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Abstract: This study investigates the tracking of underwater cables using autonomous underwater
vehicles (AUVs) equipped with side-scan sonar (SSS). AUV motion stability is crucial for effective
SSS imaging, which is essential for continuous cable tracking. Traditional methods that derive AUV
guidance rates directly from measured cable states often cause unnecessary jitter when imaging,
complicating accurate detection. To address this, we propose a non-myopic receding-horizon op-
timization (RHO) strategy designed to maximize cable imaging quality while considering AUV
maneuvering constraints. This strategy identifies the optimal heading decision sequence over a future
horizon, ensuring stable and efficient cable tracking. We also employ a long short-term memory
(LSTM) network to predict future cable states, further minimizing AUV motion instability during
abrupt path changes. Given the computational limitations of AUVs, we have developed an efficient
decision-making framework that can execute resource-intensive algorithms in real time. Finally,
the robustness and effectiveness of the proposed algorithm were validated through comparative
experiments. The results demonstrate that the proposed method outperforms existing methods in
key metrics such as cable-tracking accuracy and AUV motion stability. This ensures that the AUV
can acquire high-quality acoustic images of the submarine cable in an optimal state, enhancing the
continuity and reliability of cable-tracking tasks.

Keywords: autonomous underwater vehicle; cable tracking; submarine cable state prediction;
side-scan sonar; motion planning

1. Introduction

Submarine cables and pipelines are critical infrastructures for global communication
and energy transmission; they are essential for international connectivity, energy security,
and marine environmental protection [1]. Amid increasing globalization, submarine cables
account for over 90% of global trans-oceanic communications while also interconnecting
continental networks for power, oil, and gas transmission [2]. The structural integrity
of these infrastructures is vital for the stability of global operations; however, they face
numerous threats, including geological activities, extreme weather, anchor-chain dragging,
and intentional sabotage [3,4]. Recent incidents of major oil spills and communication
disruptions due to pipeline ruptures have highlighted the need for the routine monitoring
and maintenance of submarine cables and pipelines [5].

Traditional inspection methods, which rely on survey vessels and remotely operated
vehicles (ROVs), face significant limitations in deep-sea and large-area inspections [6].
Survey vessels, while equipped with sonar systems, face high operational costs, limited
coverage, and inefficiencies in adverse conditions. ROVs, being constrained by umbilical
cables, are limited in range and operational mobility, making them unsuitable for large-scale
and long-distance tasks. With the growing complexity of the subsea network, these methods
become increasingly labor-intensive and costly, especially in deep-sea environments.
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Autonomous underwater vehicles (AUVs) provide a more efficient and flexible solu-
tion for inspecting submarine cables and pipelines [7]. Untethered from umbilical cables,
AUVs can autonomously perform long-duration inspections over large areas, making them
particularly advantageous in deep-sea environments, complex terrains, and large-scale
operations. With advanced sensors and autonomous navigation systems, AUVs dynami-
cally adjust their path in real time, ensuring operational continuity and higher efficiency.
Compared to ROVs, AUVs significantly reduce operational complexity and costs, making
them a leading technology for subsea infrastructure inspection.

In AUV-based inspection missions, sensor selection plays a crucial role in ensuring
the effectiveness of the operation. Commonly used sensors include optical, magnetic, and
acoustic sensors [6]. Optical sensors, such as cameras, deliver high-resolution images but
are constrained by water turbidity and lighting conditions, making them suitable primarily
for shallow water or short-range inspections [8]. Magnetic sensors, which identify cables
by detecting changes in the electromagnetic field, are effective for short-range localization;
however, their limited range and sensitivity to environmental interference reduce their
effectiveness in large-scale operations [9]. Acoustic sensors, particularly side-scan sonar
(SSS), offer a superior detection range and are less affected by environmental factors such
as water turbidity. SSS generates high-resolution, two-dimensional seabed imagery by
transmitting acoustic waves and processing the echo signals [10]. This enables precise
visualization of the cable and its surrounding environment, making it particularly suitable
for complex and large-scale detection tasks.

The remainder of this paper is organized as follows: Section 2 reviews related works;
Section 3 outlines the framework and problem formulation for cable tracking using side-
scan sonar; Section 4 details the proposed cable tracking methodology; Section 5 discusses
algorithm validation; and Section 6 offers additional insights.

2. Related Work

The traditional preset waypoint method ensures that the AUV moves in a straight line
and obtains clear SSS images. However, this method is inefficient and often leads to cables
disappearing from the field of view (FOV) of onboard sensors due to deviations in cable-
laying paths and accumulated navigation errors. Consequently, AUVs must adjust their
heading online based on measurement data to adapt to changes in the cable’s status [11].

