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Abstract: Aiming at the problem of low accuracy of multi-scale seafloor target detection in side-
scan sonar images with high noise and complex background texture, a model for multi-scale target
detection using the BES-YOLO network is proposed. First, an efficient multi-scale attention (EMA)
mechanism is used in the backbone of the YOLOv8 network, and a bi-directional feature pyramid
network (Bifpn) is introduced to merge the information of different scales, finally, a Shape_IoU
loss function is introduced to continuously optimize the model and improve its accuracy. Before
training, the dataset is preprocessed using 2D discrete wavelet decomposition and reconstruction
to enhance the robustness of the network. The experimental results show that 92.4% of the mean
average accuracy at IoU of 0.5 (mAP@0.5) and 67.7% of the mean average accuracy at IoU of 0.5 to
0.95 (mAP@0.5:0.95) are achieved using the BES-YOLO network, which is an increase of 5.3% and
4.4% compared to the YOLOv8n model. The research results can effectively improve the detection
accuracy and efficiency of multi-scale targets in side-scan sonar images, which can be applied to
AUVs and other underwater platforms to implement intelligent detection of undersea targets.
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1. Introduction

Detection and identification of undersea targets have always been the main work of
ocean mapping, underwater search and rescue, mine detection, and pipeline surveying.
Side-scan sonar can detect and provide high-resolution images of underwater targets in
underwater environments with extremely low visibility. It is a common instrument for
undersea target detection and plays an important role in searching for wrecked airplanes,
shipwrecks, and wrecked people, locating undersea pipelines, and detecting protruding
reefs, undersea ores, and submerged mines [1–6].

Currently, the identification of undersea targets in side-scan sonar images is still man-
ually based, which is overly dependent on subjective experience and inefficient, which
seriously affects its wide application in undersea target detection, especially since it is
unable to meet the real-time application requirements of underwater search and rescue
and military target detection such as mines [7]. National and international scholars have
conducted a lot of research on side-scan sonar image preprocessing, classification and recog-
nition, and target detection algorithms [8–19], and have achieved certain results. Due to the
complex marine environment, underwater scattering mechanisms, and other factors, there
is a large amount of noise in the side-scan sonar image. Therefore, effective suppression
of noise while being able to well maintain the edges and details of the image will help to
improve the accuracy of target classification recognition and detection. Traditional noise
reduction methods mainly focus on the spatial domain, such as mean filters, Wiener filters,
etc. [20]. The wavelet transform is one of the typical methods for noise reduction in the
frequency domain, which is widely used in side-scan sonar image noise reduction due to
its good time-frequency characteristics, multi-resolution analysis characteristics, and sparse
representation characteristics [8,21–24].

Sensors 2024, 24, 4428. https://doi.org/10.3390/s24144428 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24144428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0000-1214-2485
https://doi.org/10.3390/s24144428
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24144428?type=check_update&version=1


Sensors 2024, 24, 4428 2 of 18

The target detection aspect of side-scan sonar images is mainly dominated by deep
learning models. Target detection using deep learning models is generally divided into two
categories: two-stage detection models and one-stage detection models. Among them, the
two-stage detection model first generates a region suggestion network of candidate target
boxes; then the category and precise location of the target in the candidate box are further
determined. Representative two-stage models include R-CNN [25], Fast-RCNN [26], and
Faster-RCNN [27,28]. Although two-stage models achieved high recognition accuracy,
their RPN took too long, which reduced the processing speed and made it difficult to
meet the real-time requirements for undersea obstacle detection under complex conditions.
To reduce the leakage rate and improve the detection efficiency, Joseph Redmon et al.
proposed the YOLO network [29,30]. The YOLO network is a typical representative of a
one-stage detection model, which uses an end-to-end training method rather than region
selection. The one-stage target detection model directly processes the input image while
outputting the class and location information of the target object without an explicit
candidate region generation step. To improve the training and detection efficiency, Yu-
Lin Tang et al. proposed a side-scan sonar shipwreck target detection method based on
migration learning to improve the YOLOv3 model [31], but there are still problems, such
as the high rate of missed alarms for small targets, and the detection speed cannot meet
the real-time requirements. Wang et al. [32] introduced an attention mechanism converter
and a convolutional block attention module based on the YOLOv5 model to improve the
detection of small-target objects in the side-scan sonar images. Although the above models
improve the detection accuracy and overall detection efficiency of small-scale targets, in the
actual marine environment, the size and distribution of objects are usually very complex.
How to simultaneously take into account the detection accuracy and detection efficiency of
multi-scale targets to improve the detection performance in complex marine situations is
the focus of this paper to solve the problem.

