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Abstract: Underwater object detection and classification pose significant challenges due to environ-
mental factors such as water turbidity and variable lighting conditions. This research proposes a
novel approach that integrates advanced imaging techniques with diffusion models to address these
challenges effectively, aligning with Sustainable Development Goal (SDG) 14: Life Below Water. The
methodology leverages the Convolutional Block Attention Module (CBAM), Modified Swin Trans-
former Block (MSTB), and Diffusion model to enhance the quality of underwater images, thereby
improving the accuracy of object detection and classification tasks. This study utilizes the TrashCan
dataset, comprising diverse underwater scenes and objects, to validate the proposed method’s effi-
cacy. This study proposes an advanced imaging technique YOLO (you only look once) network
(AIT-YOLOV?) for detecting objects in underwater images. This network uses a modified U-Net,
which focuses on informative features using a convolutional block channel and spatial attentions
for color correction and a modified swin transformer block for resolution enhancement. A novel
diffusion model proposed using modified U-Net with ResNet understands the intricate structures
in images with underwater objects, which enhances detection capabilities under challenging visual
conditions. Thus, AIT-YOLOV7 net precisely detects and classifies different classes of objects present
in this dataset. These improvements are crucial for applications in marine ecology research, under-
water archeology, and environmental monitoring, where precise identification of marine debris,
biological organisms, and submerged artifacts is essential. The proposed framework advances un-
derwater imaging technology and supports the sustainable management of marine resources and
conservation efforts. The experimental results demonstrate that state-of-the-art object detection
methods, namely SSD, YOLOv3, YOLOv4, and YOLOTrashCan, achieve mean accuracies
(mAP@0.5) of 57.19%, 58.12%, 59.78%, and 65.01%, respectively, whereas the proposed AIT-
YOLOV? net reaches a mean accuracy (mAP@0.5) of 81.4% on the TrashCan dataset, showing a
16.39% improvement. Due to this improvement in the accuracy and efficiency of underwater object
detection, this research contributes to broader marine science and technology efforts, promoting the
better understanding and management of aquatic ecosystems and helping to prevent and reduce
the marine pollution, as emphasized in SDG 14.

Keywords: underwater object detection; Sustainable Development Goal (SDG) 14; diffusion models;
Convolutional Block Attention Module (CBAM); Modified Swin Transformer Block (MSTB);
marine debris detection
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1. Introduction

Object and Image Localization are crucial tasks in Computer Vision (CV). The algo-
rithm in Object Localization identifies and pinpoints a specific object within an image.
Conversely, Image Localization aims to detect and locate all objects present in the entire
image. Researchers use deep learning models to detect potential objects within an image.
During the detection phase, region proposal networks are used to identify and highlight
areas likely to contain objects. Once objects are detected, precise localization further re-
fines these regions by drawing bounding boxes around the identified objects. Object lo-
calization starts with the process of object detection, which applies a deep learning model
to identify potential objects within an image. Researchers utilize different techniques to
detect and mark regions with objects, such as CNNs, faster R-CNN, or SSD and YOLO.

Deep learning-based methods have significantly excelled in extracting deeper seman-
tic information from images, as demonstrated by their success with the COCO natural
image dataset given by (Lin, T.-Y. et al., 2014) [1]. Consequently, applying deep learning
object detection technology to marine debris detection is a reliable approach. This tech-
nology enables precise identification and localization of marine debris for vision robots
and differentiates debris from the surrounding biological environment. This ensures the
effective cleanup of marine debris while preserving the integrity of the original ecological
setting for Sustainable Development Goals 14: Life Below Water.

The Single Shot MultiBox Detector (SSD) proposed by (Liu, W. et al., 2016) [2] applies
a few improvements including multi-scale features and default boxes, which makes im-
provements in SSD to match the Faster R-CNN’s accuracy using lower-resolution images.
Redmon, J. et al., 2018 [3] proposed YOLOV3, which predicts an objectness score for each
bounding box using logistic regression. Bochkovskiy, A. et al., 2020[4] proposed YOLO
v4, which is a one-stage object detection network which has a pretrained convolutional
neural network such as VGG16 or CSPDarkNet53 trained on COCO [1] dataset. Wang, C.-
Y. et al., 2023 [5] proposedYOLOv7, which outperforms all existing object detectors in
terms of both speed and accuracy, operating between 5 FPS and 120 FPS and achieves the
highest accuracy of 56.8% AP among all real-time object detectors running at 30 FPS or
higher on a GPU V100.

Recent research on underwater image enhancement has been done to address chal-
lenges like distorted images and degradation in image quality. Liu, B. et al., 2024 [6] in-
troduced a streamlined model called Rep-UWnet designed to improve underwater im-
ages. This model features a fully connected convolutional network and three sequentially
linked densely connected RepConv blocks, with input images being connected to the out-
put of each block through a Skip connection. Gong, T. et al., 2023 [7] introduced an under-
water image enhancement method that utilizes color feature fusion. By taking advantage
of how light propagates underwater, the proposed model implements a multi-channel
feature extraction approach. Sun, T. et al., 2020 [8] reconstructed structural information
for distorted images using image registration. Yeh, C.H. et al., 2024 [9] introduced a deep
network model designed for enhancing single underwater images. Specifically, the frame-
work features a light field module (LFM) and a sketch module, which work together to
create a light field map of the target image. This map improves color representation and
preserves original image details by supplying contour information. The underwater im-
age is progressively enhanced with guidance from the light field map. Yang, J. et al., 2024
[10] introduced a salient region-guided fusion method for underwater image enhance-
ment. An advanced dark channel prior technique is proposed to minimize haze effects in
underwater images, which greatly enhances visibility.

1.1. Background

Marine ecosystems face a myriad of challenges, including pollution, climate change,
and habitat destruction, jeopardizing biodiversity and global food security. Monitoring
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underwater environments is crucial for understanding these complex ecosystems and im-
plementing effective conservation and management strategies. Advanced imaging tech-
niques play a pivotal role in this endeavor, enabling precise detection and classification of
underwater objects. Traditional imaging in underwater environments is fraught with
challenges such as light attenuation, water turbidity, and varying environmental condi-
tions, which degrade image quality and hinder accurate object detection. Recent advance-
ments in deep learning and image processing have spurred the development of novel
techniques tailored for underwater applications. Addressing these challenges aligns with
Sustainable Development Goal (SDG) 14: Life Below Water, which aims to conserve and
sustainably use the oceans, seas, and marine resources.

