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Abstract: SLAM (Simultaneous Localisation and Mapping) is very important in the task of 

mapping unknown deep-sea environments. This paper proposes an AUV cluster SLAM 

algorithm to improve the efficiency of SLAM mapping and navigation. The algorithm 

includes three main parts: (1) multi-beam sonar image processing algorithm, which detects 

and eliminates dynamic points while removing redundant information. (2) Combining DVL 

(Doppler Velocity Log), IMU (Inertial Measurement Unit) and DM (Depth Meter) data, 

SLAM is performed based on a Rao-Blackwellised particle filter (RBPF ). (3) The innovative 

iUSBL (inverted ultra-short baseline) system is used to realise the cooperative positioning 

between the master and slave AUVs. The multi-AUV underwater detection and mapping 

collaborative SLAM algorithm proposed in this paper not only significantly improves the 

mapping efficiency in unknown deep-sea environments but also effectively suppresses the 

errors introduced by dynamic points and ensures stable SLAM performance. Compared with 

a single AUV, the efficiency of mapping is significantly improved. 
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1. Introduction 

Maps are a necessary tool for the study of marine science. Usually, the accuracy of the generated map 

depends largely on the accuracy of the underwater vehicle positioning. Underwater scenes are full of 

restrictions, for example, GPS (Global Positioning System), which is commonly used by ground and 

air robots is less useful underwater as AUVs cannot obtain GPS information due to the strong 

attenuation of underwater electromagnetic waves, which brings great challenges to the navigation of 

autonomous underwater vehicles. In the absence of GPS, acoustic positioning systems or positioning 

systems based on inertial information are commonly used. However, for deep-sea areas, the operating 

distance of conventional underwater acoustic navigation is limited and the mother ship needs to 

follow or arrange acoustic beacons in advance, which is not suitable for use in unknown areas of the 

sea. The individual inertial navigation will produce cumulative errors over time and the accuracy of 

the estimation will gradually decrease. Although GPS correction algorithms at regular sea level can 

constrain cumulative errors, it is difficult to achieve accuracy in deep-sea measurement tasks. 

Compared with acoustic and inertial positioning systems, Simultaneous Localisation and Mapping 

(SLAM), as an autonomous navigation technology, can fuse inertial navigation information and DVL 

and the Kalman filter to eliminate cumulative errors. This can provide reliable positioning for 
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autonomous underwater vehicles (AUVs) in an unknown environment during movement and generate 

a model of their surrounding environment. Underwater SLAM provides a safe, efficient and 

economical method for exploring and investigating unknown underwater environments. With the 

development and utilisation of underwater resources such as oceans, underwater SLAM has become 

a research hotspot. 

Underwater SLAM can be divided into three categories according to the type of sensor: visual 

SLAM, light detection and ranging (LiDAR) SLAM and sonar SLAM. Laser radar uses a laser to 

analyse the contour and structure of the target. However, electromagnetic waves cannot propagate 

long distances underwater, and the laser will be severely attenuated in the water, resulting in 

absorption and scattering. Although vision-based SLAM has the advantages of low cost and high 

portability, it has poor visibility in deep-sea environments and is affected by particle and light 

conditions in water. The lack of illumination will seriously affect the quality of the final image. Sonar 

can detect and locate objects in the absence of light by using the characteristics of the ob ject’s 

reflected sound wave. The sound wave shows a smaller attenuation rate and longer propagation 

distance than light in the underwater environment. Although the refresh rate and resolution of the 

visual camera are lower, sonar is an ideal choice for underwater SLAM. The sonar sensors used for 

underwater SLAM mainly include mechanical scanning sonar, side scanning sonar, multi-beam sonar, 

etc. 

Multi-beam sonar (MBS) is a kind of sonar used for underwater detection and it is one of the most 

important measuring instruments in ocean missions. Multi-beam sonar, which is widely used, can 

transmit hundreds of beams at the same time [1]. Cheng et al. proposed a filter-based multi-beam 

forward-looking sonar (MFLS) underwater SLAM algorithm [2]. In order to prevent excessive 

calculation, after extracting environmental features, threshold segmentation and distance constraint 

filtering are used and converted into sparse point cloud format. In addition, the method also combines 

multi-sensor data to estimate the position of the AUVs. The SLAM method based on Rao-

Blackwellised particle filter (RBPF) can be used to generate a map [3]. 