Based on the above analysis, an improved model based on YOLOv8 is proposed in
this paper. The model applies to the task of target detection in side-scan sonar images,
and during the training process, data preprocessing methods are used to optimize the
dataset so as to enhance the robustness of the network to be able to accurately and quickly
identify targets of different sizes in the complex marine environment. The main research
and innovations of this paper can be summarized as follows:

(1) Aiming at the characteristics of underwater images with severe noise, the data set is
preprocessed using the wavelet transform method to improve the generalization and
robustness of the model.

(2) The feature fusion structure of the original model is replaced with Bifpn, which can
capture feature information at different scales more efficiently and thus improve
detection accuracy.

(3) To enhance the model’s ability to focus on target features, the EMA module is used,
which is effective in obtaining clearer multi-scale features.

(4) Finally, we introduce the Shape_IoU loss function, which takes into account the
characteristics of the bounding box, such as shape and scale, to make the bounding
box regression more accurate, thus improving the accuracy of target detection.

The rest of this study is organized as follows: in Section 2, we focus on the operational
flow of underwater target detection based on AUV-carrying side-scan sonar and analyze
specific improvement strategies for the model. Section 3 focuses on the general analysis of
the dataset and training strategy, as well as the design of the experiments and discussion of
the results. Section 4 provides the final conclusions and directions for future work.

2. Materials and Methods

The operation flowchart of underwater target detection using AUV-carried side-scan
sonar is shown in Figure 1, which mainly includes sampling of side-scan sonar data,
preprocessing, and obtaining underwater target information using the BES-YOLO. This
paper mainly focuses on image preprocessing and BES-YOLO.
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Figure 1. Operational flowchart of AUV underwater target detection.

2.1. Preprocessing

A wavelet transform is a localized transform method for image processing based on
time, space, and frequency, which can decompose a signal or image into components of
different frequencies and different times. This decomposition method is very useful for
extracting local features of a signal or image. In image processing, the wavelet transform
can decompose an image into multiple sub-images of different scales and orientations to
extract the detailed information of the image. After the low-frequency and high-frequency
parts are processed differently, they are then reconstructed to get richer detail information
and achieve the purpose of image enhancement. The specific operation flow is shown in
Figure 2.
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In the pre-processing process of the side-scan sonar image, we perform the nearest
neighbor interpolation on the low-resolution image, and the image obtained from the
interpolation is transformed by discrete wavelet using a Haar wavelet, which enables the
original image to be completely transformed into its low-frequency coefficients without
any loss of information, i.e., the low-frequency portion contains all the information of the
original low-resolution image. Next, the original image is interpolated bicubically and then
decomposed by a Haar wavelet to extract the high-frequency coefficients in three directions.
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After completing the integration of the low-frequency components with the three super-
imposed high-frequency components, the high-resolution image is reconstructed using
wavelet inversion. This reconstruction process not only fully utilizes all the information
in the low-resolution image but also combines the relevant high-frequency information
to ensure that the high-frequency detail part is better represented in the reconstruction
process. In this way, the quality of the reconstructed image is improved, especially in
the high-frequency details, so that the whole image presents higher clarity and richer
details. As shown in Figure 3, the left side is the original image, and the right side is the
processed image.
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In the reconstruction process, the low-frequency part of the wavelet inverse transform
is no longer used directly in the original image but according to the characteristics of the
Haar wavelet, so that all the energy of the low-resolution image is gathered in the low-
frequency part, which not only corrects the mismatch between the high and low-frequency
coefficients of the wavelet inverse transform but also avoids the gray scale shift, so that the
reconstructed image is enhanced.