This research focuses on enhancing underwater object detection and classification
using cutting-edge imaging technologies. The proposed approach integrates diffusion
models, Convolutional Block Attention Module (CBAM), and Modified Swin Transformer
Block (MSTB) into a unified framework. Diffusion models simulate light propagation and
interaction with underwater objects, effectively reducing noise and enhancing image clar-
ity by capturing the inherent structure within noisy images (Siqi Lu et al., 2023) [11]. The
CBAM dynamically recalibrates channel-wise and spatial-wise features, prioritizing in-
formative features while suppressing irrelevant ones, thereby improving feature repre-
sentation and object detection accuracy (Wang N. et al., 2024) [12]. Meanwhile, the MSTB
enhances image quality and resolution through a modified U-Net architecture with trans-
former blocks, facilitating robust feature extraction and context aggregation (Kim H. et al.,
2024) [13].

This novel approach addresses key challenges in underwater imaging by leveraging
deep learning to enhance image quality, reduce noise, and improve the reliability of object
detection systems. The integration of cutting-edge imaging technologies provides visibil-
ity enhancement in underwater scenes, thereby enabling the accurate identification and
classification of marine debris, biological organisms, and submerged artifacts. The signif-
icance of this research extends across various domains, including autonomous underwa-
ter robotics for environmental monitoring, marine research and conservation, underwater
archeology, and security surveillance (Tian et al., 2024; S D. et al., 2024) [14,15]. These ap-
plications rely on accurate and efficient underwater imaging technologies to gather data,
study ecosystems, detect anomalies, and support decision-making processes.

This research introduces an innovative approach to improving underwater object de-
tection and classification by leveraging cutting-edge imaging techniques. Thus, it contrib-
utes to broader efforts in marine conservation, resource management, and environmental
protection by improving the fidelity and reliability of underwater imaging systems.

1.2. Literature Review

Underwater environments present unique challenges for imaging and sensing tech-
nologies due to factors such as light attenuation, water turbidity, and environmental var-
iability. These challenges have spurred significant research into advanced imaging tech-
niques aimed at improving the detection and classification of underwater objects. This
literature review explores recent developments in this field, focusing on key methodolo-
gies, datasets, and performance metrics.

Effective underwater imaging is hindered by several factors that degrade image qual-
ity and complicate object detection. Light attenuation, caused by the absorption and scat-
tering of light in water, reduces visibility and contrast, making it difficult to detect objects
at varying depths (Almutiry, O. et al., 2024) [16]. Water turbidity further exacerbates these
effects, introducing particulate matter that scatters light and reduces image clarity. More-
over, environmental conditions such as currents, sedimentation, and biological activity
contribute to dynamic changes in water clarity and light conditions, posing additional
challenges for imaging systems (Shuyun Yuan et al., 2023) [17].

Historically, underwater imaging relied on conventional methods such as sonar and
acoustic imaging, which are effective for large-scale surveys but lack the resolution
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needed for detailed object identification (DinhQuangHuy et al., 2023) [18]. Optical imag-
ing techniques, including cameras and lidar, offer higher resolution but are limited by
light attenuation and water turbidity, compromising their effectiveness at greater depths
(Zhou, J. et al., 2023) [19]. Underwater images often suffer from color distortion, blurri-
ness, and significant noise due to the scattering and absorption of light as it travels
through water. Underwater images often suffer from color distortion, blurriness, and sig-
nificant noise due to the scattering and absorption of light as it travels through water.
Object detection and classification in such images leads to low accuracy. These challenges,
along with recent advancements in deep learning, have revolutionized underwater object
detection by enabling the extraction of meaningful features from noisy and degraded im-
ages through advanced imaging techniques. These techniques make use of neural net-
works, convolutional blocks, or swin transformer blocks to overcome the challenges found
in underwater images. This helps in better training the developed network model to learn
the significant features in the underwater images; thereby, underwater objects are de-
tected and classified with high accuracy.

Convolutional Neural Networks (CNNs) have been extensively utilized for object de-
tection and classification in various domains, including underwater environments (Zocco,
F. etal., 2023) [20]. CNNs leverage hierarchical feature extraction to identify objects based
on patterns and textures in images, overcoming traditional limitations in feature repre-
sentation (Yang, Y. et al., 2023) [21].

Further, the CBAM enhances feature representation in CNNs by incorporating atten-
tion mechanisms that dynamically recalibrate channel-wise and spatial-wise features (Xin,
H. et al., 2023) [22]. The informative features are focused while suppressing irrelevant
ones, and CBAM improves the accuracy of object detection systems in challenging under-
water conditions (Wang, X. et al., 2023) [23]. Inspired by the success of transformer archi-
tectures in natural language processing, MSTB integrates transformer blocks into CNNss
to capture global dependencies and enhance feature interactions (Guang Yang et al., 2023)
[24]. This approach improves the robustness of feature extraction in underwater images,
facilitating more accurate object classification and localization. Diffusion models simulate
the propagation and interaction of light with underwater objects, effectively denoising
images and enhancing visibility (Zhang, H et al., 2024) [25]. Diffusion models improve the
quality of underwater images and support precise object detection in varying environ-
mental conditions by capturing the underlying structure within noisy images (Lu, S. et al,,
2024) [26].

Also, Yeh et al. [27] introduced a lightweight deep neural network for simultaneous
underwater object detection and color conversion, emphasizing computational efficiency
in underwater environments. However, challenges such as varying light conditions and
water turbidity can impact detection accuracy. Zhou et al. [28] developed “Yolotrashcan,”
a deep learning model aimed at detecting marine debris to support environmental con-
servation. This work faces challenges including the diversity of debris types and sizes and
the dynamic nature of marine environments, which can introduce noise and occlusions
that affect detection accuracy. Dhariwal and Nichol [29] compared diffusion models with
GAN:s for image synthesis, highlighting the potential of diffusion models but noting chal-
lenges like training stability and high computational resource demands, especially for
complex image synthesis tasks. Saleh and Vamossy [30] proposed BBBD, focusing on oc-
clusion detection and order recovery in object detection, but encountered difficulties in
scenarios with complex occlusions or overlapping objects, complicating precise bounding
box detection.

Furthermore, Teng et al. [31] improved the YOLOV5 algorithm for detecting under-
water garbage and addressing environmental concerns. Challenges include distinguish-
ing garbage from natural underwater elements like reefs and vegetation and variations in
garbage types and sizes. Liu et al. [32] explored domain generalization in underwater ob-
ject detection to improve model adaptability across diverse underwater environments,
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facing issues such as domain shift and limited labeled data availability for training gener-
alized models. Sharma et al. [33] proposed a wavelength-based attributed deep neural
network for restoring underwater images using spectral information. Challenges include
limited spectral data availability and the need for accurate calibration to ensure reliable
image restoration. Wang et al. [34] introduced a zero-shot image restoration method using
a denoising diffusion null-space model, showcasing effective denoising capabilities but
facing challenges with model complexity and the need for fine-tuning for specific restora-
tion tasks. Liu et al. [35] presented DiffYOLO, combining the YOLO and Diffusion models
for improved detection performance in noisy environments, encountering challenges in
optimizing the fusion of these models and handling complex noise patterns.