Various strategies have been proposed to address these challenges. The line-of-sight
(LOS) method is one of the most widely adopted control strategies for subsea cable tracking.
The LOS algorithm emulates the behavior of a helmsman, guiding the AUV toward a
look-ahead point along the projected path of the cable. Upon detecting a cable, the AUVs
realize cable tracking by adjusting their vertical rudder angles or the port and starboard
thrust [12]. In Ref. [13], the cable-tracking task was framed as a path-tracking problem in
the horizontal plane, modeling the cable with a uniform motion model and developing an
adaptive LOS guidance algorithm suitable for side-scan sonar (SSS). In Ref. [9], a vector
field-based guidance method was proposed to tackle the cable-tracking problem for use
with underactuated AUVs without a tracking error dynamics model, incorporating new
noise-resistant techniques to reduce the effects of noise on the system. Ref. [14] introduced
an advanced reinforcement learning control system to address the action selection problem
of AUVs during cable tracking. In Ref. [15], the intersections between the cable and image
boundaries in sonar images were identified as AUV tracking targets, leading the authors
to transform the cable-tracking problem into a series of point-tracking tasks. In Ref. [16],
the authors achieved cable tracking by eliminating the relative directions and distances
between the AUVs and cables. Similarly, Ref. [17] proposed two motion control objectives:
maintaining the cable vertically in the image and centering the cable in the frame, using
deviation as the controller input. The authors of [18] introduced a novel cable-tracking
method by reformulating the tracking problem as a target interception issue, generating
reference headings with proportional navigation guidance laws and employing model
predictive control (MPC) for tracking.
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Existing control strategies map the real-time cable state to the AUV’s motion. Aggres-
sive guidance laws can lead to jittery control inputs, negatively impacting cable imaging
and detection. Conversely, overly conservative guidance laws may cause AUVs to respond
sluggishly to changes in cable status, resulting in them disappearing from the SSS field
of view. Non-myopic methods enable AUVs to track underwater targets more smoothly.
The authors of [19] reformulated the seabed terrain-following control (STFC) problem as a
trajectory prediction and tracking issue. They employed a long short-term memory (LSTM)
network to forecast future seabed terrain and used nonlinear model predictive control to
enable AUVs to maintain an appropriate height above the seabed. In Ref. [20], a unified
receding horizon optimization (RHO) scheme was proposed, addressing sensor myopia
constraints and transforming the path-planning problem into an RHO problem based on
a spline path template. For the underwater dynamic target-tracking challenge, Ref. [21]
predicted target trajectories using a time-gain Elman neural network and applied model
predictive control for tracking. The Centre for Maritime Research and Experimentation
(CMRE) introduced a data-driven approach to enhance target-tracking performance in
AUV multi-static surveillance scenarios, aiming to minimize the estimation error when
calculating the target position using an onboard processor [22].

There is a dearth of research on non-myopic methods for solving submarine cable-
tracking problems. Existing studies have focused primarily on accurately extracting cables
from noisy sonar images, rather than on controlling the AUV motion to obtain clearer sonar
images. Research efforts aimed at improving the SSS imaging performance are mainly
concentrated on underwater target search tasks. The authors of [23] extended the informa-
tion gain method for adaptive path planning in SSS-equipped AUVs, adjusting navigation
states based on measurements to ensure optimal imaging quality during coverage obser-
vations. Ref. [24] proposed an adaptive strategy for sonar-based AUV data collection to
minimize target occlusion caused by seabed ripples during the imaging process. Ref. [25]
proposed a novel coverage path-planning method that considered the target existence
probability and SSS detection capability to reduce image distortion in underwater search
and rescue missions.

In summary, numerous studies have examined the factors affecting SSS imaging and
applied theoretical findings to seabed target searches. However, no research specifically
addresses the stable imaging problem for tracking targets like seabed cables. This paper
proposes a non-myopic method to tackle the SSS-based submarine cable stable tracking
problem by identifying the optimal heading-decision sequence for AUVs. The optimiza-
tion criteria focus on maximizing cable tracking accuracy, ensuring AUV motion stability,
and maintaining high-quality SSS imaging. Our approach balances these metrics by opti-
mizing parameters such as heading control and motion smoothness for optimal tracking
performance. We have introduced a time series concept to develop a trajectory prediction
model based on an LSTM network for forecasting future cable trends. Additionally, a
simplified decision-making method is proposed to reduce the algorithm’s computational
burden. Finally, the robustness and effectiveness of the proposed algorithm are validated
through comparative experiments, demonstrating that our method outperforms existing
approaches in terms of key performance metrics, including cable tracking accuracy and
AUV motion stability.

The contributions of this study can be summarized as follows:

(1) Applying the non-myopic method to the submarine cable tracking task, we optimize
the AUV’s heading by combining the characteristics of SSS measurements. This
ensures high-quality imaging of the side-scan sonar while achieving stable tracking of
the cable.

(2) The measured sequence of cable states is viewed as a set of time series arranged at
equal time intervals, utilizing LSTM networks to predict future cable trends, thereby
mitigating the negative impact of the myopia of onboard sensors.
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3. Preliminaries

Offshore wind power is transmitted via cables to onshore distribution stations to
provide electricity to communities. SSS-equipped AUVs can acquire acoustic images of
cables and the surrounding environment, providing crucial support for cable servicing and
maintenance, as shown in Figure 1.
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3.1. Introduction to Side-Scan Sonar Imaging

SSS uses acoustic reflection signals from fan-shaped pulses that are transmitted to the
seafloor to generate images. The signal intensity represents targets that are made from
different materials [26]. As the AUV moves forward in a straight line, the onboard SSS
collects data and leaves a narrow, unscanned corridor. The SSS echoes are combined with
the onboard navigation data to provide a georeferenced mosaic of the seabed, as shown in
Figure 2 [27]. Here, h denotes the AUV’s height from the seabed, m denotes the coverage
area of the SSS, B denotes the blind area, the blue dot g(x,y,φ) denotes the midpoint of the
cable in the sonar image, (x,y) denotes the cable position, φ denotes the azimuth angle, φe
denotes the angle between the cable and AUV, and ye denotes the horizontal distance. As
shown in Figure 2, the excessive turning velocity of the SSS (ω1 > ωmax) creates blind spots
on the port side and a redundant overlap on the starboard side. Similarly, high forward
velocity (v1 > vmax) leads to discontinuities between adjacent sonar beams.