2.2. BES-YOLO

The YOLOv8 model structure consists of four parts: input, Backbone, Neck, and
output, which contain the Conv module, C2f module, SPPF (spatial pyramid pooling-fast)
module, etc. YOLOv8 innovatively introduces the C2f structure, which is an important
part of the learning of residual features, and is able to efficiently capture rich gradient
flow information. At the last layer of the model’s backbone network, the SPPF structure
is introduced, which captures information with sensory field sizes of 5, 9, and 13, respec-
tively, through a series of consecutive 5 × 5 convolutional kernel max-pooling operations.
Subsequently, these SPPF-processed feature layers are fused with the unprocessed feature
layers to synthesize feature information at different scales to improve the performance of
the model. Backbone mainly consists of 5 Conv, 4 C2f, and 1 SPPF structures to extract the
generic features of the target; Neck is located between Backbone and Head and contains
4 C2f, 2 Conv, and two Upsample, which aims to further enrich the diversity of features to
improve the robustness of the model; Head is the output end, which serves to complete the
output of the target detection results.

In this paper, we propose a BES-YOLO model that utilizes a bi-directional feature
pyramid network (Bifpn) in combination with the efficient multi-scale attention module
(EMA) and applies the Shape_IoU loss function to meet the challenge of multiscale target
detection. The network structure is shown in Figure 4. We first introduce EMA in the
backbone. The EMA mechanism can fuse contextual information from different scales,
capture cross-dimensional interactions, and establish dependencies between dimensions
so that the huge local receptive fields of neurons can efficiently obtain clearer multiscale
features, which helps the network reduce the influence of interfering factors in the image.
The introduction of Bifpn allows information to propagate bidirectionally between different
resolution levels for a better fusion of multi-scale information. This improves the detection
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performance of multi-scale objects and the contextual understanding of objects, which
helps reduce false or missed alarms. Finally, we introduce the Shape_IoU loss function
to be able to more accurately evaluate the performance of the target detection model and
optimize the target detection model. The Shape_IoU loss function can guide the model to
pay more attention to the shape and proportion of the bounding box during the adjustment
process, thus improving the overall performance of the model.
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2.2.1. Bifpn

To better fuse multiscale features in side-scan sonar images, the PANet in YOLOv8
is replaced with Bifpn. Compared to other structures, Bifpn can efficiently fuse features
without increasing the computational cost. The main idea behind Bifpn [33] is to construct a
feature pyramid by utilizing the information from both bottom-up and top-down directions
while using a repetitive weighting fusion method at each pyramid level. By utilizing
information from both directions, Bifpn can fuse different levels of features and enhance the
accuracy and generalization of the model, thus improving the target detection performance.
Compared to the PANet feature fusion network, Bifpn simplifies the network structure
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by removing unidirectional input nodes. Connecting the original input nodes and output
nodes of the same layer allows the feature graph of the layer to be better preserved and
utilized in the feature fusion process. This enhances the information transfer and fusion
ability of the same-layer feature graphs and improves target perception and recognition,
and by repeating the process, the network gradually fuses more layers of features, resulting
in a more comprehensive and semantically expressive feature representation rather than a
simple stacking or addition of feature graphs. Due to its complex connectivity patterns, an
accurate training strategy needs to be designed. By combining Bifpn into BiFPN_Concat2
modules, we set learnable parameters and learning weights for different branches and
apply the Concat operation to the two-branch and three-branch combinations of feature
maps, respectively. The structure of Bifpn is shown in Figure 5.
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YOLOv8’s replacement of Bifpn allows for better multi-scale information fusion. The
introduction of Bifpn allows information to propagate bi-directionally between different
resolution levels, resulting in a better fusion of multi-scale information. This helps the
model understand targets of different sizes more comprehensively and improves the
detection performance of multi-scale objects. It also improves the contextual understanding
of the objects and helps to reduce false or missed alarms.

2.2.2. EMA

The attention mechanism has been widely used in computer vision, and its basic prin-
ciple is to suppress useless feature information while reinforcing useful feature information
to enable the model to focus more adaptively on important regions in the image. The
traditional SE (squeeze-and-excitation) [34] attention mechanism mainly focuses on con-
structing interdependencies between channels, with less consideration for spatial features.
CBAM (convolutional block attention module) [35] improves the model performance by
effectively combining spatial attention and channel attention model performance, but it can
only effectively capture local information and is difficult to establish long-distance channel
dependencies.

