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Abstract: Underwater terrain-aided navigation (TAN) can obtain high-precision positioning inde-
pendently and autonomously under the conditions of a communication rejection space, which is an
important breakthrough for the autonomous and refined operation of deep-sea autonomous under-
water vehicles near the seabed. Although TAN originated in the aviation field, the particularity of the
underwater physical environment has led to the formation of a different theoretical and technical
system. In this article, the application background, operating principles, and most important technical
aspects of underwater TAN are introduced. Then, the relevant algorithms involved in the two main
modules (the terrain-aided positioning module and the iterative filtering estimation module) of
the underwater TAN are reviewed. Finally, other cutting-edge issues in the field of underwater
TAN are summarized. The purpose of this article is to provide researchers with a comprehensive
understanding of the current research status and possible future developments in the TAN field.
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1. Introduction

With the advancement of ocean exploration and development into deep-sea spaces,
underwater vehicles face increasing challenges in terms of communication-limited and
communication-denied operational environments [1,2]. This often results in the inability
of human intervention to provide timely and accurate information to guide their mission
progress. Therefore, underwater vehicles tasked with deep-sea operations must possess
autonomy and intelligent operational capabilities to meet the long-term and precision
requirements of future deep-sea operations. High-precision navigation technology serves
as the foundation for the safe navigation and autonomous intelligent operation of under-
water vehicles, and its theoretical and technical levels are directly related to the level of
underwater vehicle intelligence.

Owing to the inability of satellite signals to penetrate seawater and reach the deep
sea, the scope of acoustic navigation systems for underwater vehicles is limited. Inertial
navigation error accumulates infinitely over time. Traditional navigation methods can no
longer support underwater vehicles in performing long-term and fine operation tasks in
deep-sea spaces [3,4]. Therefore, the research and development of high-precision, long-term
autonomous navigation technology that is adaptable to deep-sea environments has become
an urgent need in deep-sea exploration and development.

Deep-sea terrain-aided navigation (TAN) utilizes underwater terrain features as posi-
tioning references. It achieves the real-time positioning of underwater vehicles in a priori
terrain maps by actively detecting and tracking characteristic terrains with positioning
errors bounded in the time and spatial domains [5]. Therefore, the TAN is a significant
breakthrough in achieving the long-term, high-precision positioning of underwater ve-
hicles in the deep sea. As the demand for deep-sea and polar seabed exploration and
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development increases globally, TAN technology has garnered widespread attention in
the field of deep-sea exploration and development, including such applications as abyssal
lander guidance and control [3,6], the spatiotemporal modeling of oceanic dynamic pro-
cesses [7,8], polar exploration [9,10], in situ observation and sampling of the seabed [11],
deep-sea synchronous positioning, map generation [12], and underwater archaeological
surveying [13–15]. The application of TAN in the field of ocean exploration is shown in
Table 1.

Table 1. Application of TAN in the field of ocean exploration.

Task Requirements Description References

Unknown Seafloor Localization and
Map Building

Localization and global terrain mapping by underwater
robots in unknown seafloor environments [16–20]

Global Positioning System (GPS)
Interference/Deception Signal Recognition

Recognition and localization of underwater robots/surface
vessels in communication-denied environments or when

GPS signals are interfered with or deceived
[5,21–23]

In Situ Observation of Marine
Ecological Niches

Detection and mapping of biological communities,
ecological niche information, and biotic environmental

information in marine spaces
[24,25]

Spatiotemporal Synchronization Modeling of
Oceanic Dynamic Processes

Detection and mapping of the spatial distribution of
biological communities, ecological niche information, and
biotic environmental information in marine spaces, along

with their temporal changes

[8,24,26]

Crossing the Arctic Ice Cap

Deep-sea ultralong-distance underwater navigation;
crossing the Arctic pole, full-length underwater navigation

beneath the Arctic ice cap; navigation in the sea area
beneath the ice cap

[9,10,27–33]

Deployment and Recovery of Deep-Sea
Seafloor Sensors/Re-entry into Deep Sea

for Mapping

Long-term deployment of observation sensors on the
deep-sea seafloor and subsequent retrieval of acquired data;
multiple repeated entries into a specific location in the deep

sea for mapping purposes

[34]