When performing underwater SLAM, a single type of sensor has some disadvantages. Integrating 

multiple sensors can solve these disadvantages and improve the robustness and accuracy of 

underwater SLAM. Common multi-sensor fusion methods include visual-inertial SLAM, laser-visual 

SLAM and multi-sensor SLAM combining sonar, IMU, vision and other sensors.  

In general, the computational complexity of the SLAM system is affected by the size of the 

exploration environment and is closely related to feature extraction, tracking, data association [6], 

filtering methods, etc. Due to the huge space of underwater environments, such as lakes and oceans, 

AUV activities are complex. Moreover, in the face of large-scale SLAM tasks, it is difficult to achieve 

a balance between accuracy and speed. Improving accuracy in large-scale environments is still an 

urgent problem to be solved in underwater SLAM applications. 

Considering the principle of the SLAM system, the feature-matching and solution results of SLAM 

in dynamic environments will be affected. Therefore, for SLAM on land, its use in dynamic 

environments is a research hotspot [7, 8, 9]. Similarly, dynamic phenomena in underwater 

environments are very common, such as marine organisms, water flows caused by robot motions, 

bubbles, etc. Consequently, there are numerous defects and errors in the maps generated in dynamic 

environments. 

Therefore, in response to the above challenges, this paper aims to develop a multi-AUV 

collaborative SLAM algorithm based on iUSBL. Our works aim to improve the reliability, continuity 

and robustness of AUV swarms in underwater pose estimation. Our research also seeks to improve 

the efficiency of underwater SLAM and generate more accurate and comprehensive map information 

for deep-sea navigation. Considering the dynamic underwater environment of the multi-AUV scene, 
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the RANSAC algorithm is used to detect and eliminate dynamic points, which improves accuracy 

while ensuring efficiency and effectively suppresses the errors introduced by dynamic points. 

2. Methodology 

We proposed a multi-AUV collaborative SLAM algorithm based on iUSBL, which can effectively 

solve the problem of low efficiency of single AUV SLAM. The algorithm significantly improves the 

mapping efficiency and positioning accuracy through multi-AUV collaboration. Figure 1 is the 

overall framework of the collaborative SLAM algorithm proposed in this paper. The algorithm can 

be divided into three parts, the main AUV SLAM module, the slave AUV SLAM module and the 

map fusion module. The iUSBL is used for information exchange between the master and slave AUVs. 

For a single AUV, the DVL data and IMU data are first fused to obtain the odometer data used for 

dead reckoning in the algorithm and the sonar data is processed. Firstly, threshold filtering is 

performed on the multi-beam sonar data and then it is converted into a point cloud form. Then, the 

RANSAC algorithm is used to eliminate the dynamic points. Finally, the distance constraint filtering 

is used to sparse the obtained point cloud data. The processed data is sent to the RBPF-SLAM 

algorithm for positioning and synthesis. The iUSBL is used for cooperative positioning between the 

master and slave AUVs and then the master and slave AUV maps are fused to generate the final map. 

 

Figure 1: The overall framework of the collaborative SLAM algorithm. 
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2.1. iUSBL System 

Compared with the traditional USBL system, the iUSBL system only needs to receive the signal from 

the AUV to the autonomous AUV, which avoids the multi-signal collision problem when multiple 

slave AUVs are located at the same time. Different from the traditional USBL, iUSBL is equipped 

with a beacon by the master AUV and a receiving array by the slave AUV to achieve one-way acoustic 

communication, which significantly reduces the communication energy consumption and time delay 

of the slave AUV. The iUSBL system is composed of a four-element transmitting array and a 

receiving hydrophone. The transmitting array is mounted on the master AUV, while the hydrophone 

is mounted on each slave AUV. The distance and azimuth between the master and slave AUVs can 

be calculated by receiving orthogonal coded signals from four arrays. 

 

Figure 2: The iUSBL diagram between master and slave AUVs. 

Due to the small size of the array, the distance between the receiving point and the transmitting 

end is far. It can be assumed that the sound lines are parallel. The relative azimuth angle between the 

master and slave AUVs is thus obtained: 

𝑐𝑜𝑠𝜃𝑥 =
𝑐 ∙ 𝜏𝑥

𝐿
 

𝑐𝑜𝑠𝜃𝑦 =
𝑐 ∙ 𝜏𝑦

𝐿
 

L is the distance of the coaxial array, 𝜃𝑥 , 𝜃𝑦  are the target azimuth, 𝜏𝑥 , 𝜏𝑦  are the time delay 

difference.  