Factors affecting the SSS’s performance can be categorized into four classes [24]: target
characteristics (TCs), underwater environment (UE), SSS parameters (SPs), and AUV status
(AS). Based on previous survey data, we identified several key challenges in tracking
cables using SSS, even when the cables are laid flat on a smooth seabed without burial or
suspension (Figure 3):

(1) During any sharp turns of the sonar device, any areas outside the turn were com-
pletely missed owing to the finite ping rate of the SSS, while areas within the turn
could be heavily distorted. In both cases, identifying targets in the images could be
challenging [28];

(2) The relative angle between the sonar beam and the underwater cable was a crucial
factor influencing target imaging. When the SSS moved parallel to the cable, the
strongest acoustic echoes could be obtained because of specular reflection [29];

(3) The probability of detecting a target within the lateral range of the sonar tracking was
a function of the distance (a), and the image quality tended to degrade considerably
over long distances [23,30,31].
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3.2. “Sea Whale” AUV

The “Sea Whale” AUV is a hybrid, lightweight, long-range underwater vehicle capable
of performing marine environment observations and undersea target detection at depths
of up to 1000 m [32–34]. It is approximately 3.3 m in length, with a diameter of 0.35 m,
and its system composition is shown in Figure 4. The SSS is mounted on the front section
of the AUV, allowing it to collect real-time environmental images and conduct image
data processing and target detection [35]. The “Sea Whale” AUV adopts a dual-mode
control system comprising a mission planning board (MPB) and flight control board (FCB).
The MPB processes the sensor data and runs intelligent algorithms, providing control
instructions for the FCB, including navigation height, heading, and speed [36].
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The AUV can achieve stable cable tracking by adjusting its heading in real time. When
moving in the horizontal plane, the effects of heave, roll, and pitch motion parameters can
be neglected. The equations of motion can be expressed as follows:

.
x = ucosψ − vsinψ ≈ u0cosψ
.
y = usinψ + vcosψ ≈ u0sinψ

.
ψ = r

, (1)

where [x,y,ψ]T denotes the position and direction, [u,v,r] denotes the surge, sway, and yaw,
respectively, and u0 denotes the resultant tangential velocity of the vehicle.

3.3. Problem Statement

When the AUV tracks the cable, its workspace is constrained by the measurement
range of the SSS, such as the curves of c1(x) and c2(x) shown in Figure 5. Specifically,
the non-myopic method establishes a relationship between the AUV’s inputs (heading
decisions) and outputs (the path’s stable quality) by predicting the state over multiple
future steps. To achieve high-quality measurements, the following three problems need to
be solved:
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Problem 1. Cable state prediction: Based on the measured cable history data X =
[
x1, x2, . . . , xNh

]T,

predict the future stateX̂ =
[
x̂1, x̂2, . . . , x̂Np

]T
, where Nh denotes the volume of historical data and Np

denotes the number of next steps to be predicted.

Problem 2. AUV heading optimization: The predicted cable state information X̂ and AUV
kinematic model can be combined to optimally solve the AUV optimal heading sequence ψopt =[
∆ψ1, ∆ψ2, · · · , ∆ψNP

]
.

Problem 3. Decision sequence pruning and optimization: Optimizing pruned decision trees
for computationally underpowered embedded systems.

Comparative experiments were conducted, combined with practical engineering
applications, to verify the effectiveness of the proposed method, thereby offering crucial
technical guidance for the future automated inspection of submarine cables.

4. Methodology

The tracking system framework described here follows the Sense → Plan → Act
closed-loop structure, as shown in Figure 6. During the sensing phase, the cable features
are extracted from the sonar image. During the planning phase, the LSTM network is first
used to predict future cable trends based on the historical data sequences. Subsequently, a
non-myopic receding-horizon strategy can be employed to search for the optimal sequence
of headings for potential future AUV maneuvers. Finally, the decision tree is pruned to
enable the algorithm to run in real time on embedded systems.
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4.1. Cable State Prediction

Given that a cable is an artificial object on the seafloor with inherent continuity, its
trajectory can be viewed as the motion path of a mass point subject to specific kinematic con-
straints [13]. When tracking a cable using an AUV equipped with SSS, the measured state
sequence of the cable can be viewed as a set of time sequences S = [s0, s1, · · · , sk, · · · , sN ],
where N denotes the length of the sequence. sk = (xk, yk, φk) represents the position
and angle of the cable measured at moment k, also serving as an input. In S, the nonlin-
ear mapping relationship between Sk and its preceding n data sk−1, sk−2, · · · , sk−n can be
represented by the nonlinear mapping function G(·), as follows:

sk = G(sk−1, sk−2, · · · , sk−n). (2)
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The LSTM network is a variant of a recurrent neural network (RNN) specializing in
processing sequence data and is more suitable for solving time-series prediction problems
owing to certain memory effects [37]; it has been successfully applied in underwater terrain
prediction [38] and ocean feature forecasting [19]. The LSTM network adds three logical
control units—that is, the input, output, and forget gates—to the basic structure of the
RNN. The specific architecture is shown in Figure 7.

The memory units record the cell state from the previous time step using self-recurrent
connections. The inputs consist of the input vector (Xt) and the output of the hidden state

of the previous layer (Ht−1), where the output represents the candidate cell state
∼
Ct, which

can be expressed as follows:

∼
Ct = tanh(XtWxc + Ht−1Whc + bc

)
. (3)
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The input gate controls the input activation flow in the memory unit. The two inputs
are Xt and Ht−1, and the output is the input-gate state It, which can be expressed as follows:

It = σ(XtWxi + Ht−1Whi + bi) (4)

Ct = Ft ⊗ Ct−1 + It ⊗
∼
Ct. (5)

The forget gates control the state of the memory unit so that it can adaptively forget or
reset the cell state. The two inputs are Xt and Ht−1, and the output is the forget-gate state
(Ft), which can be expressed as follows:

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
. (6)

The output gate controls the output activation flow into the LSTM cell output. The
two inputs are Xt and Ht−1, and the output is the output-gate state (Ot), which can be
expressed as follows:

Ot = σ(XtWxo + Ht−1Who + bo) (7)

Ht = Ot ⊗ tanh(Ct) (8)

where bβ denotes the deviation, Wαβ denotes the weight between α = {x, h} and β = {c, f, i,
o}, and σ denotes the sigmoid function.