Deep-Sea Hovering Localization Observation
Accurate hovering localization during the in situ

observation process of deep-sea near-bottom biological
communities by remotely operated vehicles (ROVs)

[11]

Deep-Sea and Abyssal Exploration and
Localization

Selection of the Mariana Trench and deep-sea seafloor
landing points; localization of deep-sea seafloor equipment

deployment and recovery
[6]

Autonomous Underwater Vehicle (AUV)
Waypoint Return and Recovery

Precise localization and navigation of AUVs during the
process of returning to designated recovery points [35]

Underwater Archaeological
Surveying/Robotic Hovering Localization

Utilizing underwater robots equipped with stereo cameras
or high-frequency sonar for underwater archaeological site

mapping and guiding the underwater robots to perform
such tasks as waypoint navigation, point sampling, and

multiple re-entries

[13–15,36–38]

2. Introduction to Underwater TAN

Underwater TAN, gravity-field-matching navigation [39], and geomagnetic-field-
matching navigation [40] are all components of geophysical-information-matching navi-
gation. They were initially used for spacecraft navigation in communication-constrained
and -denied spaces. One of the most famous applications is the Terrain Contour Matching
(TERCOM) system, which was installed on U.S. prisoner-of-war cruise missiles. TAN is also
of great importance in the aerospace field [41,42], such as in the landing process of Mars
probes [43–45]. Deep-sea spaces are typical communication-constrained environments,
and high-precision navigation has always been a technological bottleneck that must be
overcome for the long-duration, long-range, and fine-grained operations of underwater
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vehicles. In the 1980s, the Norwegian Defence Research Establishment (FFI, Forsvarets
forskningsinstitut) introduced TAN technology into the field of underwater navigation.
It successfully developed the underwater TAN system “TerrNav” and the experimental
platform “TerrLab” [46,47]. During the past four decades, the development of underwater
TAN technology has led to the formation of a relatively complete theoretical and technical
system (Figure 1). The theoretical and technical system of underwater TAN mainly includes
three parts: terrain measurement and restructuring [48], TAP [48,49], and the path planning
of underwater TAN [50]. Among them, terrain measurement and reconstruction include
measuring and reconstructing the global a priori DEM and the real-time measured terrain
map, on which the relevant research is already very comprehensive. TAN/TAP and TAN
path planning are the current research hotspots of TAN. TAP research mainly involves
single-point TAP estimation [49], continuous recursive positioning estimation [51,52], and
positioning in terrain-unknown environments [53]. TAN path planning mainly involves
Terrain Adaptability Analysis [54], path search, and optimization methods [55].
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3. Principle of Underwater TAN
3.1. Composition of Two TAN Systems

The underwater TAN system mainly consists of three components: the main naviga-
tion system, the terrain-aided positioning (TAP) module (including the terrain measurement
module), and the localization information fusion module. The main navigation system
provides the basic position reference information for the underwater TAN system. The
primary navigation localization module is generally based on the dead reckoning (DR) or
inertial navigation systems (INSs), in which the navigation positions have recursive rela-
tionships and strong correlations. However, the positioning errors of the main navigation
system accumulate over time without bounds. The TAP module is used to calculate the
position probability distribution of the real-time measured map (RTM) matched to the a
priori terrain map in the spatial domain. Because the RTM corresponds to the autonomous
underwater vehicle (AUV) position, the position probability distribution of the RTM can
also describe the positioning probability distribution of the AUV in the a priori digital
elevation model (DEM). The TAP module includes the terrain measurement module, which
is primarily used to obtain real-time terrain information beneath the AUV. Various sensors
can be used for this purpose, such as single-beam echo sounders [46,56,57], multibeam
echo sounders [3,4], the Doppler velocity log (DVL) [35,58], and structured light [59–61].
The TAN filter estimation module serves as the data fusion center for the entire system. It is
responsible for receiving position information from both the main navigation module and
the TAP module and then obtaining new positioning information through fusion estimation
and iterative computation. The main modules and information flow of the TAN system are
shown in Figure 2.
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3.2. Mathematical Model of the TAN System