Zeng et al. [36] focused on underwater target detection using Faster RCNN and ad-
versarial occlusion networks to improve detection reliability, facing challenges with ro-
bustness against varying occlusion types and environmental conditions. Fan et al. [37]
developed a dual refinement underwater object detection network aimed at increased ac-
curacy, with challenges including computational complexity and the need for efficient
training strategies for refinement. Jia et al. [38] introduced an underwater object detection
method based on an improved EfficientDet model, focusing on efficiency and accuracy,
facing challenges with handling scale variations and diverse underwater object types.
Chen et al. [39] proposed SWIPENET for object detection in noisy underwater images,
addressing noise robustness, with challenges in fine-tuning for different noise levels and
types commonly encountered in underwater imaging.

Fayaz et al. [40] provided a comprehensive review of architectures and algorithms
for underwater object detection, noting that staying updated with rapidly evolving tech-
niques and addressing specific application requirements in diverse underwater scenarios
remains challenging. Wu et al. [41] proposed an improved YOLOv5-based method for fish
target detection in underwater blurred scenes, facing challenges in accurately distinguish-
ing fish from other underwater elements and handling motion blur effects.

The ICRA dataset comprises a diverse collection of underwater images, including
biological organisms, marine debris, and submerged artifacts (Hong, L. et al., 2023) [42].
This dataset serves as a benchmark for evaluating object detection algorithms in real-
world underwater scenarios, providing annotated images for training and testing models.
The TrashCan dataset focuses specifically on marine debris detection, annotating images
with bounding boxes and segmentation labels. This dataset supports the development of
robust detection algorithms for identifying and classifying underwater trash, a critical
component of marine conservation efforts.

The evaluation of underwater object detection systems relies on metrics such as pre-
cision, recall, and Mean Average Precision (mAP). Precision measures the accuracy of pos-
itive predictions, recall assesses the proportion of true positives correctly identified, and
mAP evaluates the overall detection performance across multiple object classes. These
metrics provide quantitative insights into the effectiveness of advanced imaging tech-
niques in underwater environments. Recent case studies highlight the practical applica-
tions of advanced imaging techniques in underwater research and exploration. For in-
stance, autonomous underwater vehicles equipped with CNN-based object detection sys-
tems have been deployed for environmental monitoring and habitat assessment. These
systems enable real-time data collection and analysis, supporting scientific research and
conservation efforts in marine ecosystems. While significant progress has been made in
underwater object detection using advanced imaging techniques, several challenges re-
main. Improving the robustness of detection algorithms in complex underwater environ-
ments, integrating multi-modal sensor data for enhanced perception, and addressing eth-
ical considerations in marine research are critical areas for future exploration (Deluxni, N.
et al., 2023) [43].

Advanced imaging techniques coupled with deep learning have transformed under-
water object detection and classification by overcoming traditional limitations and en-
hancing the accuracy and reliability of detection systems. By leveraging CBAM, MSTB,
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and Diffusion models, researchers can effectively navigate the complexities of underwater
imaging, contributing to advancements in marine conservation, environmental monitor-
ing, and scientific exploration.

1.3. Challenges and Objectives

The following list encapsulates the core challenges and objectives addressed by this
research, focusing on enhancing underwater object detection and classification through
advanced imaging techniques.

e  Existing methods for underwater object detection suffer from limited accuracy and
reliability due to challenges such as light attenuation, water turbidity, and environ-
mental variability.

e  Currentimaging techniques often fail to provide clear and detailed images necessary
for precise object classification and localization in diverse underwater conditions.

e  Effective detection and classification of marine debris, crucial for environmental
monitoring and conservation efforts, remains a significant challenge due to the com-
plex underwater environment and varying debris types.

e  Thereis aneed to integrate advanced imaging technologies, including Convolutional
Block Attention Module (CBAM), Modified Swin Transformer Block (MSTB), and
Diffusion models, to enhance the quality and clarity of underwater images for im-
proved object detection.

e Defining robust performance metrics such as precision, recall, and Mean Average
Precision (mAP) specific to underwater environments is essential to accurately assess
the efficacy of detection algorithms.

e Developing real-time object tracking capabilities using integrated approaches like
YOLOV7 and DeepSORT to maintain continuous object detection and tracking in dy-
namic underwater scenarios.

This research article starts with an introduction section providing background
knowledge, related works in this research area, challenges addressed, and objectives of
this research work. Section 2 provides the model of the proposed system followed by a
description of the dataset and techniques adapted in Section 3. Then, results obtained from
this system are discussed in Section 4 and are concluded with a discussion of its signifi-
cance in marine research, conservation, and environmental monitoring in Section 5.

2. Modeling of the System

The structured approach integrates advanced imaging techniques and state-of-the-
art algorithms to address the complexities of underwater object detection and classifica-
tion. Each module and algorithm cited contributes uniquely to enhancing system perfor-
mance in challenging underwater environments. The proposed system architecture is
shown in Figure 1.
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Figure 1. Proposed System architecture.

The proposed system uses TrashCan dataset [44], which is a semantically segmented
collection consisting of 7212 images, mostly drawn consecutively from 312 distinct video
sequences recorded by JAMSTEC in the Sea of Japan since 1982. This dataset represents
an enhanced version of the Trash-ICRA19 dataset [45]. The TrashCan dataset is dedicated
to detecting marine debris, featuring images annotated with bounding boxes and segmen-
tation labels. It aids in developing effective detection algorithms for identifying and clas-
sifying underwater trash, playing a vital role in marine conservation efforts. This dataset
has a total of 7212 images with 22 classes, where 5066 images are used for training, 721
images for validation, and 1425 images for testing purposes. Each image class has multiple
annotations as labels; thereby, 2426 labels are found for 1425 images. CBAM acts as color
correction module by focusing features on spatial and channel attention modules, thereby
improving image quality by enhancing color information in underwater scenes. The Con-
volutional Block Attention Module (CBAM) plays a crucial role in improving image qual-
ity by preserving and enhancing color information in underwater scenes. CBAM employs
advanced algorithms to mitigate color distortion and enhance visibility, addressing chal-
lenges such as light attenuation and water turbidity. CBAM ensures clearer and more ac-
curate representations of underwater environments by emphasizing informative spatial
and channel-wise features. The Modified Swin Transformer Block (MSTB) integrates a
modified U-Net architecture with transformer mechanisms to enhance image resolution
and detail. This module excels in capturing both global dependencies and local context,
crucial for improving object detection precisely underwater. MSTB’s capability to process
high-level features enhances the system’s ability to classify and localize objects effectively.
The Diffusion module employs Gaussian processes to reduce noise and artifacts in under-
water images. This technique enhances image clarity and reduces interference, thereby
improving the system’s robustness in challenging visual conditions. The Diffusion model
gradually adds noise to the original distribution through a Markov chain and gradually
recovers from the latent distribution to the original distribution by using a learned de-
noising process. This contributes significantly to the overall performance of the object de-
tection system by effectively denoising images.

