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Abstract: Due to the weak structural features of pipelines and underwater light attenuation, the
complex and harsh environment of the seabed greatly increases the possibility of an underwater
autonomous remotely operated vehicle losing a detected seabed-contacting segment during pipe-
laying operations. To address this problem, we propose a cascade attention module and a prefusion
module with a convolutional neural network. The cascade attention module samples the feature
maps in a non-convolutional form to realize the interaction between structure and channels, and the
attention map is generated by cascading attention. The prefusion module pre-fuses the three layers of
feature maps from different stages in the backbone, and the delicate features of the shallow feature
maps are fused with the deeper feature maps to generate richer feature maps with space location
and semantic classification information. We conduct experiments to verify our modules, both on
the underwater pipeline dataset and in a tank test. The results show that our modules can improve
the performance of different neural network models for seabed-contacting segment detection. The
target detection and instance segmentation performance of the best model is improved through a 6.3%
increase in AP and a 3.8% increase in mean intersection over union compared with the baseline model.

Keywords: autonomous remotely operated vehicles; seabed-contacting segment detection; submarine
pipelaying operation; cascade attention module; prefusion module

1. Introduction

The transportation of marine oil and gas resources by subsea pipelines is the most
economical, fastest, and most reliable form of maritime transportation. Due to the complex
operating conditions in the ocean, the costs associated with laying and installing pipelines
are high. In traditional pipeline-laying operations, a marine pipeline-laying ship performs
defect detection and joint sealing before the pipeline is lowered to the seabed. In recent
years, the advent of marine robots has allowed for the process of pipeline laying to be
performed by human-controlled marine robots along the pipeline, with the real-time
transmission of submarine pipe-laying videos and access to submarine pipe-laying status
enabling the adjustment of the direction of the sea pipeline laying in time. However,
this still requires human involvement in the control of the marine robots. Since humans
themselves have a limited ability to perceive changes in the environment to which the
marine robot belongs in real time, such as underwater currents, undercurrent impacts,
and undersea obstacles, human control cannot respond to such disturbance factors in
time. With the advent of deep learning target detection technology, marine robots can
now control their own attention mechanism to detect the location of the seabed-contacting
segments of submarine pipelines and automatically track the laying of submarine pipelines,
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eliminating human manipulation and reducing operating costs. There is no indication
that this method has been utilized in engineering practices during the laying of submarine
pipelines. Further, there are still additional challenges related to pipeline location that are
influenced by various chemical agents present on the seabed such as hazardous materials,
including munitions or remnants from past warfare, posing risks to both the marine robots
and the pipelines themselves [1,2].

The unique characteristics of the underwater environment and the complex operating
environment can cause the silt on the seabed to adhere to the surface of the pipeline,
forming a layer of irregular silt film. The light source from the underwater autonomous
remotely operated vehicle (ARV) is absorbed and scattered by the seawater, causing the
image of the pipeline in the model’s field of view to merge with the background color of
the silt on the seabed, blurring the boundary between the pipeline and the background.
At the same time, the characteristics of the extended sea pipeline and the slight change in
the curvature of the laid sea pipeline cause the sea pipeline to appear in a continuous and
smooth state in the model’s field of view, and so the difference between the characteristics
of the sea pipeline before and after the extension is small, which is not conducive to the
model’s inference and detection abilities. The existing method of using sonar to determine
the location and shape of the seabed-contacting segments of subsea pipelines is limited by
its resolution, making it impossible to obtain a fine-grained segmentation of the pipeline
boundary. The concavity and convexity of the underwater terrain causes changes in the
propagation path of the acoustic wave, making it difficult to identify and locate the pipeline.
Although it is possible to obtain a real image of the seabed using a vision camera, the
surface of the seabed pipeline may lack obvious texture and visual features. In response to
the weak texture features presented by the seabed pipeline, the attention mechanism can
quickly remove a large amount of redundant information about the seabed pipeline and
increase sensitivity to the weak texture features, allowing the model to focus more on the
part of the pipeline that makes an important contribution to the task.

By further improving the attention mechanism of the RTMDet network model, the
model can quickly converge on the seabed-contacting segment region of interest, such as
the feature of a smaller radius of curvature at the seabed-contacting segment. At the same
time, the segmentation of the submarine pipeline boundary is further refined by improving
the fusion strategy of the feature maps to improve the detection performance of the model.

Based on the above discussion, we prove the effectiveness of our modules by plugging
in our designed cascade attention module and prefusion module, both of which improve
the accuracy of different network models to varying degrees. Our trained models are
visualized by Grad-Free CAM [3], and it can be clearly seen that the improved network
focuses on the target object more accurately than the original network model. Our main
contributions are threefold:

(1) We propose a plug-and-play, simple and effective cascade attention module. The
feature map is transformed into three different sizes of feature maps, and feature
extraction is performed using spatial direction, a depth direction attention mechanism,
and a position attention mechanism, respectively. The flow of feature information is
controlled by the cascaded feature maps through a learnable gating unit.

(2) We propose a plug-and-play, simple and effective prefusion module. Using three differ-
ent upper and lower scales of feature maps as inputs for the module, the finer features
in the different scales are obtained by fusion after scaling so that more shallow and more
highly fine-grained feature expressions are added to the deeper feature maps.

