathymetric mapping
in a neural rendering framework, leveraging the strengths of
both sensors, namely MBES’s ability to directly measure the
3-D seafloor geometry and SSS’s wide swath range and high-
resolution imagery.

Another limitation is that our method is mostly suited to
offline optimization instead of real-time applications. The main
reason is that to train a SIREN to converge to a self-consistent
bathymetric map with high quality and fidelity, we need the mul-
tiple repeated observations from SSS from different viewpoints.
Nevertheless, if one can explore the idea of combining MBES
and SSS at the same time, it is possible to run dense SLAM on
an embedded platform in real time.
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