The integration of DeepSORT and YOLOvV? algorithms enhances the system’s object
tracking and detection capabilities. DeepSORT improves tracking accuracy by associating
object identities across frames, while YOLOV7 provides efficient real-time object detection
using a single-shot detection approach. In general, YOLOV7 provides a fast and strong
network architecture that provides a more effective feature integration method, more ac-
curate object detection performance, a more robust loss function, and an increased label
assignment and model training process efficiency. As a result, YOLOV? requires several
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times cheaper computing hardware than other deep learning models. Together, these al-
gorithms enable the proposed AIT-YOLOV? net to detect, track, and classify underwater
objects with high accuracy and efficiency, essential for applications in underwater explo-
ration, research, and surveillance.

3. Dataset and System Description

The dataset encompasses a variety of images showcasing different objects, including
marine debris, biological organisms like plants and animals, and remotely operated vehi-
cles (ROVs) as shown in Figure 2. It consists of 7212 images that vary in quality, depth,
scene compositions, and camera types utilized.

Figure 2. Selection of images, highlighting the dataset’s diversity.

The images depict a range of marine debris captured in real-world environments,
showcasing various objects under conditions like decay, occlusion, and overgrowth. They
also exhibit significant variations in water clarity and lighting quality across different
scenes.

3.1. Convolutional Block Attention Module

Underwater images are processed through a neural network architecture incorporat-
ing a VGG16 module for feature extraction, alongside channel and spatial attention mod-
ules and a color correction module (CC_Module). This color correction model is trained
using a dataset containing both hazy and clean images. The architecture includes initial
convolutional layers with varied kernel sizes to capture diverse image features. Following
these convolutional operations, local attention modules like CBAM (Convolutional Block
Attention Module) are employed to further enhance feature representation.

CBAM (Convolutional Block Attention Module) integrates two essential compo-
nents: ChannelGate and SpatialGate. These elements dynamically recalibrate features
within intermediate feature maps during training. The ChannelGate recalibrates channel-
wise features, emphasizing important channels while suppressing less relevant ones. Sim-
ultaneously, the SpatialGate recalibrates spatial-wise features, focusing on informative
spatial regions while reducing the impact of irrelevant areas. The process flow description
for the color correction module of CBAM is shown in Figure 3.
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This dual recalibration mechanism enables CBAM to enhance feature maps effec-
tively, improving the model’s ability to capture relevant information and suppress noise,
thereby enhancing the overall performance of the neural network in tasks such as object
detection and classification in underwater imaging scenarios. Figure 4 presents unpro-
cessed images directly captured from the data source, representing the raw state of the
images without any modifications or enhancements applied.

Figure 4. Unprocessed images.

Figure 5 illustrates the output image after applying color correction to the input im-
age from Figure 4.
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Figure 5. Output image after color correction from the input image.

The Convolutional Block Attention Module (CBAM) enhances the quality of color
correction by emphasizing significant spatial regions and enhancing global information
within the feature maps. This attention mechanism ensures precise retention of colors and
tones, resulting in an accurate visual representation of the scene. During the training pro-
cess, batches of hazy images from the dataset are processed through the CBAM-equipped
neural network. The model computes outputs for these images, which are then compared
with corresponding clean images to calculate loss. VGG Loss is computed by iterating
through the feature maps of the color corrected image and the clean image. The Euclidean
distance between the two feature maps is computed for each pair of units. The distances
are then summed up and weighed based on the dimensions of the feature maps. The Mean
Squared Error (MSE) is a straightforward and widely used loss function, which takes the
difference between the actual value and the model prediction, squares it, and then aver-
ages it across the entire dataset. An optimizer adjusts the model’s parameters iteratively
to minimize this loss, enhancing the model’s ability to accurately correct colors in under-
water environments. Checkpoints are saved to preserve the model’s state, allowing for
training resumption or inference in subsequent sessions.

Thus, the integration of CBAM in this method plays a crucial role in maintaining
accurate color representation in underwater imagery. CBAM improves the fidelity of color
information essential for tasks like object recognition and classification in challenging un-
derwater conditions by selectively enhancing spatial and channel-wise features.

3.2. Modified Swin Transformer Block (MSTB)

Underwater images often suffer from degradation caused by absorption and scatter-
ing in the medium. To address these challenges, our proposed method enhances a U-Net
architecture with Swin Transformer Blocks. This approach aims to capture both global
dependencies and local contexts crucial for improving image quality in underwater
scenes. Unlike traditional linear layers, which are often used in U-Net architectures, our
method replaces them with two convolutions to reinforce channel and spatial attention
mechanisms, while preserving the core attention functionality.

The U-Net architecture, originally designed for medical image segmentation, proves
to be beneficial due to its ability to operate effectively with limited annotated data. This
characteristic is particularly advantageous in underwater imaging contexts, where com-
prehensive datasets are often scarce. By integrating Swin Transformer Blocks, our en-
hanced U-Net framework not only maintains speed and accuracy, but also enhances its
capability to handle complex underwater image features, thereby improving overall per-
formance in tasks such as object detection and classification. The U-Net architecture com-
prises a contracting path and an expansive path as shown in Figure 6.
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Figure 6. U-Net architecture.

Encoder layers in the contracting path capture contextual information and reduce
spatial resolution of the input. These layers perform convolutional operations to deepen
feature maps, extracting progressively abstract representations akin to feedforward layers
in CNNs. In contrast, the expansive path’s decoder layers decode encoded data, maintain-
ing spatial resolution while upsampling feature maps. Skip connections from the contract-
ing path help retain the spatial information lost during contraction, thereby enhancing the
accuracy of feature localization using decoder layers.