The efficient multiscale attention (EMA) mechanism [36], as an innovative parallel
attention mechanism, effectively improves the processing speed and performance of the
model through its unique parallel structure. Compared with the traditional convolutional
neural network (CNN), EMA shows higher efficiency in processing large-scale data, and its
parallel convolutional feature makes the model training more rapid.

The core of the EMA mechanism lies in its ability to process features at different scales
simultaneously, which enhances the model’s ability to perceive information at different
scales and improves the accuracy of the model. During feature processing, EMA not only
encodes the inter-channel information for adjusting the importance of each channel, but
also finely preserves the details of the spatial structure within the channel, thus ensuring
the completeness and accuracy of the information. In addition, the EMA mechanism
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introduces a cross-space information aggregation strategy to optimize the interaction
between features. This enables the model to aggregate information from different spatial
locations more effectively, further enhancing the model’s ability to understand and process
complex feature relationships. Compared with CBAM and SE, EMA not only has higher
performance but is also more efficient in terms of the required parameters. Therefore, in
this paper, the EMA mechanism is added to the backbone network of the YOLOv8 baseline
model. The EMA structure is shown in Figure 6.
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2.2.3. Shape_IoU

Due to the significant differences in target scales and the existence of many small
targets in side-scan sonar images, current edge regression methods usually focus on con-
sidering the geometric relationship between the real frame (GT frame) and the predicted
frame and calculate the loss by taking into account factors such as the relative positions and
relative shapes of the frames. However, these methods ignore the influence of the frame’s
inherent properties, such as its own shape and scale, on the frame regression, resulting in
low detection accuracy when processing side-scan sonar images. To solve this problem, a
border regression method focusing on the shape and scale of the border itself [37], i.e., the
Shape-IoU (shape-intersection-using ratio) loss function, is introduced. The method first
analyzes the characteristics of border regression and concludes that the shape factor and
scale factor of the border itself will have an impact on the regression results. Shape-IoU can
calculate the loss by focusing on the border’s own shape and its own scale, so as to make
the regression of the border more accurate, and the Shape-IoU is shown in Figure 7.

IoU =

∣∣B ∩ Bgt
∣∣

|B ∪ Bgt|
(1)

ww =
2 ×

(
wgt)scale

(wgt)
scale + (hgt)

scale (2)

hh =
2 ×

(
hgt)scale

(wgt)
scale + (hgt)

scale (3)

distanceshape = hh ×
(

xc − xgt
c

)2
/c2 + ww ×

(
yc − ygt

c

)2
/c2 (4)

Ωshape = ∑
t=w,h

(
1 − e−ωt)θ , θ = 4 (5)


ωw = hh × |w−wgt|

max(w,wgt)

ωh = ww × |h−hgt|
max(h,hgt)

(6)

where scale is the scale factor, which is related to the scale of the detected target in the
dataset, wgt and hgt are the length and width of the GT frame, xC

gt and yC
gt are the

coordinates of the center point of the GT frame, w and h are the length and width of
the a priori frame (Anchor), xC and yC are the coordinates of the center point of the a priori
frame, and ww and hh are the weight coefficients of the horizontal and vertical directions,
respectively, whose values are related to the shape. Its corresponding regression loss of the
frame is as follows:

LShape−IoU = 1 − IoU + distanceshape + 0.5 × Ωshape (7)

where the IoU loss function, distanceshape distance loss function, and Ωshape shape loss
function. As shown in the equation.
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3. Results and Discussion
3.1. Experimental Environment and Datasets

The study was conducted on the Windows 11 operating system, utilizing the Pytorch
deep learning framework. The hardware used for the experiments included an Intel Core
i7-14650HX CPU, NVIDIA GeForce RTX 4060 Laptop GPU, and 64 GB of RAM. Additional
details on the hardware and software configurations used in the experiments are provided
in Table 1. To improve training efficiency while ensuring model training effectiveness,
the ratio of the training set to the validation set in the dataset was set to 8:2; no pre-
training weights were used in the training of the model. The optimizers commonly used
in the process of training the model are SGD, Adam, RMSProp, etc. To take into account
the convergence speed and stability of training. The SGD optimizer was used in the
experiments. The SGD optimizer is used in the training process, and before the start of
training, the number of rounds of warm-up training is 3, the learning rate is set to 0.01,
and the learning rate momentum is set to 0.937; the number of rounds of training is set to
200 rounds, and according to the configuration of the computer, the batch size is set to 16,
the training rate is set to 0.01, and the training rate is set to 0.937. The relevant parameters
in the training process are shown in Table 2.