To facilitate data input and prediction, this study designs a sliding window, as shown
in Figure 8, selecting s1:st as the first set of input data, with the output data being st+1, then
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selecting s2:st+1 as the second set of input data, with the output data being st+2, and so on. To
recursively realize the prediction of the future Np step cable state, the prediction expression
can be expressed as shown in the figure, where t denotes the size of the sliding window.
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4.2. Cable-Tracking Method Based on Receding-Horizon Strategy
4.2.1. Construct Cost Function Based on SSS Characteristics

We treat the submarine cable-tracking problem as an SSS-based trajectory tracking
challenge, integrating a receding-horizon algorithm with a finite forward-looking control
scheme to achieve stable tracking by incorporating its impact on the cost function of future
actions. The heading is the sole control variable for cable tracking. This section focuses on
designing an optimal heading-selection strategy for the AUV, considering the scenario’s
evolution over a future time window to balance different objectives. For a specific cable-
tracking task—that is, one with fixed TCs, UE, and SPs—three guidelines can be defined,
as follows:

(1) A smaller turning angle avoids distortion of the sonar image;
(2) Imaging is best when the cable and AUV are parallel; and
(3) The cable is kept at a certain distance from the AUV, to locate it in the middle of the

sonar image.

The first objective function (f 1) denotes the constraint of the AUV heading change,
which should be avoided as much as possible while the AUV tracks the cable—that is,
fewer turns can reduce aberrations in the sonar image.

f1(ψ) = ∑Np
i=1(αi−1|ψi − ψi−1|), (9)

Here, ψ =
[
ψ1, ψ2, · · · , ψNP

]
denotes the AUV heading in future steps, ψ0 is the current

heading of the AUV, NP is the predicted step length, αi denotes the weights of different
steps, and αi = 1/Np, ∑

Np
i=1 αi = 1. Minimizing f 1 implies that the AUV will maintain the

current heading ψ0 for NP steps.
Stronger target acoustic reverberations can be obtained when the AUV trajectory is

parallel to the cable. Here, the second objective function (f 2) denotes the effect of the relative
angle between the AUV and the cable.

f2(ψ) = ∑Np
i=1(βi−1|ψi − φi|), (10)



J. Mar. Sci. Eng. 2024, 12, 1725 10 of 22

Here φi denotes the ith step cable angle, βi denotes the weights of different steps, and
βi = 1/Np, ∑

Np
i=1 βi = 1. Minimizing f 2 implies that the AUV will remain parallel to the

cable for NP steps.
In sonar images, the probability of detecting a target perpendicular to the trajectory is

a function of distance. However, when using SSS to track a cable, maintaining the cable
as close as possible to the AUV is not ideal. Instead, keeping the cable centered in the SSS
field of view helps mitigate the risk of tracking loss. The third objective function (f 3) can be
expressed as follows:

f3(ψ) = ∑Np
i=1(δi|d(ψi)− ρ|), (11)

where d(ψ)i denotes the Euclidean distance between the AUV and the cable at step i,
ρ denotes the optimal measured distance, δi denotes the weights of different steps, and
δi = 1/Np, ∑

Np
i=1 δi = 1. Minimizing f 3 implies that the cable is located in the optimal

observation region for NP steps.
Based on the three criteria considered above, the heading-selection strategy can be

formulated as a multi-objective optimization problem. In this study, a typical weighted
metric was used for performance evaluation. The multi-objective function can be expressed
as follows:

J(ψ) = ω1 f1(ψ) + ω2 f2(ψ) + ω3 f3(ψ). (12)

Here, ωi is used to adjust the weights of different constraints, and is set to 1/3 in
this study. When the cable is about to disappear from the SSS FOV, the heading-change
constraint f 1 becomes less important, and the distance constraint f 3 plays a more prominent
role; when the cable is tracking steadily, the parallel constraint f 2 is the primary component.

4.2.2. Non-Myopic Optimization Algorithm

After establishing the objective function, a dynamic programming method can be
employed to solve the optimization problem within a finite planning horizon. As described
above, the heading is the only control variable. A decision tree is created by discretizing
the possible heading changes of the AUV over future time steps, with the optimal AUV
heading sequence corresponding to the branch that has the lowest cost.

To avoid drastic changes, the heading changes of the AUV at each future step can be
constrained within the [−∆ϕmax, ∆ϕmax] limits. The discretized heading-search space (ξ)
for each step can be expressed as follows:

ξ = [−∆ϕmax,−∆ϕmax + ϕres, . . . ,−ϕres, 0, ϕres, . . . , ∆ϕmax − ϕres, ∆ϕmax] (13)

where ϕres denotes the resolution of the heading change and M denotes the size of ξ,
expressed as follows:

M = ⌊2∆ϕmax/ϕres⌋+ 1 (14)

where ⌊·⌋ is rounded up. A smaller ϕres indicates a finer AUV heading control and a
larger M.

As shown in Figure 9, each node in the decision tree can generate M child nodes, with
the state of each child node corresponding to a possible heading decision ∆ψi, ∆ψi ∈ ξ.
For the decision tree with Np prediction steps, a decision domain (γ) with MNP possible
heading decision sequences can be generated. Figure 9 shows a decision tree with Np = 3
and M = 3.
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Here, we seek a sequence of decisions ψopt =
[
∆ψ1, ∆ψ2, · · · , ∆ψNP

]
that minimizes

the cumulative cost J(ψ), as defined in Equation (15). This sequence corresponds to the
lowest-cost branch of the tree. Thus, the optimization problem can be transformed into
finding the sequence of heading decisions that minimizes the J(ψ).