The ViT model revolutionizes image recognition tasks like object detection, segmen-
tation, classification, and action recognition by treating images as sequences of patches.
Each patch is flattened into a vector by concatenating pixel channels and linearly project-
ing them to the desired input dimension. The ViT encoder block integrates key compo-
nents: Layer Norm ensures stable training and adaptation across diverse image character-
istics, while the Multi-head Attention Network (MSP) generates attention maps to focus
on crucial image regions. The Multi-Layer Perceptron (MLP) head, with Gaussian Error
Linear Unit (GELU) activation, serves as the final classifier output, often used for image
classification with softmax. GELU weights inputs based on their probabilities under a
Gaussian distribution, enhancing ViT’s performance in learning intricate image structures
independently. Choosing the right activation function is crucial for the success of deep
learning models, impacting their ability to learn, maintain stability, and operate effi-
ciently. Recently, the Gaussian Error Linear Unit (GELU) has become a popular choice,
often outperforming traditional functions like the Rectified Linear Unit (ReLU) in many
applications. Equation (1) states that we scale x by how much greater it is than other inputs
using the Gaussian distribution, which is often computed with the error function as fol-
lows:

GELU(x) = ;(1 +erf <%)> 1)

where erf in Equation (2) denotes the error function given by the following:

erf(x) = %fo et dt )

The Swin Transformer adopts a hierarchical architecture by dividing the image into
non-overlapping patches initially. Unlike Vision Transformers, the Swin Transformer em-
ploys shifted windows that enable patches to attend to neighboring patches. This ap-
proach facilitates more effective information exchange between local and global features.
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The Swin Transformer incorporates hierarchical stages of transformers, where each stage
refines features at different resolutions. This design choice allows for the model to capture
both local details and global context efficiently. By refining features across multiple stages,
the Swin Transformer enhances its ability to understand intricate relationships within the
input data, making it particularly effective for tasks like image recognition, object detec-
tion, and segmentation in diverse and complex visual environments. The Modified Swin
Transformer Block enhances the image’s resolution and improves the image’s clarity as
depicted in Figure 7a. The process flow for image resolution enhancement, as shown in

Figure 7b.
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Figure 7. (a) Modified Swin Transformer Block (MSTB) for enhancing image resolution. (b) Process
flow of MSTB in underwater image resolution enhancement.

The proposed AIT-YOLOvV7 net adopts a modified U-Net architecture enhanced with
convoluted layers inspired by Swin Transformers. It comprises three main components:
the encoder, bottleneck, and decoder. The encoder transforms the input into a deeper fea-
ture space, reducing spatial dimensions while increasing channel depth. At the network’s
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core, the bottleneck focuses on learning crucial high-level features while maintaining fea-
ture dimensions. In deep networks, extracting additional features becomes ineffective
when the network encounters a bottleneck. At this stage, we perform feature extraction
once more, aiming to compel the network to consolidate valuable information from the
existing features, thereby achieving feature compression rather than merely adding more
features. This process helps enhance the global dependencies within the network. We use
two convolutions instead of a linear layer to reinforce in the channel and spatial. This is
achieved in channel by a 1 x 1 convolution to triple the channels, which is like a linear
layer. The spatial is enhanced by a 3 x 3 convolution in channel-wise. The decoder recon-
structs the underwater image from the feature space, enlarging spatial dimensions while
reducing channels. Task-specific upsampling in the decoder generates both enhanced and
high-resolution images simultaneously.

While U-Net effectively captures global and local context, relying solely on it may be
insufficient. To enhance global dependencies, standard Swin Transformer Blocks (STBs)
replace conventional convolutional blocks. However, given the limitations of small da-
tasets, CNNs are reintegrated to bolster local attention. Moreover, convolutions replace
linear layers within STBs to enhance channel and spatial features concurrently, thereby
reinforcing the core attention mechanism. The encoder is used to map input into deeper
feature space, while the decoder is utilized to reconstruct the image from feature space.
The bottleneck can learn useful compression of features. This modification enhances the
network’s ability to capture intricate relationships within underwater images, improving
both the resolution and clarity for enhanced object detection and classification tasks, as
depicted in Figure 8.

Figure 8. Enhanced images.

3.3. Diffusion Model

Diffusion models operate through two key processes: a forward process and a reverse
process. During the forward process, noise is progressively introduced in timesteps, fol-
lowing a Gaussian distribution modeled as a Markov chain. In the reverse process, the
neural network learned this noise with time embeddings, allowing it to reverse the noise
that was added.

The diffusion process systematically introduces known noise into the input distribu-
tion, modeled as a Markov chain with probability density q over T iterations. Gaussian
noise is progressively added to the input distribution q(x), as shown in Equation (3).
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T
q(x©D) = q(x®) 1_[ q(x®x D) ®)

(t=1)

where q(x® | x®~V) corresponds to a Gaussian distribution during the forward diffu-
sion process. U-Net with ResNet blocks in this neural network reconstructs the original
data by gradually reversing this noising process, which is called reverse diffusion. After
training, these models can generate new data by starting with random Gaussian noise and
applying the learned denoising steps. This neural network’s task is to estimate the total
noise in an image at a specific timestep. Comparing this estimate with the actual noise
added to the image, the network becomes trained. During inference, the network contin-
ues to predict the total noise at timestept and then removes a portion of this noise based
on the schedule employed.

Noise is added at each timestep according to a specified pattern with help of sched-
uler to find the precise amount of noise to be introduced. The noise schedule dictates the
process by which diffusion models add and remove noise in an image. Linear schedules
are straightforward, but can sometimes lead to lower output quality, whereas cosine
schedules enhance results by providing smoother transitions. The algorithmic framework
for a diffusion model using Gaussian distribution is shown in Figure 9.

" Initialize Noise .
(_schedule for smooth )
A transition 4

Forward diffusion M v
process
sequentially add noise
to image for each
timesteptfrom1to T

Reverse diffusion
v process

U-Net framework

progressively reduce
Increasingly noise in image over
noising images [ ~ multiple t.irmes;eps from
to

Figure 9. Process flow in diffusion model.

The U-Net architecture employed in this method, featuring an encoder—-decoder
structure with skip connections that preserve crucial spatial information throughout the
network. These connections are vital for maintaining detailed image reconstruction from
input to output. Within the U-Net framework, ResNet blocks are integrated into both the
encoder and decoder sections. ResNet blocks effectively address the vanishing gradient
problem by utilizing shortcut connections, enabling the use of deeper network architec-
tures without a degradation in performance. For the iterative denoising process, the U-
Net model is applied sequentially to progressively reduce noise in the input image over
multiple timesteps (t) from T down to 1. This iterative approach ensures the gradual re-
finement and reconstruction of the denoised image. This process begins with an initialized
noise-corrupted version of the original image. Figure 10 illustrates this initial corrupted
image, which acts as the input for the diffusion process.
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Figure 10. Corrupted image.