The operation of an underwater TAN system can be described using a set of state
transition equations. However, the specific forms of the state transition equations vary
depending on the structure of the TAN system. The main structural modes of the TAN
system include tightly and loosely coupled filtering modes [35]. The loosely coupled
filtering mode, as shown in Figure 3, is the most commonly used. In this structure, the
main navigation system outputs the positioning information only to the TAN system. The
filter receives the positioning information from the main navigation system and the TAP
information, performs fusion estimation for positioning integration, and outputs the fused
positioning information. The main navigation system no longer provides independent
positioning results. The state transition equations for this structure are as follows. Equation
(1) describes the state transition of the main navigation system, and the second equation
represents the state observation equation based on terrain matching.{

xt = xt−1 + ut−1 + vt−1
yt = h(xt) + et

, t = 1, 2, . . . (1)
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Here, xt−1 represents the positioning output of the TAN system at time t, ut−1 repre-
sents the input of the TAN system at time t, xt represents the positioning output of the main
navigation system at time t after receiving the input ut−1, vt−1 represents the system input
error, yt represents the sequence of real-time sonar measurements of the terrain height
obtained at time t, h(xt) represents the sequence of the interpolated terrain height at the
positioning point xt, and et represents the terrain measurement error.
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Here, xt−1 represents the positioning output of the TAN system at time t, ut−1 repre-
sents the input of the TAN system at time t, xt represents the positioning output of the main
navigation system at time t after receiving the input ut−1, vt−1 represents the system input
error, yt represents the sequence of real-time sonar measurements of the terrain height
obtained at time t, h(xt) represents the sequence of the interpolated terrain height at the
positioning point xt, and et represents the terrain measurement error.

Another structural mode of the TAN system is the tightly coupled mode, as shown
in Figure 4. In this structure, the main navigation system outputs attitude information,
velocity information, and other parameters to the TAN system. The TAN filter utilizes ve-
locity information, attitude information, and terrain measurement information to perform
positioning estimation. Furthermore, the main navigation system independently performs
positioning estimation and outputs the positioning information separately, without interfer-
ing with the TAN positioning information. The state transition equations for this structure
are shown in Equation (2), where the first equation describes the state transition of the
main navigation system, and the second equation represents the state observation equation
based on terrain matching.

xk = xk−1 +



[
1 0 0
0 1 0

]
R
(
q̂k−1

)
(vk−1 + rv,k−1)∆t

rz,k−1
∆∅k−1 + r∅,k−1
∆θk−1 + r∅,k−1[

sin∅̂k−1
cosθk−1

cos∅̂k−1
cosθk−1

]{ωy,k−1 − ω̂b
y,k−1

ωz,k−1 − ω̂b
z,k−1

}
∆t

rωb ,k−1


pt

k = R(q̂k)ark + pk

(2)

where xk and xk−1 represent the system state vectors obtained at times k and k − 1, re-

spectively. In addition, xk =
[
pk, qk, ωb

y,k, ωb
z,k

]T
, where pk = [xN , xE, δZ] represents the

coordinates of the AUV main navigation system, and qk = [φ, θ, ψ] represents the AUV
attitude angles. Moreover, pt

k =
[
xt

N , xt
E, zt] represents the sequence of the coordinates of

the intersection points where the terrain is measured, xN represents the north coordinate
in the map coordinate system, xE represents the east coordinate in the map coordinate
system, δZ represents the elevation difference between the measured terrain and the prior
terrain map, ωb

y,k and ωb
z,k denote the angular velocities of the AUV around the y-axis and
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z-axis, respectively, R
(
q̂k−1

)
represents the rotation matrix formed by the AUV attitude

matrix q̂k−1 at time k − 1, vk−1 represents the velocity matrix in the body coordinate system,
∆∅k−1 and ∆θk−1 represent the changes in the roll and pitch angles measured by the atti-
tude sensors, respectively, ωy,k−1 and ωz,k−1 represent the angular velocities, a represents
the unit vector in the sonar beam direction, rk represents the distance measured by the
beam at time k, and r·,k−1 represents the measurement error of the sensor.
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The tightly coupled navigation filtering mode is generally used for TAN estimation
with low-cost sensor systems. For AUVs equipped with high-precision main navigation
systems, the loosely coupled navigation filtering mode is typically employed.