ψopt = argmin
ψ∈γ

J(ψ). (15)

This is a discrete optimization problem for selecting the least costly sequence of AUV
headings over the set of possible sequences for AUV heading decisions. When the optimal
sequence is determined, the first heading in the sequence is used to control the AUV. This
optimization search process is repeated when the AUV detects a new cable state, the process
of which is presented in Algorithm 1.

Algorithm 1: Non-myopic cable-tracking algorithm

Input:
The predicted cable state

[
s1, s1, · · · , sNp

]
, AUV current state [x, y, ψ0], the heading-change

resolution ϕres, and the space of heading constraints [−∆ϕmax, ∆ϕmax];
Output:
AUV optimal heading-decision sequence ψopt = [∆ψ1, ∆ψ2, · · · , ∆ψNP ];
(1) Discretize the AUV heading-decision space and compute ξ;
(2) Predict the state of the AUV for the next NP steps based on the given sequence of heading
decisions:

(1) Calculate the heading for the next NP steps of the AUV : ψk+1 = ψk + ∆ψi, i ≤ NP;
(2) Predict the AUV position by combining the kinematic model (Equation (1)):[

xk+1
yk+1

]
=

[
xk
yk

]
+

[
sin(ψk)u
cos(ψk)u

]
T +

[
wx
wy

]
, where u denotes the axial velocity of the AUV;

(3) Calculate the cos t of each heading-decision sequence : J(ψ) = ω1 f1(ψ) + ω2 f2(ψ) + ω3 f3(ψ);
(4) Find the least cos tly sequence of heading decisions : ψopt = argmin

ψ∈γ
J(ψ);

Return ψopt;
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4.3. Strategies for Solving Non-Myopic Optimization Problems

While the non-myopic RHO strategy enhances tracking performance, an exhaustive
search becomes computationally expensive and time-consuming as the number of predic-
tion steps increases, making it impractical for real-time operation on unmanned platforms.
This section exploits the specificity of SSS cable tracking to improve search efficiency by
dynamically adjusting the heading-search space and pruning the decision tree.

4.3.1. Adaptive Heading-Search Space Method

Considering that AUVs may encounter different scenarios during cable tracking, a
fixed ∆ϕmax throughout the entire task may not optimize the algorithmic performance.
Consequently, the search speed can be improved by dynamically adjusting the size and
resolution of the heading-decision space. ∆ϕmax and ϕres are two key parameters that
determine the size of the search space (M). Their selection directly affects the computational
complexity and precision of path planning. A reduction in the number of heading-decision
sequences MNP means an increase in speed, and a smaller ϕres ensures more accurate AUV
cable tracking.

As shown in Figure 10, when the relative position between the AUV and the cable
approaches its optimal position, the AUV need only search the heading within a smaller
range to meet the tracking requirements. Defining ∆ϕmax as expressed in Equation (16)
ensures not only meeting the turning requirements but also preventing significant distortion
of the sonar image. Moreover, a smaller resolution ϕres is required to facilitate fine control.
When the state between the AUV and the cable significantly deviates from the optimal
imaging condition and the cable is about to exit the SSS’s field of view, the AUV may
require a larger turning angle to bring the cable back into the optimal observation region.
Consequently, to avoid increasing the number of searches, a larger ϕres can be selected.

Before each heading optimization, it is necessary to analyze the current relative states
between the AUV and cable, including the relative distance (d) and relative angle (φ). The
specific rules can be expressed as follows:{

∆ϕmax = ϕL_bound and ϕres = ϕresmin, i f d ≤ disthres and φ ≤ ψthres
∆ϕmax = ϕU_bound and ϕres = ϕresmax, i f d > disthres and φ > ψthres

, (16)

where ϕL_bound and ϕU_bound denote the boundaries of ∆ϕmax; ϕresmin and ϕresmax denote the
maximum and minimum resolutions, respectively; disthres and ψthres denote the thresholds
corresponding to the distance and angle, respectively.
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4.3.2. Tree Search and Pruning Algorithms

The pruning algorithm is one of the more important tools for reducing the compu-
tational burden of the optimization search process. To minimize the unnecessary back-
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and-forth movements of the AUV, it is necessary to consider the heading changes between
adjacent steps. Specifically, if the heading change selected in the ith step exceeds ∆ψthres,
a larger heading change in the opposite direction in the (i + 1)th step is not allowed. In
other words, decision nodes with an angular decrease greater than −2∆ψthres in the (i +
1)th step are pruned. This approach functions similarly to Equation (9), where f 1 is used
to reduce the number of decision sequences by pruning unnecessary branches. It should
be noted that the closer ∆ψthres is to ∆ψmax, the less obvious the trimming effect, and vice
versa, resulting in an inadequate search process.

The branch-and-bound method is another pruning technique [39]. Several concepts
used by this algorithm must be clarified. The nodes for which the cost has already been
computed are referred to as open nodes. If all child nodes of such a node are in the “open”
state, then the status of this node is considered to be expanded. The search process of a
decision tree is essentially a sequence of node expansions. This method leverages the tree
structure and additivity of sequence costs to set lower bounds for the costs of all nodes in
the tree. The lower bound of a node can be defined as the cost of the nearest ancestral node.
During the node-expansion process, any node whose lower bound exceeds the cost of the
current best-decision sequence is removed from the tree. Removing a node implies pruning
it, meaning that neither it nor its sub-nodes will participate in the search for the optimal
decision sequence [22,40].