Each encoder stage includes two Residual Blocks with convolutional down-sam-
pling, except for the final stage. Each decoder stage comprises three Residual Blocks and
nearest neighbor up-sampling blocks with convolutions, which are used to reconstruct
the input from the previous step. Skip connections link each stage in the decoder path to
the corresponding stage in the encoder path. The model incorporates attention modules
at a single feature map resolution, and the timestep t is encoded into a time embedding.
The noise schedule used in this Diffusion model gives a smooth transition, which stabi-
lizes the reverse diffusion process by ensuring that samples at any timestep are equally
valuable to the training process. The output generated by the Diffusion fusion model is
shown in Figure 11 and illustrates the results after applying noise reduction techniques.

Figure 11. Image generated using the Diffusion model.

These techniques significantly enhance visual clarity by reducing noise artifacts in
the image. By explicitly modeling and training the diffusion process with a neural net-
work, the proposed AIT-YOLOV7 net effectively captures the inherent structure of images
while preserving critical details through noise removal.

3.4. Object Detection and Tracking

Combining YOLOV7 and DeepSORT creates a robust system for real-time object de-
tection and tracking in videos. YOLOV?7 excels in rapid single-shot detection by leveraging
deep neural networks to divide frames into a grid. It efficiently predicts bounding boxes
and class probabilities for each grid cell, utilizing anchor boxes to enhance localization
accuracy. This approach allows for YOLOV7 to swiftly process frames during inference,
making it highly suitable for real-time applications where speed is critical.
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YOLOV7? provides greatly improved real-time object detection accuracy without in-
creasing the inference costs. It can effectively reduce about 40% of parameters and 50%
computation of state-of-the-art real-time object detections and achieve faster inference
speed and higher detection accuracy. Performance metrics shown in [5] indicate YOLO
v7’s superiority in both accuracy and speed, thereby achieving precise object detection
results across diverse object classes. State-of-the-art detection models were employed to
test their performance (AP is the average precision) pertained on the COCO [1] dataset, as
shown below in Figure 12.

better MS COCO Object Detection

v YOLOYT bs +120% faster

== Y OLO~ 7 g w

- Y OULOR
- PP OLOE
> YOLOX
Scubed YOLO~ G
>~ YOLOVS e 1)
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be(ler« V100 batch 1 ference thme (m)
Figure 12. MS COCO object detection from [5].

The benchmarks provided in [5] show that YOLOV7 can effectively reduce about 40%
of parameters and 50% computation of state-of-the-art real-time object detections when
compared to other known object detectors. It achieves faster inference speed and higher
detection accuracy. When compared with YOLOv4, YOLOV? reduces the number of pa-
rameters by 75%, requires 36% less computation, and achieves 1.5% higher Average Pre-
cision. Performance metrics indicate YOLO v7’s superiority in both accuracy and speed
compared to traditional CNNs. YOLOV? provides a fast and strong network architecture
that provides a more effective feature integration method, more accurate object detection
performance, a more robust loss function, and an increased label assignment and model
training process efficiency. As a result, YOLOV7 requires several times cheaper computing
hardware than other deep learning models.

DeepSORT enhances YOLOV7’s capabilities by seamlessly tracking detected objects
across successive frames. It incorporates appearance features and motion information to
associate objects, employing deep learning to accurately represent object appearances.
Additionally, DeepSORT integrates Kalman filtering for predicting object positions, par-
ticularly effective in handling occlusions where one object obscures another, such as
shoals of fish underwater. This combination of YOLOv7 and DeepSORT not only ensures
efficient real-time detection and tracking of objects, but also addresses challenges like oc-
clusions, crucial for applications in dynamic environments such as underwater surveil-
lance and monitoring systems.

When integrated, YOLOvV7 and DeepSORT form a powerful pipeline for object de-
tection and tracking. YOLOvV?7 excels in rapid object identification within each frame, lev-
eraging its efficient single-shot detection capabilities. Meanwhile, DeepSORT enhances
this process by maintaining continuous tracks of detected objects across frames, thereby
improving the system’s overall understanding of object movements and interactions over
time. Figure 13 showcases the final output image, illustrating accurate object classification
achieved through the application of color correction by CBAM, resolution enhancement
by MSTB, and diffusion techniques in Figure 11 given as input.
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Figure 13. Output image with underwater objects detected and classified using AIT-YOLOV?7.

These enhancements play a critical role in improving visual clarity and reducing
noise artifacts, thereby enhancing the precision of object detection and classification. This
proves highly effective in scenarios necessitating real-time monitoring and management
of marine habitats. Capturing videos with detailed insights into the health and dynamics
of marine ecosystems, AIT-YOLOV? contributes significantly to environmental monitor-
ing and conservation efforts in underwater surveillance systems.

4. Results and Discussions

This research uses the TrashCan dataset, which is a semantically segmented collec-
tion consisting of 7212 images, mostly drawn consecutively from 312 distinct video se-
quences recorded by JAMSTEC. This dataset represents an enhanced version of the Trash-
ICRA19 dataset. The ICRA dataset encompasses a diverse array of images featuring bio-
logical entities like plants, animals, and remotely operated vehicles (ROVs). In contrast,
the TrashCan dataset focuses specifically on marine debris sourced from various environ-
ments and meticulously annotated with bounding boxes and segmentation labels. This
dataset plays a crucial role in the development of robust detection systems for marine
debris, addressing the significant environmental threat posed by underwater trash. The
total 7212 images have 22 classes, where 5066 images are used for training, 721 images for
validation, and 1425 images for testing purposes. These images serve as a comprehensive
collection for studying various underwater scenarios.