(3) The cascade attention module and the prefusion module improve the detection and
instance segmentation performance of our best model through a 6.3% increase in AP
and a 3.8% increase in mIOU.

We verify the effectiveness of the continuous operation of underwater autonomous
remotely operated vehicles (ARVs) during pipeline operations through data collection,
modeling algorithm experiments, and tank experiments. It is the first time that the auto-
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matic tracking and inspection technology of ARVs has been utilized to assist submarine
pipeline-laying operations and provide an experimental basis.

2. Related Work

At present, the detection and segmentation of underwater targets is widely studied;
however, due to the complexity of and variability in the underwater environment on the
seabed, there are a lot of floating objects in the water, and there are often color shifts, distor-
tions, and low contrasts in the camera images. Chen proposed a lightweight algorithm [4]
based on multiscale feature fusion to address the problems of the limited computational
power of underwater equipment and the low accuracy of image detection. To this end, the
feature fusion path was optimized and an adaptive fusion strategy for multiscale features
was applied to reduce dependence on the complex feature extraction network and reduce
the model parameters. However, because of the simplification of the original complex
model, the algorithm also diminished the anti-disturbance ability in complicated scenar-
ios. Hao [5] added a depth-separable convolution and EASPP to the backbone network
of Yolov4, which was very effective compared with the original network model. Zhang
proposed edge enhancement scaling [6] for sea cucumber detection based on Yolov4, which
reduced the effects of different hues and brightness on sea cucumber misdetection by
emphasizing the edge features of the target. This method was found to be less flexible in
terms of target detection despite the addition of an edge enhancement module and model
visibility. Knausgard [7] improved the backbone network of YOLOv3 using an SE module
and achieved higher accuracy in fish detection. Arain [8] proposed a method to improve
image-based underwater obstacle detection by combining a sparse stereo point cloud with
single-target image segmentation. Ronneberger [9] presented an underwater segmentation
algorithm based on a U-Net [10], fine-tuning the trained model. Zhou [11] introduced
an automatic underwater target detection method using clustering, segmentation, and
feature differentiation to achieve underwater target segmentation detection with low false
alarm probability. These studies improved the detection accuracy by fine-tuning the model
and embedding new modules to meet the needs of different subtasks, but there was no
fine-tuned analysis of the problems that occur in this type of underwater pipeline detection
task, such as pipeline boundary blur and background color.

The attention mechanism mainly sets the weights of features in the target region so
that the network can focus on the region with the most important information during
feature extraction while suppressing other irrelevant feature information to reduce the
interference of irrelevant results on the detection results. Pan [12] introduced the attention
mechanism in the channel dimension, which is used to enhance the feature information of
important channels in the network framework to increase the model’s attention to those
important channels. On the basis of pure attention, Lint [13] introduced attention and dense
connectivity in the feature pyramid to integrate the feature map with the attention module
while utilizing dense connectivity to reduce the loss of feature information. However, this
strategy also lacks the possibility of different dimensions of attention. Therefore, Hu [14]
added the feature attention module to the backbone network of Faster R-CNN [15] to extract
the ROI of the target image from the channel and spatial dimensions, respectively, which
improved the localization of the target image by the network. Sun [16] proposed a multiscale-
based target detection algorithm with multiple attention mechanisms using a global feature
attention module and a pixel feature attention module to improve detection performance.
In contrast to the above approach, Zhang used a residual interference (RIR) [17] structure
to form a very deep network that bypasses the rich low-frequency information through
multiple frequency-hopping links, allowing the main network to focus on learning high-
frequency information. Wang presented an efficient channel attention (ECA) module [18]
to efficiently implement a local cross-channel interaction strategy without dimensionality
reduction by one-dimensional convolution and used adaptive selection to determine the
coverage of local cross-channel interactions. In view of the slow curvature change in the
vicinity of the seabed-contacting segments of submarine pipelines, the particular underwater
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environment causes an information redundancy problem, and the attention mechanism can
quickly locate key features in a large amount of redundant information.

Feature fusion methods are widely used in the field of target detection and instance
segmentation. Zhao proposed the MLFPN [19] network, which enables feature fusion
at multiple scales and levels. NAS-FPN [20] designed a search structure for neural ar-
chitectures that can select the optimal feature pyramid in an extensible search space that
includes all cross-scale connections. However, the above strategies consume large amounts
of computational resources. They cannot reasonably be used on lightweight underwater
devices. Bi-FPN [21] uses PA-Net [22] as the base layer and proposes a weighted fusion
scheme in which the features need to be multiplied when superimposed with a weighting
coefficient to further optimize the information transfer between different feature layers.
This improves model performance by preserving key features of the underlying layer
through a small number of cross-domain parameter connections. Kim [23] devised a par-
allel pyramid network that combines the features of SPPN [24] and FPN [25], where the
features of the backbone network are passed through the SPP [24] layer to obtain multiscale
features. These multiscale features are downscaled before being fused across scales to
generate a new hierarchical feature map, which is then used for prediction. Multi-level
feature maps are also employed for prediction. There are also some improved methods
such as DSSD [26], RSSD [27], and FSSD [28], which are based on the original SSD [29]
method. In underwater environments, a large number of the key features of an image are
blurred because of the scattering and absorption of light by seawater. The model needs to
fully understand the existing features and accomplish the task of target detection, which
requires feature fusion methods to adequately distinguish the boundaries between the
foreground and the background.