The distance and relative position between the master and slave AUVs can be calculated based on 

the depth information of the depth sensor and the estimated azimuth information: 

𝑅 =
𝑧𝑠 − 𝑧𝑚

√1− (𝑐𝑜𝑠𝜃𝑥)
2 − (𝑐𝑜𝑠𝜃𝑦)

2
 

𝑥 = 𝑅 ∙ 𝑐𝑜𝑠𝜃𝑥 

𝑦 = 𝑅 ∙ 𝑐𝑜𝑠𝜃𝑦 

In the formula, R is the target tilt distance, 𝑧𝑚, 𝑧𝑠 are the depth information of the slave AUV, and 

x and y are the position of the slave AUV in the master AUV coordinate system. The master AUV 

broadcasts its coordinates regularly. According to the absolute position information of the main AUV 

and the relative position information between AUVs, each slave AUV is positioned by coordinate 
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system transformation. The AUV position information is calculated from the measured values 𝑧𝑚, 𝑧𝑠, 

𝜏𝑥, 𝜏𝑦. In these four measurements, the depth information 𝑧𝑚 and 𝑧𝑠 are obtained by the depth meter 

and the measurement accuracy is particularly high. 

 

Figure 3: Geometric Graph of Theoretical Position. 

2.2. Single AUV Dead Reckoning 

The dead reckoning module uses IMU, DVL and DM to provide a rough estimation of AUV attitude. 

After sampling the data, the dead reckoning module uses the extended Kalman filter (EKF) to fuse 

the data of these sensors to estimate the attitude.  

Because the depth measurement of DM is very accurate, the measured value of DM is regarded as 

the true value and only the two-dimensional plane needs to be considered when performing dead 

reckoning. The IMU includes an accelerometer and a gyroscope. The accelerometer detects the 

acceleration of the AUV along each axis, the gyroscope detects the angular velocity of the AUV 

relative to the navigation coordinate system and the DVL determines the speed of the AUV by 

measuring the Doppler effect of the underwater acoustic signal. 

In this paper, the IMU / DVL tight coupling method is used to directly fuse the velocity information 

of DVL with the acceleration and angular velocity information of IMU. Compared with the loose 

coupling method, it can reduce the accumulation of navigation error more effectively, so as to 

improve the accuracy and stability of the whole system. 

In order to achieve IMU / DVL tight coupling, we first need to convert the speed information of 

the DVL to the inertial coordinate system. This can be achieved by the following formula: 

𝑣𝐷𝑉𝐿
𝑛 = 𝑅(𝜃𝐼𝑁𝑆)𝑣𝐷𝑉𝐿

𝑏  

Thus, the calculation speed error: 

𝑒𝑣 = 𝑣𝐼𝑁𝑆
𝑛 − 𝑣𝐷𝑉𝐿

𝑛  

The position, velocity, attitude error and DVL drift are estimated and updated by Kalman filter. In 

the case of tight coupling, the velocity information of DVL is more effectively used to correct the 

error of INS.. 

2.3. Threshold Segmentation Algorithm 

(1) The average pixel value of the sonar image is calculated as the threshold of filtering.  

(2) The pixel value below the threshold is assigned to 0 and the pixel value above the threshold 

remains unchanged. 
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2.4. RANSAC Algorithm 

(1) Select two adjacent frames of a sonar image and, according to the change of pixels in the sonar 

image in the sonar coordinate system, calculate the 3d flow across two frames.  

(2) For a pair of matching feature points, the neighbours with similar 3D flow are selected as the 

cluster and the initial guesses of the rotation matrix R and the translation T are calculated. Based on 

the initial guess, the corresponding interior points are obtained. We will then iterate between the 

update R and T and the interior point until the interior point is no longer included. For a feature point, 

where we can’t find at least three similar neighbours, we will regard it as an outer point, skip and 

eliminate it.  

(3) Select another pair of matching feature points from the remaining features and then proceed as 

described in step (4).  

(4) After classifying all the features, the largest group is selected as the static group and the point 

cloud image after dynamic point elimination is generated. 