Marine debris remains a pressing challenge for aquatic ecosystems, prompting nu-
merous approaches from environmental and governmental bodies aimed at cleanup and
mitigation. Despite these efforts, effective solutions remain limited. This research is con-
ducted using a NVIDIA Tesla T4 GPU in a Colab Pro, which has 16GB GDDRS6, 65 tera-
flops of peak performance for FP16, thereby providing substantial computational power
to facilitate the implementation and evaluation of advanced imaging techniques for un-
derwater object detection and classification. Compared to the best-performing Cascade-
Mask R-CNN models, YOLOV7 achieves 2% higher accuracy at a dramatically increased
inference speed. When compared to YOLOR (You Only Learn One Representation),
YOLOV7 reduces the number of parameters by 43% parameters, requires 15% less com-
putation, and achieves 0.4% higher Average Precision. In summary, YOLOV7 is designed
to be more efficient compared to its predecessors, leveraging architectural innovations to
balance accuracy and computational efficiency. The computational complexity of our pro-
posed approach is as follows: FPS as 114, input size as 640, and average time in batch size
16 as 3.8 ms. YOLOV7 has high speed and the best accuracy in achieving precise object
detection results across diverse object classes, and these are the underlying reasons for
choosing it in the development of Advanced Imaging Techniques (AIT) for underwater
object detection and classification in real-world underwater scenarios.
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The proposed system methodology leverages the Convolutional Block Attention
Module (CBAM), Modified Swin Transformer Block (MSTB), and Diffusion model to en-
hance the quality of underwater images, thereby improving the accuracy of object detec-
tion and classification tasks. The CBAM enhances the clarity and accuracy of underwater
environment representations by focusing on informative spatial and channel-wise fea-
tures. The Modified Swin Transformer Block (MSTB) integrates a revised U-Net architec-
ture with transformer mechanisms to improve image resolution and its detail. This mod-
ule captures both global dependencies and local context, which is essential for precise ob-
ject detection in underwater images. MSTB’s ability to process high-level features en-
hances the proposed system’s effectiveness in classifying and localizing objects. The Dif-
fusion model uses Gaussian processes to minimize noise and artifacts in underwater im-
ages, enhancing image clarity and reducing interference, thereby strengthening the pro-
posed system’s performance under challenging visual conditions.

The proposed AIT-YOLOV7 net precisely detects and classifies trash of diverse clas-
ses in the TrashCan dataset, thereby significantly contributing to the SDG 14: Life Below
water.

4.1. Performance Metrics
1. Precision:

Precision measures the proportion of true positive predictions among all positive
predictions made by the model. It is calculated using the following formula:

Precision = TP @)
recision = o0
where:
True Positives (TP) are the number of correct positive predictions.

False Positives (FP) are the number of incorrect positive predictions.
2. Recall:

Recall measures the proportion of true positive predictions among all actual positive
instances in the dataset. It is calculated using the following formula:

Recall = — 0 )
CCt = TP I N

where:

True Positives (TP) are the number of correct positive predictions.

False Negatives (FN) are the number of actual positive instances incorrectly predicted
as negative.

(a) Mean Average Precision

Mean Average Precision (mAP) assesses the accuracy and precision across various
classes by computing Average Precision (AP) from the precision-recall curve. It is a widely
used metric in object detection tasks, including underwater object detection, to evaluate
the algorithm’s effectiveness. Mean Average Precision is calculated as the mean of Average
Precision (mAP) values calculated for each class. AP for a class is determined from the
precision—recall curve, which summarizes the trade-off between precision (the proportion
of true positive predictions among all positive predictions) and recall (the proportion of
true positive predictions among all actual positive instances).

1 k=n
mAP = = Z AP, ©)
e

where:
AP = the average precision of class k.
n = the number of classes.
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In the context of underwater object detection, achieving a high mAP indicates that the
algorithm can accurately detect and classify underwater objects across different categories
or classes, considering varying conditions such as water clarity, object size, and environ-
mental variability.

4.2. Ablation Study

This study emphases the importance of advanced imaging techniques used in this
proposed approach such as the following;:

Color correction by CBAM with Resolution enhancement by MSTB.
Diffusion model using Gaussian process.

The training process makes use of the following parameters:

e Inputimages resized to 640 x 640 pixels.
e  Training Epochs is 220.

e  Batch size is 16.

e  Learning rate is 0.01.

e  Momentum is 0.9.

e Weight decay is 0.0005.

Single-shot object detection performs a prediction on the presence and location of
objects within an image by processing the entire image in one shot. Mean Average Preci-
sion (mAP) is commonly used to assess the performance of object detection systems. Table
1 shows the overall performance of different single-shot object detection techniques using
the TrashCan dataset with the mAP@.5 metric.

Table 1. Overall performance of different single-shot object detection techniques.

S1L.No. Single-Shot Object Detection Techniques (Year) mAP@.5
1 SSD (2016) 57.19%
2 YOLOV3 (2018) 58.12%
3 YOLOw4 (2020) 59.78%
4 YOLOTrashCan (2023) 65.01%
5 AIT-YOLOV? (ours) 81.40%

The experimental results given in Table 1 depict that the proposed AIT-YOLOvV? has
a significant improvement of 16.39%, 21.62%, 23.28%, and 24.21% when compared with
the state-of-the-art object detection techniques YOLOTrashCan [28], YOLOv4 [4],
YOLOV3 [3], and SSD [2] respectively.

The combination of the Modified Swin Transformer Block (MSTB) with the Convo-
lutional Block Attention Module increases mAP@.5 by 1.41%, and the Diffusion model
combined with them leads to an increase of 3.08% in mAP@.5 value.

The color correction along with resolution enhancement performed by the combined
effect CBAM and MSTB techniques has less improvement without the Diffusion model.
The Diffusion model significantly learns the intricate structure found in underwater im-
ages by adding Gaussian noise in each timestep t, which enables the neural network to
capture the inherent features while preserving critical details through the noise removal
process. Thus, the high-quality image reconstructed from the Diffusion model achieves
significant improvement in object detection. A comparative analysis in Table 2 highlights
the efficacy of integrating advanced imaging techniques with state-of-the-art object detec-
tion and tracking algorithms, paving the way for more accurate and reliable underwater
monitoring systems.
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Table 2. Ablation comparison on model performance using TrashCan dataset.
Model Advanced Image Enhancement Techniques mAP@.5
CBAM 76.91%
YOLOv7 CBAM + MSTB 78.32%
CBAM + MSTB + Diffusion 81.40%
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Precision, calculated using Equation (4), measures the proportion of true positive pre-
dictions among all positive predictions made by the model, reflecting the accuracy of iden-
tifying relevant objects without including false positives.

Recall, determined using Equation (5), measures the proportion of true positive pre-
dictions among all actual positive instances in the dataset, indicating the model’s ability
to detect all relevant objects.

The mAP, assessed using Equation (6), evaluates accuracy and precision across vari-
ous classes by computing Average Precision (AP) from the precision—recall curve, provid-
ing a comprehensive measure of the algorithm'’s efficiency and effectiveness in detecting
underwater objects.