3. Overview of ARV and Operating Scenarios

We present the technical parameters and functional characteristics of the ARV un-
manned submersible equipment, outline the specific conditions and facilities of the tank
experiments, and explain the specific operating procedures of the unmanned sensing system.

3.1. Overview

The general diagram of the ARV is shown in Figure 1. It is equipped with two stern
thrusters, two front and rear vertical thrusters, and one side thruster each, which can realize
six degrees of freedom of control [30]. The thrust of the stern thruster is 50 kgf, the thrust
of the vertical thruster is 80 kgf, and the thrust of the side thruster is 50 kgf. The maximum
speed it can reach in the water is 8 kn, and the power source is an 80 Ah Li-ion battery.
The ARV uses inertial guidance to realize underwater localization and navigation, and
uses instruments such as a depth gauge and an altimeter to obtain the height and depth
information of the ARV itself in the water. The ARV is equipped with a front view camera,
a front view sonar, and two side view cameras. In the experiment, as shown in Figure 2,
a gantry crane is used to put in and take out the pipeline to simulate the pipeline-laying
process, while the ARV dives into the water to detect and identify the location of the
pipeline’s seabed-contacting segment to realize autonomous tracking.

The specific equipment parameters of the ARV underwater robot are listed in Table 1.

Table 1. Parameters of the ARV equipment.

Equipment Parameters

ARV
L ×W × H: 2200 × 600 × 350 (mm)
Weight: 450 kg
Speed: 2~8 kn

HD Zoom
Sea-Camera

Working Depth: 0~6000 m
Focal Length: 4.4 mm~88.4 mm
Resolution: 4 K
Focus Speed: 0.1 s
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Table 1. Cont.

Equipment Parameters

MD750D
Multibeam
Imaging Sonar

Dual Frequency: 750 kHz and 1.2 MHz
Working Depth: 4000 m
Horizontal Field of View: 130◦ (low frequency), or 50◦ (high frequency)
Transducer Frequency: 1 MHz
Beam Angle: 22.5◦

DVL Data Rate: 4–15 Hz
Speed Resolution: 0.1 mm/s

Others Depth Gauge, Altimeter, INS, USBL, Fiber Optic, WIFI
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3.2. System Brief

Our network model is deployed on the Nvidia Jetson Xavier 32G (NVIDIA, Santa
Clara, CA, USA) embedded platform in the ARV, and has low power consumption, is small
in size, and has high computational power for the neural network to achieve the real-time
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autonomous detection of underwater pipelines. As shown in Figure 3, the camera and
sonar equipment in the underwater ARV capture the target images, which are transmitted
to the Nvidia Jetson Xavier through the switch as an intermediate data transmission link to
perform image inference and detection. The position parameters of the seabed-contacting
segments are then obtained, including the detection position and the pixel parameters
of the detected segments of the pipelines. The obtained parameters are displayed in the
terminal images and are transmitted to the switch. The ARV can adjust the parameters of
the camera and sonar equipment according to the real-time detection results. The ARV
inputs the position parameters of the seabed-contacting segments and the pixel parameters
of the segmented pipeline into the control subsystem, which allows the control subsystem
to adjust the movement attitudes of the ARV underwater in real time and complete the task
of autonomously tracking and detecting the seabed-contacting segments underwater [30].
The specific process information is shown in Figure 3.
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4. Method

We explain our approach in two sections, the cascade attention module and the prefusion
module. The overall structure diagrams of the two network models are shown in Figure 4.

To describe our model of image processing more intuitively, we provide a pyramidal
feature map of the input detection image using a CNN convolution operation, as shown
in Figure 4. Before sending it to fusion processing to extract the feature map information,
we first process the pyramidal feature map with our proposed prefusion module to fully
utilize the different scales of the feature map information. At the same time, we incorporate
our cascade attention module into the extraction of the feature map to help us focus on the
region of interest more quickly.

4.1. Cascade Attention

In this subsection, we first show the overall structure of the module, and then introduce
the interaction between the spatial and dimensional information for the input feature maps.
Next, we use three different attention modes for the three different interacting feature maps
for further attention extraction. Finally, we gradually fuse the three feature maps with
attention by using cascading to obtain more contextual information.

In the process of submarine oil pipeline laying, the characteristics of extended sea
pipelines and the slight changes in the curvature of the laid sea pipelines cause the pipeline
to appear in a continuous and smooth state in the model’s field of view; so, the difference
between the characteristics of the sea pipeline before and after the extension is small,
which is not conducive to the model’s inference and detection. Therefore, we propose the
cascade attention module for the input of the feature map. Through the use of the attention
mechanism, it can quickly find the information we are interested in, such as information
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relating to the characteristics of the seabed-contacting segment pipeline where the radius
of curvature becomes smaller, while suppressing any useless information.
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The feature map is a 3D scale feature map input. The spatial attention mechanism [31]
does not have all regions contributing equally to the task but focuses more on the regions
that are important for the task. The channel attention mechanism [32] models the impor-
tance of each channel and assigns key features to different task inputs. If we focus only on
feature attention in the spatial direction or only on feature attention in the channel direction,
we inevitably lack the ability to travel in the other direction to solve an attention mechanism
issue. Therefore, Woo proposed CBAM [33] on this basis, and we believe that the spatial
and channel directions, as well as the scale of the positional attention mechanism [34],
benefit the attention mechanism at the pixel level. We improve the attention mechanism
from three different directions and integrate the three, proposing the cascade attention
module, as shown in Figure 5.