The core idea of the branch-and-bound algorithm for searching decision trees can be
summarized as follows, with the pseudocode presented in Algorithm 2.

(1) Initialize the minimum cost Jmin, perform a uniform cost search (UCS), and expand
the nodes until reaching the end node of the tree (at a depth of NP). Set the decision
sequence with the lowest cost as the initial optimal solution and set Jmin to the cost of
that decision sequence. Repeat until all nodes in the tree are opened.

(2) During node expansion, the lower bound is compared with Jmin, and nodes with
lower bounds greater than or equal to Jmin are pruned. If the search for nodes is
completed (end nodes are opened) and the corresponding decision sequence cost is
lower than Jmin, the decision sequence is considered the new best-decision sequence
and Jmin is set as the cost of the sequence.

Algorithm 2: Branch-and-bound algorithm

(1) Initialize : Jmin = ∞;
(2) Execute the UCS and expand the node until it reaches the depth NP;
(3) Set the least cos tly decision sequence ψlocal_opt as the initial optimal solution and update Jmin

to J
(

ψlocal_opt

)
;

(4) Opened but unexpanded nodes with a depth less than NP are listed in the list R in ascending
order of cost;
(5) While there is a node in the list Do

Expands the first node in the list R;
If the sequence corresponding to a node has a cost >Jmin

Stop the expansion of the node;
Remove it from R;

End
If the depth of the children of this node == NP

If decision sequence costs with minimum costs

Jmin = J
(

ψlocal_opt

)
Consider ψlocal_opt as the optimal decision sequence;

End
Else

Sort the children of this node in ascending order in the list R;
End

(6) Return Optimal Decision Sequence ψopt = ψlocal_opt;
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5. Simulation and Discussion

To validate the effectiveness of the proposed method, we used MATLAB 2019a to es-
tablish a complex cable model based on potential trajectories during actual laying, focusing
on analyzing the tracking capability of the method. A cable detection method based on
sonar images is beyond the scope of this study. Here, we simplify the SSS measurement
model of SSS using circular regions.

5.1. Simulation Setup and Environment

Submarine cables are generally placed along straight trajectories. However, under
special circumstances—such as when avoiding complex terrain and obstacles, protect-
ing underwater ecological resources, preventing geological subsidence, or reducing cable
tension—engineers can develop appropriate laying plans based on the specific environmen-
tal conditions and technical specifications of the cable, to ensure its stability and reliability.
For example, to address the impact of geological subsidence on the normal operation of
submarine pipelines, the authors of Ref. [41] laid flexible pipes with a certain curvature
to enhance their adaptability to the environment. To ensure that our cable prediction and
tracking experiments were more credible, we constructed a complex submarine cable model
containing both straight and curved segments. The cable’s state sequence consisted of
7820 entries, with states represented by depth, longitude, latitude, and heading angle, as
detailed in Table 1. In this study, we assumed the cable was laid flat on the seabed without
burial or suspension and that the seabed substrate type was homogeneous.

Table 1. Cable status data format.

Samples Depth Longitude Latitude Angle

7820 20 m 123.65821E 41.93709N 74◦

Figure 11 illustrates a two-dimensional representation of the cable model on the seabed,
featuring a rectangular search area (SABCD) measuring 800 × 250 m, as indicated by the
gray area in the figure. The northeast coordinate system XOY was established with point
A as the origin, which was used to characterize the relative positions of the points within
the region. The World Geodetic System (WGS-84) was used to convert the latitude and
longitude of the points in the region [42]. The length and curvature radius of each segment
of the cable are listed in Table 2.
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Table 2. Cable length and curvature radius of each cable segment.

Label L1 R1 L2 R2 L3 R3 L4 R4 L5 R5 L6

Radius of
curvature/Length (m) 50 35 75 45 125 70 71 59 166 82 135

The AUV motion—treated as a mass point—is guided by the “Sea Whale” AUV’s
dynamic model and parameters [43], as indicated by the red dot in the figure. The simplified
SSS measurement model is represented by the red dashed circular region (radius of 30 m)
in the figure. The red highlighted area in the figure represents the imaging of the cable in
the sonar image, with its state determined by detecting the overlap between the circular
area and the cable in real time. For clarity, the yellow regions (30 m wide) on both sides
are defined as the effective AUV measurement area, where the cable remains within the
SSS field of view when the AUV is in this region. The purple regions (3 m wide) on both
sides are measurement blind zones, where the cable is in the SSS blind spot when the AUV
operates in this area. The magenta dotted line, located 15 m from the cable, is defined as
the best tracking line, ensuring that the cable stays within the SSS optimal observation area
during movement along this line.

5.2. The Results of Cable State Prediction

The cable state prediction model was trained using the obtained dataset. The root
mean square error (RMSE) was used as a performance metric to indicate the prediction
accuracy. Specifically, 70% of the total sample size was allocated for training, while 30%
was set aside for testing. The optimization function used the Adaptive Moment Estimation
method (Adam), which iteratively minimized the loss function. Table 3 lists the LSTM
network parameters.

Table 3. LSTM network parameters.

Hyperparameters Description Value

numHiddenUnits Number of hidden units 40
MaxEpochs Number of training rounds 400

MiniBatchsize Minimum batch number of samples 26
InitialLearnRate Initial learning rate 0.005

LearnRateDropPeriod Learn rate drop period 200
LearnRateDropFactor Learn rate drop factor 0.1

To achieve a better prediction performance, various sliding window sizes were selected
for comparative experiments, with the window size t set from 1 to 60, using a sliding step
of 1. The test results are shown in Figure 12a, which illustrates the distribution of the
RMSE under different sliding window sizes. The RMSE curve indicates that the size of the
sliding window significantly impacts the predictive performance of the model. A smaller
window fails to capture sufficient historical information, while an excessively large window
introduces noise, reducing the prediction accuracy. Experimental results demonstrate that
a window size of t = 13 strikes the optimal balance between utilizing historical data and
minimizing noise, achieving the best predictive performance with a minimum RMSE of
0.3641 m.