Table 1. Experimental configuration.

Name Parameters

Operating system Windows11
CPU Intel Core i7-14650HX
GPU NVIDIA GeForce RTX 4060 Laptop

CUDA 11.7
Pytorch 1.13.1
Python 3.8
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Table 2. Training parameters.

Parameter Name Parameter Information

lr0 0.01
momentum 0.937
warm_up 3
batch_size 16

imgsz 640

The dataset used for experiments in this paper mainly consists of side-scan sonar
shipwreck images, airplane wreckage images, and human image data. The side-scan sonar
dataset consists of three types of side-scan sonar images, totaling 1584 images, obtained
by various hydrographic departments and domestic manufacturers using mainstream
domestic and foreign side-scan sonar instruments and equipment such as Klein3000, Ed-
geTech4200, Yellowfin, and SS900 series, which are measured in the regions of the Yellow
Bohai Sea, the East Sea, and the South China Sea in China, as well as collected on the
network. Some samples are shown in Figure 8.
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To better analyze the characteristics of the targets in the dataset, the distribution of
the location of the targets in the picture as well as the aspect ratio of the targets, such as
shipwrecks and airplanes, relative to the picture were counted, in which the depth of the
color represents the number of targets, and the specific statistics are shown in Figure 9.
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3.2. Evaluation Metrics

In this paper, the performance of the optimization model is evaluated by the follow-
ing coefficients: precision P (precision), recall R (recall), average precision AP (average
precision), and mean average precision mAP (mean AP).

Precision and Recall: In the classification task of predicting whether an image contains
a package or not, the four elements in Precision and Recall can be interpreted as follows: TP
(true positive): positive samples are correctly labeled as positive samples in the prediction
results of positive samples; TN (true negative): the negative sample is correctly labeled as
a negative sample in the prediction result of the negative sample; FP (false positive): the
positive sample is incorrectly labeled as a negative sample in the prediction result of the
positive sample; FN (false negative): the negative sample is incorrectly labeled as a positive
sample in the prediction result of the negative sample, calculated as.

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

Average precision: the geometric meaning of average precision AP is the area corre-
sponding to the PR curve as in Equation (9), where the integral can be approximated using
interpolation and summation.

AP =
∫ 1

0
p(r)dx (10)

Average precision mean: the mAP type used in this paper is: mAP@0.5 and mAP@0.5:0.95.
mAP@0.5 (average precision coefficient of the total category) characterizes the precision
and the average of all the images used to calculate each category when the IoU is set to 0.5;
and mAP@0.5:0.95 denotes the average precision coefficient of the total category when the
IoU is in the range of 0.5 to 0.95, which is calculated as follows:

mAP =
∑N

i−1 APi

N
(11)