J. Mar. Sci. Eng. 2024, 12, 1956 8 of 23

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 8 of 24 
 

 

direction, we inevitably lack the ability to travel in the other direction to solve an attention 
mechanism issue. Therefore, Woo proposed CBAM [33] on this basis, and we believe that 
the spatial and channel directions, as well as the scale of the positional attention mecha-
nism [34], benefit the attention mechanism at the pixel level. We improve the attention 
mechanism from three different directions and integrate the three, proposing the cascade 
attention module, as shown in Figure 5. 

 
Figure 5. Cascade attention module. 

4.1.1. Up-Focus and Down-Focus 
The focus module is used as a down-sampling method in the network model instead 

of the traditional convolution method, which combines the spatial pixel information se-
quentially in the direction of the depth channel. This effectively reduces the number of 
layers in the network model, reduces the number of model parameters during training, 
and improves the speed of forward and backward propagation. Based on focus, we pro-
pose and design a reverse up-sampling that fuses the depth direction information with 
space and realizes the information fusion interaction between space and channel direc-
tion. It is used as the original input image for various attention operations and tries to 
realize the attention fusion of different sizes of space and channel to improve the perfor-
mance of the model. As shown in Figure 6, up-focus and down-focus are mutually inverse 
operations that can obtain F1 and F2 feature maps. 

 
Figure 6. Up-focus and down-focus module. 

  

Figure 5. Cascade attention module.

4.1.1. Up-Focus and Down-Focus

The focus module is used as a down-sampling method in the network model instead
of the traditional convolution method, which combines the spatial pixel information se-
quentially in the direction of the depth channel. This effectively reduces the number of
layers in the network model, reduces the number of model parameters during training, and
improves the speed of forward and backward propagation. Based on focus, we propose
and design a reverse up-sampling that fuses the depth direction information with space
and realizes the information fusion interaction between space and channel direction. It is
used as the original input image for various attention operations and tries to realize the
attention fusion of different sizes of space and channel to improve the performance of the
model. As shown in Figure 6, up-focus and down-focus are mutually inverse operations
that can obtain F1 and F2 feature maps.
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4.1.2. Door Control Adaptive

We use a gating mechanism, a gating adaptation, to adapt to the original features. By
introducing the gating mechanism, our module can promote competition and cooperation
during the training process. Let the gating weights be α = [α1, . . . , αc], β = [β1, . . . , βc];
thus, we design the following gating features:

yc = xctanh(αcxc + βc) (1)
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Each original channel undergoes a corresponding gating adaptation, and since the
gating adaptation is parameter-less, we design trainable weights αc and biases βc for
learning to wisely control the activation of the gated channels so that our module can
model more types of relationships (e.g., competition or cooperation) between different
channels. When the weight α of a channel is positively activated, it promotes competition
between that channel and other channels, and when the gating weights are negatively
activated, it promotes cooperation between that channel and other channels.

On each of the three different attention lines of feature map F1, original feature map,
and feature map F2, we add trainable learning parameters weights αc and biases βc for the
learning-wise activation of the control gate channel. As shown in Figure 7, we pass the
attentional information from the three different branches through the gated channel after
aggregating them to achieve self-learning gated adaptation.
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4.1.3. Positioning Semantic Enhancement Module

The location semantic enhancement module focuses on generating a pixel-level po-
sitional attention mechanism. A mask map of the same size as the feature map is not
simply generated by taking the extreme values, as it is implemented using a convolutional
approach. The purpose is to hope that the positional attention mask map can autonomously
learn the pixel-level region of interest and augment the feature map.

Pixel-level positional self-attention is a variant of the attention mechanism that aims
to reduce dependence on external information and utilize information inherent in the
features as much as possible for attentional interaction. Wang [35] proposed a non-local
module based on the transformer architecture proposed by Google and applied it to the
vision domain, which achieves the global modeling of pixel-level positional informa-
tion by computing the coefficients of the correlation weight matrix and superimposing
them on the original matrix. However, the computational resources consumed by this
series of operations are undoubtedly enormous. Therefore, the location semantic en-
hancement module adaptively learns the weighting coefficient matrices of pixel-level
positional attention through a simple convolution operation that greatly reduces the cost of
computational resources.

For the input feature map F1, we use a convolution kernel of size 1 to map the feature
map to the feature map with channel 1, which assigns a self-learning parameter to each
pixel of the feature map. This is used to represent the relationship of each pixel with
the global feature map. The convolved feature map is multiplied by the feature map F1
according to the global SoftMax. At the same time, it must be converted back into the
number of channels of the ORI feature map through the convolution operation to obtain
the output of the feature map of the positioning semantic enhancement module, F1′, in
order to perform the fusion operation in the next step.
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4.1.4. Channel Semantic Enhancement Module

The channel semantic enhancement module mainly focuses on the establishment of
the channel attention mechanism, which compresses the spatial scale of the feature map,
extracts the most useful region information of the spatial scale, establishes a connection
between different channels, and finally assigns the mask weight in the direction of this
channel of the feature map so that the attention mechanism is established in the direction
of the channel.