For a sample size of 7820, setting the window size to 13 and the step size to 1 resulted
in 7808 new samples. Figure 12b shows the prediction performance of the LSTM network
for the cable states for t = 13. The red, blue, and green lines represent the original data, the
prediction results of the training dataset, and the prediction results of the testing dataset,
respectively. The prediction results align well with the actual data, especially in the testing
phase, where the model showed strong predictive performance. This suggests that the
model has good generalization ability, making it effective for cable state prediction tasks.
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5.3. Tracking Performance and Method Comparison

The initial state of the AUV is [x(0), y(0), u(0), v(0)] = [123.649042, 41.936137, 0 m/s, 0 m/s],
which is shown as a hollow red dot in Figure 13.

The thruster rotational speed was 120 rpm, which ensured that the axial speed of
the AUV reached 1 m/s. The SSS measurement range was 30 m, with a sampling period
of T = 2 s. The experiment adopted the automatic cable-tracking method framework de-
scribed in a previous study [13] to autonomously search and track the cable. The search
mode adopted a lawnmower pattern with a spacing of w = 40 m, and, once a cable was
detected, the AUV switched to tracking mode. Furthermore, it is important to note that the
simulation assumes a uniform seabed environment without complex obstacles or varying
water flow, enabling the AUV to respond immediately to cable signals upon detection.
In actual operations, the environment can be much more complex, which is a significant
difference from the simulation. To verify the effectiveness of the proposed method, we
compared it with a line-of-sight (LOS)-based guidance method and analyzed the impact of
the proposed method on tracking performance under different ∆ϕmax constraints. Finally,
five metrics were used to evaluate the performance—that is, the mean distance (MD),
distance standard deviation (SD), mean angle (MA), the angle’s standard deviation (SA),
and standard deviation of the AUV heading-angle change (SH), where MD and SD are
the embodiment of the distance between the AUV and the cable, MA and SA are used to
measure the degree of parallelism between the AUV and the cable, and SH characterizes
the smoothness of the AUV motion.

5.3.1. Tracking Performance Analysis

Figure 13 shows the AUV cable-tracking trajectory when guided by different methods.
The AUV starts from the deployment point, chooses point A as a nearby starting point,
and performs the cable-searching task. The tracking behavior is triggered when the AUV
detects the cable, and the goal distance between the cable and the AUV is set to ρ = 15 m. As
shown in Figure 13, the LOS-based method converges more quickly to the cable trajectory
initially (e.g., at P1), but its “short-sighted” nature leads to significant oscillations during
tracking, particularly at P2 and P3. These oscillations create instability in the AUV’s motion,
potentially affecting cable tracking and SSS imaging quality. In contrast, the proposed
method generates a smoother trajectory by predicting and adjusting the AUV’s future
heading. At P2 and P3, the AUV aligns better with the cable, reducing oscillations and
enhancing tracking stability and smoothness.
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Figure 14 shows the results of the different methods during the tracking phase.
Figure 14a shows the AUV heading-angle curve, Figure 14b shows the distance between the
AUV and cable, Figure 14c shows the difference between the AUV heading angle and the
cable direction angle, and Figure 14d shows the AUV heading variation. Table 4 provides a
quantitative comparison of the various indicators.

Table 4. Performance comparison of the three methods.

Method MD (m) SD (m) MA (◦) SA (◦) SH (◦)

New method ∆φmax = 4◦ 1.5 1.07 1.37 1.81 0.17
New method ∆φmax = 10◦ 0.69 0.34 1.22 1.72 0.22

LOS-based method 0.89 0.65 6.93 3.92 0.62
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A detailed analysis reveals that the proposed optimization method significantly outper-
forms the LOS method in terms of both tracking error and trajectory stability. Specifically,
at ∆φmax = 10◦, the proposed method greatly reduces the average distance between the
AUV and the cable (MD = 0.69 m) and minimizes fluctuation (SD = 0.34 m), demonstrating
superior tracking accuracy. In contrast, the LOS method shows higher values (MD = 0.89 m,
SD = 0.65 m), indicating poorer tracking performance, especially in complex path scenarios.

In terms of trajectory stability, the proposed method reduces the deviation between
the AUV’s heading and the cable direction (SA = 1.72◦), while the LOS method exhibits
significantly larger deviations (SA = 3.92◦), leading to greater instability. Additionally,
with ∆φmax = 4◦, the proposed method minimizes heading-angle variations (SH = 0.17◦),
resulting in smoother trajectories, whereas the LOS method displays greater oscillations
(SH = 0.62◦).

Overall, the proposed method offers better control over tracking error and trajectory
smoothness, ensuring more precise cable tracking and reducing the frequency of abrupt
adjustments. These improvements enhance SSS imaging quality and reduce the likelihood
of losing the cable during complex tracking tasks.

5.3.2. Impact of Cable Curvature on AUV Stability

Based on a macroscopic description of performance, Figure 15a shows a bar chart
of the mean AUV heading-angle variation in the different cable segments. The proposed
method exhibits superior navigation stability when tracking straight-line cables. Figure 15b
shows that the stability of the AUV is inversely proportional to the curvature radius. The
smaller the curvature radius, the more severe the heading oscillation of the AUV, which
results in poorer SSS imaging. Moreover, lower ∆ϕmax values lead to better navigational
stability under the guidance of the proposed method.
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5.3.3. Time-Consumption Analysis

We used ∆φmax = 4◦ as an example to analyze the performance of the decision tree
simplification strategy, the key parameters of which are listed in Table 5.
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Table 5. Decision tree optimization simplification settings.