2.5. RPBF-SLAM 

Rao-Blackwellised PF-SLAM decomposes the SLAM problem into independent localisation and 

mapping. Its algorithm implementation is divided into four stages, the sampling stage, the weight 

calculation stage, the resampling stage and the map update stage:  

(1) Sampling stage: for the particle set at time k, PF calculates the proposal distribution according 

to the motion model to obtain the particle set at time k + 1 and the pose of each particle represents a 

motion pose estimation of AUV.  

(2) Weight calculation stage: the weight of each particle is 
1

𝑛
 at the initial stage. After iterative 

updates, the weight is the ratio of the target distribution to the proposed distribution: 

𝑊𝑘
𝑖 =

𝑝(𝑥1,𝑘
𝑖 |𝑧1:𝑘 , 𝑢1:𝑘−1)

𝑞(𝑥1:𝑘
𝑖 |𝑢1:𝑘−1)

 

(3) Resampling stage: resample the particle set according to the weight, discard the low weight 

and retain the high weight.  

(4) Map update stage: particles update each feature in the map according to the sonar observation 

data and the current state trajectory. 

3. Experimental Results 

The simulation experiment was carried out using the ROS 2 platform. The Scott Reef 25 data set of 

the Australian Centre for Field Robotics’ marine robotics group was used. The effectiveness of the 

proposed SLAM algorithm was verified by simulation and practical experiments.  

The experimental data was segmented to achieve the effect of multiple AUVs. The original 

trajectory was divided into five segments, assigned to five AUVs and then the data was grouped 

according to the trajectory, and the original data was divided into five parts. The trajectory of each 

AUV is shown below. 
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Figure 4: Trajectory segmentation results. 

 

Figure 5: Trajectory corresponding to 5 AUVs. 

3.1. Sonar Image Processing 

The sonar image was processed by threshold filtering. Taking the previous two frames as an example, 

it can be seen that after threshold filtering, the noise of the sonar image was greatly reduced, which 

can better reflect the characteristics of the environment. 
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Figure 6: Comparison of the previous frame sonar image before and after threshold filtering. 

 

Figure 7: Comparison of the next frame sonar image before and after threshold filtering. 

The sonar image after threshold filtering was converted into a point cloud image. Figure 8 is a 

three-dimensional point cloud image and Figure 9 is a plane point cloud image. Figure 9 shows that 

the feature points of the point cloud image after filtering are obvious. 

 

Figure 8: 3D point cloud images of two frames. 
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Figure 9: Point cloud images of two frames. 

3.2. D Flow Estimation 

Visualise the computed 3D flow vectors across the two sonar frames, indicating the pixel motion 

between them. Figure 10 shows the 3D flow vector of two sonar frames. Based on this, the pixels are 

classified. Prepare for the follow-up work. 

 

Figure 10: The 3D flow between two frames. 

3.3. Feature Point Clustering 

Figure 11 shows the movement of different feature points. In the figure, we can see the normal motion 

trajectory and abnormal motion trajectory. The feature points with abnormal motion trajectories are 

the dynamic points that need to be eliminated.  
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The RANSAC algorithm was used to iterate and the dynamic points were detected according to 

the 3D flow and motion trajectory. The number of iterations of the RANSAC algorithm was set to 

5000. After 5000 iterations, we got the interior point, as shown in Figure 12. 

 

Figure 11: Dynamic point motion trajectory. 

 

Figure 12: The feature points after elimination. 

3.4. Outlier Rejection 

The outliers detected by the RANSAC algorithm, that is, dynamic points, were eliminated. The point 

cloud images before and after elimination are shown in Figure 13. 
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Figure 13: Comparison before and after elimination of outliers. 

3.5. Master-Slave AUV Error Curve 

The comparison of the position of the main AUV and the slave AUV calculated by the proposed 

algorithm with the real situation on the ground is shown in the figure. It can be seen that after working 

for a long time, their trajectory error is very small and because multiple AUVs work at the same time, 

the task time is greatly shortened and the cumulative error increases with time. The simulation results 

show the effectiveness of our proposed method. 

 

Figure 14: The slam estimation error of the main AUV. 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/100/2025.17850 

140 



 

 

 

Figure 15: The slam estimation error of the slave AUV1. 