For the input feature map F2 (in Figure 8), we use either the maximum global pooling
operation or the average global pooling operation for each channel of the feature map to
aggregate the spatial information of the feature maps. We then obtain the attention of
different channels through the SoftMax operation, and finally use the convolution operation
to transform the feature maps back to the number of channels of the ORI feature maps
without destroying the size of the original input feature maps to obtain the feature map
output F2′ of the channel semantic enhancement module.
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4.1.5. Spatial Semantic Enhancement Module

The spatial semantic enhancement module focuses on the establishment of the spatial
attention mechanism. The aim is to extract important information about the longitudinal
scale through the compression on the longitudinal scale, establish a connection between the
regional scales under the same channel, and finally assign the mask weights in the spatial
direction to the feature maps to establish the spatial attention mechanism.

For the input feature map ORI (in Figure 9), we multiply it by the F′2 feature map so
that the feature map with the attention mechanism and the ORI feature map are merged
with each other to form the contextual information interaction. Based on this, the feature
map is synthesized into the aggregated attention on a channel along the depth direction
using the maximum pooling operation or the average pooling operation so that each pixel
in each channel receives the most effective information in the depth direction. The attention
feature map is then multiplied by the F′1 feature map after the SoftMax operation to interact
with the contextual information and connect the attention to each pixel simultaneously.

The short-cut connection was first proposed in the ResNet network structure to solve
the problem of gradient disappearance when the number of network layers increases,
leading to difficulties in network training. We add the short-cut connection (in Figure 5)
to the module mainly to merge the information of the feature map on the original feature
layer with the information of the attention feature map to avoid missing information.
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4.2. Prefusion Module

We show the general structure of the prefusion module and describe where the prefu-
sion module is located in the overall structure of network model. We then show the specific
composition of the prefusion module, through the three different stages of feature maps as
input. These are processed by the module to output the three different feature maps and
then transfer them to the neck network.

In the process of laying pipelines, the complex operating environment of the seabed
can cause the silt on the seabed to adhere to the surface of the pipeline, forming a layer of
irregular silt film. At the same time, the light source from the underwater ARV is absorbed
and scattered by the seawater, which causes the image of the pipeline in the model’s
field of view to merge with the background color of the silt on the seabed, blurring the
boundary between the pipeline and the background. To address this problem, we propose
the prefusion module, which enables the network to enhance the fine-grained information
about the boundaries by fusing feature maps to improve the performance of the model in
detecting boundary segmentation.

We aim to add more shallow and more highly fine-grained feature representations
from the feature maps output by the backbone to the deeper feature maps. As shown in
Figure 5, the original model passes the three deep feature maps in the backbone directly
to the neck as feature inputs and ignores the two shallow feature maps, which, however,
contain rich detailed information that can greatly improve the boundary segmentation of the
target. Therefore, we add the prefusion module between the neck and the backbone as the
preprocessing layer of the neck layer. As shown in the prefusion module in Figure 5, each
module M receives three different stages of backbone output feature maps and performs
the fusion process (the specific fusion process will be explained in detail later), and the
feature maps of the output of the three parallel modules are then fused by the output
feature maps from the three parallel modules in a top-down manner. Finally, we output the
same size feature maps as the original backbone by DW convolution and pass them to the
neck layer for further processing.

Module Design

The prefusion module takes multiscale feature maps as input and acts as a bridge
mediator between the backbone and the neck, which can fully and effectively utilize all the
output feature maps of the feature extraction network and provides a high-quality starting
point for subsequent feature map processing in the neck layer. The computational input
maps of the prefusion module are composed of three feature maps of different scale feature
hierarchies with a scaling step of 2 between them, which are processed by the prefusion
module to produce output maps of the same size. These are recomposed into three layers
of feature maps as inputs to the neck layer. We choose the last layer of the feature maps of
each stage of the backbone as the input, and this choice is natural because the last feature
map of each stage tends to have the strongest feature expression of that stage.

The specific sequence of feature map processing is shown in Figure 10. First, we take
the i− 1th feature map, the ith feature map, and the i + 1th feature map as inputs. For the
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ith feature map, we use the de-conv operation to up-sample the feature map to the size of
(C, 4H, 4W) and add it to the i− 1th feature map, and the result is nonlinearly transformed
by DW convolution. In DW convolution, we adopt the expansion convolution kernel with
an expansion coefficient of 2, so that the feature map can obtain a larger sense field in
the nonlinear transformation, while at the same time, the DW convolution can effectively
reduce the model parameters and reduce the extra overhead in the modeling process. The
feature map output by the DW convolution is then reduced to the size of (2C, 2H, 2W) by
the down-focus module designed above. Similarly, for the i + 1th feature map of size (4C,
H, W), the feature map is enlarged to (2C, 2H, 2W) using the nonlinear DW convolution
and the up-focus operation, respectively. Next, the i− 1th feature map, the i + 1th feature
map, and the ith feature map processed above are stacked with the ith feature map using
the concat operation, and finally transformed back to the size of the ith feature map by the
DW-conv operation and output.
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5. Experiment

The main body of the experimental tank is 50 m long, 40 m wide, and 10 m deep, with
a gantry crane spanning over the tank to tow and lift the simulated offshore pipe. There is
an indoor natural light illuminance of 15~200 lux, an underwater ambient light illuminance
of 5~40 lux, water-scattering turbidity of 9~15 NTU, and a particulate suspended matter
concentration of approximately 0.6 g/cm3.