The TrashCan underwater image dataset with 22 classes has a wide range of diversi-
ties, which serves as a benchmark for evaluating the performance of image enhancement
and acts as the foundation of learning-based methods. Usually, we stop training a model
when model loss starts to increase, or accuracy starts to decrease. To decide on the change
in these generalization errors, we evaluate the model on the validation set after each
epoch. The proper training of model using an appropriate dataset also has an impact on
performance along with proposed image enhancement techniques for the betterment. Fig-
ure 14 depicts the performance metrics for the proposed AIT-YOLOv?Z, which shows the
better improvement in object detection and classification by using advanced imaging tech-
niques namely Convolutional Block Attention Module (CBAM), Modified Swin Trans-
former Block (MSTB), and Diffusion models with YOLOv7 and DeepSORT.

The precision, recall, and mAP@.5 metrics collectively offer a robust evaluation
framework, highlighting the proposed system’s strengths and weaknesses, particularly in
challenging underwater environments characterized by occlusion, low visibility, and di-
verse object types.
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Figure 14. Precision, recall, and mAP metrics for the proposed AIT-YOLOV?.

These metrics, which are computed using Equation (4) for precision, Equation (5) for
recall, and Equation (6) for mAP, demonstrate substantial improvements in performance
due to the advanced imaging techniques. The integration of CBAM with MSTB and the
Diffusion model significantly enhances the quality of underwater images, leading to better
feature representation and more accurate object detection. The precision metric indicates
a higher proportion of true positive predictions among all positive predictions, reflecting
improved accuracy. The recall metric shows a greater proportion of true positive predic-
tions among all actual positive instances, highlighting the model’s enhanced capability to
detect all relevant objects. The mAP metric, which evaluates accuracy and precision across
various classes by computing Average Precision (AP) from the precision-recall curve, un-
derscores the comprehensive effectiveness of the proposed enhancements in improving
the detection and classification of underwater objects.

Figure 15 illustrates the stages of image processing and enhancement that lead to
high-precision object detection and classification. Figure 15a presents the raw input image
from the dataset. Figure 15b shows the image after applying the Convolutional Block At-
tention Module (CBAM) with the Modified Swin Transformer Block, enhancing image
quality by preserving and improving crucial features and spatial information. Figure 15¢
depicts the image processed with the Diffusion Gaussian process, which further reduces
noise and artifacts for clearer visual representations. Finally, Figure 15d displays the out-
put where objects are detected and classified with high precision using enhanced tech-
niques, demonstrating the effectiveness of the proposed AIT-YOLOV? in improving un-
derwater object detection and classification.
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Figure 15. (a) Input image from the dataset. (b) Convolutional block attention with modified Swin
Transformer Block. (c) Diffusion model. (d) Detected and classified with high precision.

Precision metric quantifies the fraction of true positives out of all detected objects,
while recall measures the fraction of true positives out of all actual objects in the image.
Mean Average Precision (mAP) score averages the precision and recall scores for each ob-
ject class to determine the overall accuracy of the object detector.

The proposed AIT-YOLOvV? achieves mAP@.5 as 81.4% for all classes (22 categories)
found in the TrashCan dataset. Table 3 shows a significant improvement in mAP@.5 for
various trash categories, which clearly depicts the significant contribution of proposed
AIT-YOLOV? in trash removal for Sustainable Development Goal (SDG) 14: Life Below
Water.
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Table 3. Accuracy of AIT-YOLOV? in different trash objects detection.

S1.No. Class mAP@.5
1 Trash_bag 88.2%
2 Trash_bottle 89.4%
3 Trash_branch 93.5%
4 Trash_can 93%
5 Trash_clothing 93.5%
6 Trash_container 90.4%
7 Trash_cup 95.9%
8 Trash_net 78.6%
9 Trash_pipe 91.7%
10 Trash_rope 43.7%
11 Trash_snack_wrapper 88.1%
12 Trash_tarp 72.4%
13 Trash_unknown_instance 83.4%
14 Trash_wreckage 81.7%

A performance comparison of baseline YOLOv7 with the proposed AIT-YOLOV? for
the underwater object detection and classification for class ROV (remotely operated vehi-
cle) out of a total of 22 classes found in the TrashCan dataset is shown in Table 4.

Table 4. Performance comparison of AIT-YOLOv7 with baseline YOLOv7 for ROV class.

Model Images Labels mAP@.5
YOLOV7 (baseline) 1425 700 74.9%
AIT-YOLOV?Y (ours) 1425 700 90.3%

There is an increase of 15.4% due to the integration of advanced imaging techniques
(AIT) with YOLOV?. This showcases significant advancement in underwater object detec-
tion and classification, providing a valuable tool for marine research, underwater envi-
ronmental monitoring, and conservation systems satisfying the SDG 14: Life Below Water.

5. Conclusions

Based on the comprehensive analysis and experimentation conducted in this study,
several key conclusions can be drawn regarding the effectiveness of advanced imaging
techniques for underwater object detection and classification. Firstly, leveraging state-of-
the-art methodologies such as the Convolutional Block Attention Module (CBAM), Mod-
ified Swin Transformer Block (MSTB), and Diffusion model has demonstrated significant
enhancements in image quality and object detection accuracy. These techniques collec-
tively address challenges such as color distortion, noise, and low visibility inherent in un-
derwater environments, thereby improving the clarity and fidelity of captured images.
Secondly, the integration of these advanced techniques with established object detection
and tracking frameworks like YOLOv7 and DeepSORT has proven to be highly effective.
YOLOvV7’s rapid single-shot detection capability combined with DeepSORT's robust ob-
ject tracking across frames creates a synergistic pipeline capable of real-time and accurate
object detection and tracking in underwater scenarios. This integration enhances the sys-
tem’s ability to identify and classify marine objects and ensures continuity and precision
in monitoring dynamic underwater environments. Moreover, the evaluation metrics, in-
cluding precision, recall, and mean Average Precision (mAP), consistently showed supe-
rior performance after applying the proposed enhancements. The significant improve-
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ments in mAP@.5 metric underscore the efficacy of the developed methodologies in han-
dling complex underwater scenes and diverse object classes, crucial for applications in
marine research, conservation, and environmental monitoring.

In conclusion, this research underscores the importance of advanced imaging tech-
niques and their integration with robust deep-learning frameworks for advancing under-
water object detection capabilities. Addressing these challenges aligns with Sustainable
Development Goal (SDG) 14: Life Below Water, which aims to conserve and sustainably
use the oceans, seas, and marine resources. Future research directions may focus on fur-
ther refining these techniques, exploring additional datasets, and adapting the approach
for broader underwater monitoring and conservation efforts. These advancements hold
promise for addressing ongoing challenges in marine debris detection and ecosystem
management, contributing to sustainable underwater resource utilization and preserva-
tion.
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