3.3. Performance Evaluation

Figure 10 shows the confusion matrix for the improved model. The horizontal axis
represents the true values, and the vertical axis represents the predicted values, and it can
be seen that most of the predicted values correspond to the true values. Figure 11 shows a
comparison of the mAP@0.5 curves of the improved model and the baseline model, and it
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can be seen that the improved curves are higher than the baseline model. Based on the data
of these two figures, it is found that the improved model has better prediction performance.
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A PR curve is a curve with precision on the vertical axis and recall on the horizontal
axis. Usually, precision and recall are mutually constrained metrics. Therefore, plotting PR
curves allows one to explore the comprehensive performance of the model. The observation
curve can reflect the performance of the deep learning model. The PR curve plots in
Figure 12 illustrate the experimental results for YOLOv8 and BES-YOLO under the same
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conditions. The figures show the mAP@0.5 in each category as well as the overall mAP@0.5.
As can be seen from the graphs, the improved model increases the mAP from 87.1% to
92.4%, an improvement of 5.3%. It is worth noting that in the YOLOv8 assay, the mAP for
the “human” category, which has a small target size, was only 69.5%, whereas it reached
82.6% in BES-YOLO. This is a significant enhancement compared to the baseline model for
this particular category. The mAP of the other two categories also improved.
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Figure 13 shows the prediction results. The location of the prediction box for target
detection by the improved model is more accurately focused on the target itself, and the
confidence scores are all improved to some extent, while we can notice that in the third set
of images regarding the prediction of the airplane wreckage, the original model misjudges
the undersea reef in the background as an airplane, whereas this problem does not occur
in the improved model. The comparison clearly shows that the improved model achieves
more accurate object localization and some degree of confidence score improvement.
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To verify the effectiveness of the proposed model, this paper compares the model with
mainstream target detection models, including SSD, Faster-RCNN, YOLOv5s, YOLOv7,
and YOLOv8n. The experimental results are shown in the table for comparison. Table 3
shows the AP values of the different models for various target types as well as the mAP@0.5
values of the final model. it can be seen that although the detection performance of Faster-
RCNN may be slightly better, as a two-stage detection model, the number of parameters
increases more relative to the one-stage detection model, and the computation amount
increases significantly.YOLOv5s and YOLOv7 have relatively poorer detection results in
the case of small target sizes and dense distributions.YOLOv8 has relatively poor detection
results in the case of small targets of the class “human” type of small targets. The improved
YOLOv8 realizes an overall improvement in detection performance. It not only shows
significant improvement in detecting some challenging small targets but also improves the
detection of large targets. Based on the above findings, the proposed model in this paper
outperforms other models in accomplishing the detection task in the undersea multi-scale
target detection task.

Table 3. Comparison of different model.

Detection Network Human Boat Plane mAP@0.5

AP AP AP

Faster-RCNN 68.4 93.3 95.5 85.7
SSD 66.2 87.6 89.7 81.2

YOLOv5s 57.7 77.3 79.1 71.4
YOLOv7 58.1 75.2 77 70.1

YOLOv8n 69.5 94.8 97 87.1
BES-YOLO 82.6 95.9 98.5 92.4

3.4. Ablation Study

This section describes the whole process of the improvement experiment and evaluates
the impact of each improvement module on the overall performance.

According to the data in Table 4, the Neck part of YOLOv8n is reconstructed using the
Bifpn concept, and feature fusion is performed through Bifpn, which allows the information
to be propagated bi-directionally between different resolution levels and better fuses
multi-scale target information. The mAP@0.5 of the model is improved by 3.9%, and
mAP@0.5:0.95 is improved by 0.9%. At the same time, the EMA module is added to the
backbone of the baseline model to fuse contextual information at different scales, and
effective channel descriptions are learned without channel dimensionality reduction during
the convolution operation, enabling the model to produce better pixel-level attention
to high-level feature maps, resulting in an increase of 3.5% in mAP@0.5 and 1.1% in
mAP@0.5:0.95, respectively. Finally, we replace the loss function of the original baseline
model with Shape-IoU to further improve the detection accuracy of the model, which is
shown by the data to increase the mAP@0.5 by 2.7% and mAP@0.5:0.95 by 2.5%. Overall,
the BES-YOLO model combines the Bifpn, the EMA attention mechanism, and the Shape-
IoU loss function, which far exceeds the original YOLOv8 model in detection accuracy. On
the same dataset, the BES-YOLO model achieves a 5.3% increase in mAP@0.5 and a 4.4%
increase in mAP@0.5:0.95, indicating that the corrected model has significantly improved
the detection accuracy of multi-scale targets. For a comparison of the accuracy between the
original model and the improved model, please refer to Figure 11.
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Table 4. Comprehensive ablation experiments.

Bifpn EMA Shape_IoU mAP@0.5 mAP@0.5-0.95

87.1 63.3√
91 64.2√

90.6 64.4√
89.8 65.8√ √
91.5 64.5√ √
91.3 65.8√ √
91.6 66.1√ √ √
92.4 67.7

The following ablation experiments are performed on the attention mechanism and
the loss function, respectively.