The model computational reasoning environments are all deployed on a NVIDIA
Xavier module, with a 6-core NVIDIA Carmel Arm processor, 32 GB of 256-bit video
memory, 32 TOPS of computing power, and 750 Gbps of high-speed I/O power, running a
Ubuntu 20.04 operating system and using Tensor-RT for computation and fast inference.

5.1. Datasets and Implementation Details

Our experiment is based on the oil pipeline inspection experiment project. The
dataset for detecting seabed-contacting segments of an underwater oil pipeline consists of
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4000 underwater oil pipeline images, each 575 × 704 pixels in size. There are 2800 images
in the training set, 800 images in the validation set, and 400 images in the test set, as shown
in Figure 11. The batch size is set as 8, the initial learning rate is 0.004, the optimizer is
Adam, a linear learning rate is used to warm up in the first 1000 iterations, a cosine learning
rate is used thereafter, and the input image size is set as 640 × 640 pixels.
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5.2. Attention Module Ablation Experiment

We add the cascade attention module to various baseline network models and perform
ablation experiments on the seabed-contacting segment detection dataset. The results are
summarized in Table 2. The indicator mAP is used to describe the average accuracy in
target detection. All networks with cascade attention outperform the baseline network,
which demonstrates that our proposed cascade attention module is powerful and widely
generalizable, improving the performance of network detection.

Table 2. Performance of the different network models on the underwater oil pipeline seabed-
contacting segment detection dataset. NO Attention means no attention mechanism added.

Module Backbone NO Attention Cascade Attention mAP↗
RetinaNet [13] ResNet18 56.4 57.6 +1.2

FCOS [36] ResNet18 56.9 59.7 +2.8
SSD [29] MobileNetv2 55.7 58.4 +2.7

Yolov3 [37] DarkNet53 56.8 59 +2.2
ATSS [38] R50 57.2 60.4 +3.2

Sparse R-CNN [39] R50 57.6 61.1 +3.5
YOLOX [40] CSPDarkNet 58 63.4 +5.4

RTMDet_s [41] CSPNeXt 61 66.5 +5.5

Considering the above performance of the network model, we decided to use the
RTMDet network model as a baseline to explore the effects of different modules on the
accuracy of underwater seabed-contacting segment location detection by adjusting the
different module combinations.

As shown in Table 3, the proposed cascade attention module significantly improves
the performance of target detection. Compared with the baseline RTMDet, the seabed-
contacting segment detection mAP of the oil pipeline with spatial semantic enhancement
module reaches 63.5%, which is an improvement of 2.5%, and achieves 1.8% and 1.3% with
the positioning semantic enhancement module and the channel semantic enhancement
module, respectively. When we combine the spatial semantic enhancement module, the
channel semantic enhancement module, and the position semantic enhancement module,
we find that the detection mAP of the model is further improved compared with the original.
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This shows that, by applying different scale transformations to the feature map and fusing
contextual information, the feature map information can be further utilized, which is
conducive to improving the detection performance of the network. Furthermore, when our
proposed cascade attention module is applied, the mAP of the seabed-contacting segment
detection reaches 66.5%, which is a significant improvement of 5.5% when compared with
the baseline network.

Table 3. RTMDet-based ablation experiment for underwater seabed-contacting segment detection.
F1, ORI, and F2 denote the attentional processing methods in the three branches of the module.

Module BackBone F1 ORI F2 mAP

RTMDet_s CSPNeXt 61
RTMDet_s CSPNeXt 3 62.3
RTMDet_s CSPNeXt 3 63.5
RTMDet_s CSPNeXt 3 62.8
RTMDet_s CSPNeXt 3 3 65.1
RTMDet_s CSPNeXt 3 3 64.7
RTMDet_s CSPNeXt 3 3 64.3
RTMDet_s CSPNeXt 3 3 3 66.5

Figure 12 shows the mAP curves of the RTMDet and YOLOX network models trained
on the dataset to detect seabed-contacting segments in underwater pipelines. It can be
clearly seen that, in the RTMDet network model, the RTMDet network with the cascade
attention mechanism can learn the effective information features from the dataset faster
at the beginning; however, in the middle stage, the network with the cascade attention
mechanism and the baseline network are always in a fluctuating upward process. We believe
that this may be caused by the distribution of the data. The two models in the same dataset
at different stages of the model parameters of the feature information, expressed by the
ability to perform differently, are both, in general, constantly learning the process of increase.
In the last 20 iterations, the two converge to stabilize. The addition of the cascade attention
mechanism to the network model, and its model characterization ability, begins to highlight
that its model detection performance is higher than that of the baseline network model.
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In the YOLOX network model, the validation mAP of the model is approximately at a
comparable position level at the beginning of training. However, as the training iteration
progresses, the network model with the addition of the cascade attention module, due to
the incorporation of the attention mechanism, continues to increase attention in the vicinity
of the seabed-contacting segment of the oil pipeline, distancing itself from the original
baseline detection and consistently maintaining the leading level of mAP compared with its
baseline network. Figure 12 adequately illustrates the effectiveness of the cascade attention
mechanism in the network model.
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5.3. Prefusion Module Ablation Experiment

From the study of the cascade attention ablation experiment above, it can be seen that
the performance of the model under the RTMDet network model is the best. We explore the
performance of the prefusion module on the network model on this basis as detailed below.