Number Parameters Value Number Parameters Value

1 disthres 4 m 5 ϕresmin 0.5◦

2 ψthres 4◦ 6 ϕresmax 1◦

3 ϕL_bound 1◦ 7 ∆ψthres 0.5*∆φmax
4 ϕU_bound 4◦ 8 NP 5

Without simplification, the depth of the decision tree is NP = 5, with the size of the
heading-search space being M = 9, and there are 59,049 decision sequences in each heading
search. The total time taken to find the optimal decision sequences throughout the tracking
process is as much as 2541 s. With the application of the decision tree simplification method,
the total computational time for searching the optimal heading sequence is reduced to 361
s, achieving a seven-fold speedup.

Figure 16 illustrates the distribution of total optimization computation time throughout
the entire process, indicating that tracking a straight-line cable requires fewer computa-
tional resources compared to a curved cable. The purple and yellow areas represent the
distribution of the AUV’s operating time on straight and curved paths, respectively. This is
because tracking straight cables satisfies the conditions of Equation (16) by adjusting certain
parameters where ∆ϕmax = ∆ϕL_bound and ϕres = ϕresmin (M = 5), resulting in a maximum of
3125 decision sequences in each heading search. With the same pruning strategy, reducing
M can dramatically improve the search efficiency.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 20 of 22 
 

 

 
Figure 16. Time consumption of the decision sequence search. 

6. Conclusions and Future Work 
Existing cable-tracking strategies have not addressed the control of AUVs to optimize 

the sensing capabilities of onboard sensors for better target inspection. This study 
examined the problem of underwater cable tracking using SSS-equipped AUVs, focusing 
on achieving the stable and continuous tracking of cables with complex trajectories while 
optimizing imaging quality. Based on the SSS imaging characteristics, this study 
summarized three key factors affecting the SSS image quality and proposed a non-myopic 
RHO model. The proposed model used LSTM networks to predict cable trends, thereby 
improving the subsequent tracking accuracy. To adapt the model to embedded systems, 
this study reduced the computational complexity by shrinking the heading-search space 
and pruning the decision tree. Experimental results indicated that, compared to 
traditional methods, the proposed non-myopic approach achieved more stable and 
continuous tracking of underwater cables with complex trajectories while maintaining the 
low algorithmic computational complexity suitable for embedded systems. Further 
analysis revealed that AUV motion constraints affect navigation stability; specifically, 
limiting the heading search space can reduce heading oscillations, albeit at the expense of 
distance and angle performance. Additionally, the stability of AUV cable tracking was 
found to be inversely proportional to the curvature radius, with a smaller curvature radius 
leading to more pronounced heading oscillations. This study evaluated the imaging 
quality of cables in SSS at the theoretical level by quantifying AUV motion performance 
indicators. However, it overlooked the impact of target characteristics, the underwater 
environment, and SSS parameters on cable tracking in practical applications. In addition, 
depth control of the AUV in the vertical plane is currently neglected in favor of horizontal 
motion. In the future, we aim to apply the model to real-world cable inspection tasks, 
analyze the technical details further, and gradually optimize the model to enable the 
efficient autonomous inspection of submarine cables. 

Author Contributions: H.F.: Investigation, algorithm design, implementation of simulations, data 
processing and analysis, and writing. Y.H.: Conceptualization and experiment design. J.Q.: Data 
processing and analysis. Z.W.: Data processing and analysis. F.H.: Data processing and analysis. J.Y.: 
Supervision, project administration, and funding acquisition. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This study was funded by the State Key Laboratory of Robotics in China (No. 2023-Z07), 
the State Key Laboratory of Robotics in China (No. 2022-Z15L02), and the National Natural Science 
Foundation of China (No. 42276198). 

Institutional Review Board Statement: Not applicable. 

Figure 16. Time consumption of the decision sequence search.

6. Conclusions and Future Work

Existing cable-tracking strategies have not addressed the control of AUVs to optimize
the sensing capabilities of onboard sensors for better target inspection. This study examined
the problem of underwater cable tracking using SSS-equipped AUVs, focusing on achieving
the stable and continuous tracking of cables with complex trajectories while optimizing
imaging quality. Based on the SSS imaging characteristics, this study summarized three
key factors affecting the SSS image quality and proposed a non-myopic RHO model. The
proposed model used LSTM networks to predict cable trends, thereby improving the sub-
sequent tracking accuracy. To adapt the model to embedded systems, this study reduced
the computational complexity by shrinking the heading-search space and pruning the
decision tree. Experimental results indicated that, compared to traditional methods, the
proposed non-myopic approach achieved more stable and continuous tracking of underwa-
ter cables with complex trajectories while maintaining the low algorithmic computational
complexity suitable for embedded systems. Further analysis revealed that AUV motion
constraints affect navigation stability; specifically, limiting the heading search space can
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reduce heading oscillations, albeit at the expense of distance and angle performance. Addi-
tionally, the stability of AUV cable tracking was found to be inversely proportional to the
curvature radius, with a smaller curvature radius leading to more pronounced heading
oscillations. This study evaluated the imaging quality of cables in SSS at the theoretical level
by quantifying AUV motion performance indicators. However, it overlooked the impact of
target characteristics, the underwater environment, and SSS parameters on cable tracking
in practical applications. In addition, depth control of the AUV in the vertical plane is
currently neglected in favor of horizontal motion. In the future, we aim to apply the model
to real-world cable inspection tasks, analyze the technical details further, and gradually
optimize the model to enable the efficient autonomous inspection of submarine cables.
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