3.4.1. Attention Mechanisms

The attention mechanism plays a crucial role in the target detection model, which
significantly improves the detection performance of the model. The addition of the attention
mechanism not only improves the model’s ability to extract effective features but also
improves the accuracy of the detection, reduces the risk of false and missed detections,
and also optimizes the computational resource allocation of the model to improve the
processing speed. Therefore, we chose two attention mechanisms to compare with the
EMA in this paper. The experimental results show that EMA improves the detection of
both small as well as significant targets and other multi-scale targets, with an increase of
about 3.5% in mAP@0.5 compared to the original network (Table 5).

Table 5. Demonstrates the comparison of different attention mechanisms.

Detection Network Human Boat Plane mAP@0.5

AP AP AP

YOLOv8 69.5 94.8 97 87.1
YOLOv8+SE 72.4 93.4 97.4 87.7

YOLOv8+CBAM 77.8 92.5 96.8 89.1
YOLOv8+EMA 79.6 94 98.1 90.6

3.4.2. Loss Function

Shape_IoU is used as a loss function in the BES-YOLO model, and to verify that this
loss function has a better enhancement effect on the model’s accuracy in detecting the target,
the same model after using different loss functions will be compared. The YOLOv8n-based
model is used for comparison experiments with 200 rounds of training. The experimental
results are shown in Table 6.

Table 6. Comparison of loss functions.

Detection Network Human Boat Plane mAP@0.5

AP AP AP

CIoU 69.5 94.8 97 87.1
GIoU 69.6 93.9 98.4 87.3
DIoU 72.7 95.4 95 88.7

Shape_IoU 76.7 94.6 98 89.8

As can be seen from Table 6, compared with other loss functions, Shape_IoU has the
greatest improvement in the detection effect of the model under different scale targets,
with mAP@0.5 of 89.8%, which is 2.7%, 2.5%, and 1.1% higher than the other three models,
respectively, and at the same time, there is an increase in the class of small-scale targets by
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7.2% compared with the AP of the original YOLOv8 that uses the CIoU loss function, which
indicates that the loss function Shape_IoU improves the detection accuracy of small targets
in complex marine environments by a large amount without causing a loss of detection
accuracy of medium and large targets.

4. Conclusions

The proposed multi-scale underwater target detection model BES-YOLO integrates
an EMA attention mechanism, incorporates Bifpn, and employs the Shape_IoU loss func-
tion, leading to a substantial enhancement in the model’s detection accuracy. Particularly
focused on overcoming the challenge of achieving high accuracy for multi-scale targets con-
currently, the algorithm exhibits remarkable improvements in target detection performance
across various scales, especially excelling in detecting small targets. By implementing two-
dimensional discrete wavelet decomposition and reconstruction for data augmentation, the
model’s robustness is significantly boosted, enabling it to deliver solid performance even
with limited resources. Experimental findings reveal that the enhanced YOLOv8 model
achieves a 92.4% mAP@0.5 in side-scan sonar image target detection, showcasing notewor-
thy enhancements in mAP@0.5:0.95 metrics by 5.3% and 4.4%, respectively. This notable
advancement underscores the algorithm’s efficacy in multi-scale underwater target detec-
tion, offering technical support for precise underwater target detection tasks in practical
scenarios like AUV platforms and is very beneficial to improving the accuracy of real-time
underwater target detection. Nonetheless, there exist several areas for further enhancement.
Firstly, improving the dataset quality is imperative, considering the current dataset suffers
from small and uneven sample sizes. Future efforts should focus on acquiring more videos
and images for comprehensive model training and testing. Addressing the imbalance in
the number of individual detection categories in the dataset by rebalancing sample sizes
is also crucial. Secondly, enhancing side-scan sonar images affected by low contrast, blur,
speckle noise, and grayscale distortion using image enhancement algorithms can refine the
model’s generalization capabilities. Lastly, optimizing the model’s processing to reduce size
and computational complexity is recommended. Employing model pruning techniques
to eliminate redundant network connections can enhance speed and efficiency to tailor
towards lightweight models suitable for embedded devices on experimental platforms and
future applications.
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