We consider the cascade attention module and the prefusion module as two separate
base modules and discuss the performance of the RTMDet network model with different
combinations of the two base modules. Since the prefusion module differs from the
attention module above in that it focuses more on the control details after fusing the
fine-grained information of the low-level feature maps to the high-level feature maps,
we add the segmentation header of the target to the original one and add the mIOU
evaluation metrics to evaluate the network model’s grasp of the object’s details during
object detection. At the same time, since the prefusion module was designed so that the
number of parameters and computation of the original network model does not increase
too much, we added the indexes of computation and the number of parameters to evaluate
our model.

The ablation experiments for both the cascade attention and prefusion modules are
shown in Table 4. It can be seen that, compared with the baseline network model, both the
mAP and mIOU indices are significantly improved by the advancements in the attention
module and the prefusion module, with the mIOU index reaching 74.7% and the mAP
performance improvement being relatively obvious at 67.3%. However, when only the
attention module or only the prefusion module is added, the mAP and mIOU performances
of the two show different levels of increase (i.e., the mAP performance of cascade attention
is better than that of the latter and has a greater increase relative to the baseline network,
but is not as good as the prefusion module in terms of mIOU performance). This is because
the attention mechanism focuses more on one feature point in the target to improve the
target localization and classification performance, while the prefusion module is more
sensitive to the pixel-level IOU perception owing to the addition of the low-level feature
maps with higher granularity; so, its mIOU performance is naturally higher compared with
the attention module.

Table 4. Performance of RTMDet_s baseline network under different modules.

Module Cascade Attention Prefusion Module GFLOPs Parameters FPS mAP mIOU

RTMDet_s 21.522 10.153 M 36.4 61 70.9
RTMDet_s 3 21.760 11.793 M 36.1 66.5 72.5
RTMDet_s 3 22.325 10.153 M 35.6 64.1 73.6
RTMDet_s 3 3 22.562 11.793 M 35.2 67.3 74.7

The floating-point operations and the model parameter size with different modules
on the baseline network are shown in Table 4. In general, the increase in parameters
and floating-point operations after adding the cascade attention module and the prefusion
module is not very large. The increase in model parameters mainly comes from the attention
module, while the number of model parameters in the prefusion module is almost zero.
This is due to the use of DW convolution in the prefusion module, which changes the
mode of ordinary convolution by first considering the region of the feature map, and then
considering the changes in the feature map channel to achieve the separation of channel
and region and realize the nonlinear expression of the feature map. Meanwhile, the number
of convolution parameters is greatly reduced.

5.4. Visualization and Analysis of Model

To analyze the results of our ablation experiments, we use the Grad-CAM method to
visualize the results of our image processing. We simultaneously evaluate the segmentation
accuracy of our model using the Hausdorff distance [42].
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5.4.1. Attention Visualization

To better demonstrate the effectiveness of the cascade attention module, we apply
Grad-CAM to the RTMDet and YOLOX network models, respectively, to visualize images
from the subsea seabed-contacting segment detection dataset. Grad-CAM generates heat
maps for the input images and is able to clearly visualize the image positions from which
the network learns and on which it focuses. Figure 13 compares the visualization results of
the network baseline with those of the additional cascade attention module and shows, in
particular, the feature attention maps in the backbone phase. It is clear that the network
with cascade attention can focus on the target object better than the baseline network in the
third and fourth feature maps of the backbone.
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The images above represent the feature attention maps of backbone without cascade
attention and backbone with cascade attention, respectively. We clearly see that the attention
area of the former is large and scattered, and that even some of the attention has been
transferred to the background of the tank, which is not desirable. When we add the
cascade attention module, we can clearly see that the attention of the feature map is more
concentrated compared with the former, and that the attention is placed in the foreground
of the object oil pipeline, although there are two attention points. However, these two
attention points are close to each other and are located at the turning position of the seabed-
contacting segment of the oil pipeline, which is an obvious feature of the seabed-contacting
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segment of the oil pipeline, and is helpful for detecting the seabed-contacting segment of the
oil pipeline. In other words, the cascade attention module successfully fuses the contextual
attention information, which enables the network to learn the aggregated features and
improve the accuracy of detecting target objects, fully proving the effectiveness of the
cascade attention module.

5.4.2. Visualization of Prefusion Module

The Grad-CAM network visualization fully demonstrates the improved target detec-
tion performance of the network model with the addition of the cascade attention module.
Meanwhile, Figure 14 illustrates the segmentation effect of the network model through its
target segmentation task.
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We use the RTMDet network model as the baseline network for detection. From
Figure 14, it can be seen that adding the prefusion module to the baseline model directly
leads to a great difference in the detection model test data. The figure shows a more
discriminating visualization of the results selected from the dataset.