 

Figure 16: The slam estimation error of the slave AUV2. 
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Figure 17: The slam estimation error of the slave AUV3. 

 

Figure 18: The slam estimation error of the slave AUV4. 

4. Discussion 

Presently, some problems still remain. For example, the final map fusion can be regarded as an ideal 

condition. However, in practical engineering, it is difficult to realise the transmission of maps 

underwater and it is necessary to perform map fusion in the console. In view of these problems, future 

work must continue to study data transmission methods suitable for underwater. 

5. Conclusion 

The comparison of the time required for single AUV and multi-AUV SLAM is shown in the following 

table. It can be seen that multiple AUVs can greatly reduce the time required for the task while 

ensuring positioning accuracy. 
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Table 1: Time required for single AUV and multi-AUV SLAM. 

 TIME(s) 

single AUV 2514.7 

Master AUV 514.1 

Slave AUV1 522.9 

Slave AUV2 534.6 

Slave AUV3 526.3 

Slave AUV4 517.4 

6. Summary 

This paper proposes a cooperative SLAM algorithm for multi-AUV underwater exploration and 

mapping. To address the challenges posed by the dynamic environment encountered with multiple 

AUVs, a RANSAC-based algorithm was introduced to detect and eliminate dynamic points from the 

sonar data. The proposed approach fuses data from Doppler Velocity Log (DVL), Inertial 

Measurement Unit (IMU) and Multi-Beam Forward-Looking Sonar (MFLS) sensors.  

Subsequently, a Rao-Blackwellised Particle Filter (RBPF)-based SLAM method was employed to 

mitigate the accumulation of inertial sensor errors and generate accurate occupancy grid maps. The 

algorithm’s efficiency was evaluated through simulations on the ROS 2 platform, utilising the Scott  

Reef 25 dataset from the Australian Centre for Field Robotics’ marine robotics group. The results 

demonstrate improved positioning accuracy and mapping performance, showcasing the potential of 

the proposed cooperative multi-AUV SLAM approach for efficient underwater exploration and 

mapping in dynamic environments. 

Data Availability Statement 

The authors would like to acknowledge the Australian Centre for Field Robotics’ marine robotics 

group for providing the data. 

References 

[1] Melo, J. and Matos, A. (2017) Survey on advances on terrain based navigation for autonomous underwater vehicles. 

Ocean Engineering, 139, 250–264.  

[2] Cheng, C., Wang, C., Yang, D., Liu, W. and Zhang, F. (2022) Underwater localization and mapping based on multi-

beam forward looking sonar. Frontiers in Neurorobotics, 15, 189. 

[3] Grisetti, G., Stachniss, C. and Burgard, W. (2007) Improved techniques for grid mapping with Rao-Blackwellized 

particle filters. IEEE Transactions on Robotics, 23, 34–46.  

[4] Köser, K. and Frese, U. (2020) Challenges in underwater visual navigation and SLAM. AI Technology for 

Underwater Robots, 96, 125–135. 

[5] Amarasinghe, C., Ratnaweera, A. and Maitripala, S. (2020) Monocular visual slam for underwater navigation in 
turbid and dynamic environments. American Journal of Mechanical Engineering, 8, 76–87.  

[6] Song, C., Zeng, B., Su, T., Zhang, K. and Cheng, J. (2022) Data association and loop closure in semantic dynamic 

SLAM using the table retrieval method. Applied Intelligence, 52, 11472–11488.  

[7] Xiao, L., Wang, J., Qiu, X., Rong, Z. and Zou, X. (2019) Dynamic-SLAM: Semantic monocular visual localization 

and mapping based on deep learning in dynamic environment. Robotics and Autonomous Systems, 117, 1–16.  

[8] Sun, Y., Liu, M. and Meng, M.Q.H. (2017) Improving RGB-D SLAM in dynamic environments: A motion removal 

approach. Robotics and Autonomous Systems, 89, 110–122.  

[9] Ni, J., Wang, X., Gong, T. and Xie, Y. (2022) An improved adaptive ORB-SLAM method for monocular vision robot 

under dynamic environments. International Journal of Machine Learning and Cybernetics, 13, 3821–3836 

Proceedings of  the 5th International  Conference on Signal  Processing and Machine Learning 
DOI:  10.54254/2755-2721/100/2025.17850 

143 