It can be seen that the baseline network in the dim underwater environment has
misdetection errors, and its model segmentation accuracy is lower compared with the
previous model detection results with the addition of the prefusion module. Meanwhile,
when our target pipeline is close to or far away from the underwater ARV, underwater
disturbances may stir up the silt under the water, causing the pipeline to be exposed
to floating dust, which greatly increases the difficulty of model detection. As can be
seen from the figure, in this situation, by adding the prefusion module, the model fully
understands and learns the semantic information of the context in the feature map, which
enables the model to maintain sufficient detection and segmentation accuracy, even in
the dusty underwater environment. Secondly, when the ARV is far away from the oil
pipeline, the pipeline in the image almost blends in with the background color in the dim
environment, owing to the limited distance of the light, leading to difficulty in detecting
the seabed-contacting segment of the oil pipeline. The original baseline model is no longer
able to detect and segment in this environment. Correspondingly, after adding the feature
prefusion module, the ability of the model to judge the position of the oil pipeline seabed-
contacting segment is enhanced and its generalization ability is improved so that, even in
a situation where the target oil pipeline almost merges with the background color, it still
maintains good detection and segmentation performance, and the segmentation accuracy
can still be guaranteed.

5.4.3. Analysis of Pipeline Boundary Accuracy

The Hausdorff distance is sensitive to the boundary of the target segmentation and can
be used to evaluate the segmentation accuracy of the target segmentation. The Hausdorff
distance is a measure that describes the degree of similarity between two sets of point sets.
It is a defined form of the distance between two point sets. Assuming there are two sets
A =

{
a1, . . . , ap

}
, B =

{
b1, . . . , bp

}
, the Hausdorff distance is defined as follows:

H(A, B) = max(h(A, B), h(B, A)), (2)

where h(A, B) and h(B, A) can be described as follows:

h(A, B) = max
a∈A
{min

b∈B
‖a− b‖}, (3)

h(B, A) = max
b∈B
{min

a∈A
‖b− a‖}, (4)

where ||.|| is the distance paradigm between point set A and point set B.
In Figure 15, underwater pipeline images under different lighting and distance con-

ditions are shown from top to bottom. The real labeling map and its mask map, and the
prediction map and its mask map are shown from left to right, respectively. We simply want
to compare the boundary accuracy of the segmentation without considering the different
Hausdorff distances between the label map and the prediction map caused by the color
changes in the images. Therefore, we transform both the segmented label part and the
segmented pipeline part in the prediction map into mask maps in binary form. Using
the binary form of the labeled mask map and the predicted mask map, we calculate the
Hausdorff distance of both to evaluate the segmentation accuracy of the picture.

In our test dataset, we test different combinations of modules to calculate the Hausdorff
distance and plot it as a line graph, as shown in Figure 16. The average Hausdorff distance
is plotted in the figure. We see that the overall Hausdorff distance shows a decreasing trend
with the addition of our modules, indicating that the accuracy of segmentation continues
to improve, and that there is a significant portion of the dataset in which the degree of
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fluctuation in Hausdorff distance continues to decrease with the addition of our modules.
This is a good indication of the effectiveness of our proposed modules.
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5.5. Validation of Tank Experiment

To validate the effectiveness of our proposed cascade attention module and prefusion
module, we deployed the model to the Nvidia Jetson Xavier 32G embedded platform
and integrated it into the ARV underwater robot. During the test, the laying speed of the
underwater oil pipeline was approximately 0.2 m/s. Real-time detection was performed
using the ARV’s side view camera, while different environments were set up to check the
model’s detection performance by changing the distance to the target, light, water quality,
and other conditions.

The results of the image inference sequences under three different environmental
conditions are shown in Figure 17. The image size detected by the ARV is 575 × 704,
the inference speed of the image on the model reaches 36 FPS, and the accuracy rate of
image inference reaches more than 95%, realizing the task of tracking and detecting the
seabed-contacting segment of the underwater ARV in the process of oil pipeline laying and
fully proving the effectiveness of our proposed module.
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6. Conclusions

We proposed a cascade attention module to improve the network representation capa-
bility and a prefusion module to refine the feature representation capability of the network
model, achieving excellent detection performance in seabed-contacting segment detection.
Specifically, the target detection and instance segmentation performance of the best model
were improved by 6.3% and 3.8% over the baseline model, reaching 67.3% of AP and 74.7%
of mIOU, respectively. The cascade attention module extracted the attention information in
the feature maps using three different types of attention, and then fused them in a cascade
to produce an attention map. The prefusion module took advantage of the fact that the
fine features of the shallow feature maps are more conducive to target localization, fusing
them with deeper feature maps containing semantic information to produce richer feature
information maps. Finally, the effectiveness of the module was verified using the tank
experiment validation method. In the tank experiment validation, the model inference
speed of a 575 × 704 image on the Nvidia Jetson Xavier 32G embedded platform was
36 FPS, and the accuracy of image inference reached over 95%. This demonstrates that
the submerged ARV can accomplish the task of tracking and detecting seabed-contacting
segments underwater during pipeline laying, proving the effectiveness of our proposed
module. The current study was limited to tank experiments, which differ greatly from real
marine environments on the seabed; thus, further tests are needed to prove the effective-
ness of the model. Moreover, in the process of submarine oil pipeline laying, submarine
sediment floats can occur, resulting in detection images being blurred, which reduces the
model detection performance. In addition, it is necessary to deal with situations in which
suspended sediment obscures the target object. In future research, we will continue to
improve and optimize detection methods for application in ARV systems operating in
actual underwater seabed environments.
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