3.3. TAP in Underwater TAN Systems

Underwater TAN systems utilize terrain feature matching and tracking for position
estimation. Prior to providing accurate positioning information, the navigation coordinate
system must be aligned with the spatial coordinate system of the terrain map. Subsequently,
the TAN system performs continuous position estimation and outputs stable results by
matching and tracking the underwater terrain features. In a previous study [5], the op-
eration of underwater TAN systems was divided into two stages: initial positioning and
tracking navigation. The primary objective of the initial positioning stage is to correct the
accumulated time error of the main navigation system using high-precision TAP methods.
This ensures the rapid convergence and stable output of the system within a short period
and distance. However, the tracking positioning stage involves fusing the positioning infor-
mation from the main navigation system with the TAP information, enabling continuous
recursive estimation of the position and the provision of reliable positioning information.
With the increasing diving depth and range of AUVs, larger initial positioning deviations
can lead to challenges, such as slow convergence or even the divergence of the filtering
process during the initial stage [3,4,48]. Therefore, the issue of convergence during the
initial stage of underwater TAN systems has attracted significant attention. Comparative
studies [3,4] have investigated the effects of different initial positioning and filtering initial-
ization methods on navigation accuracy. These studies have shown that convergence errors
and speeds during the initial stage affect the final positioning accuracy. Moreover, filter
convergence serves as the foundation for reliable system operation and the generation of
valid positioning information. Thus, considering system reliability, the operational stages of
underwater TAN systems should encompass the initial positioning and filter initialization,
the navigation filter convergence stage, and the tracking navigation filter stage, as depicted
in Figure 5. The Primary algorithms utilized in the three operational phases of TAN is
shown in Table 2.
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Table 2. Primary algorithms utilized in the three operational phases of a TAN.

System Operation Stages Primary Algorithms References

Initial Positioning (Matching
Positioning Algorithm) and

Filter Initialization Stage

TERCOM [5]

ICP/ICCP [62–64]

Confidence Interval Constraint [4]

MTFP [48]

Consistency Check of Positioning
Deviation [65]

Initial Alignment Stage Fast Converging Filtering [3,48]

Tracking Filtering Stage

PMF Filtering and Its Improved
Algorithms [66–71]

Nonlinear/Linear Kalman Filtering [40,72,73]

PF Filtering and Its Improved
Algorithms [4,51,52,65,74–84]

4. Main Algorithms Involved in TAP

Underwater TAN systems exhibit strong nonlinearity and non-Gaussian input error
characteristics. The state equation of the system contains insolvable terms, making it chal-
lenging to apply existing state estimation methods to underwater TAN systems. Over the
years, researchers have attempted to develop high-precision and reliable technologies for
underwater TAN systems, focusing on such areas as initial positioning and system tracking
filtering. The research achievements can be categorized into underwater TAP techniques,
underwater TAN filtering techniques, and other cutting-edge issues in underwater TAN
systems. In this section, the development of underwater TAN technologies is reviewed and
explored based on these aspects.

4.1. TAP Estimation

Underwater TAP estimation involves approximating the probability distribution of an
AUV at a search point based on the likelihood estimation of the RTM terrain and the prior
terrain. This estimation can be considered the position points of the AUV and their probabil-
ity distribution in the terrain space, serving as a primary source of positioning information
for underwater TAN systems. During the initial stage of system operation, TAP estimation
can be used to obtain the initial position points and probability distribution estimation
of the system. In the tracking filtering stage, the filter combines information from TAP
with the main navigation system to output TAN positioning information. Commonly used
underwater TAP methods include point-cloud-based- and image-based matching methods.

4.1.1. Terrain Point-Cloud-Based Matching

TERCOM is the most commonly used batch-processing TAP method based on terrain
elevation (Figure 6). This method quantifies the likelihood measure using the elevation
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difference between two terrain profiles and normalizes it into a probability distribution
function using an exponential function [5].

Lij =
1

det(Σ)2πN exp
[
−1

2

(
Z − H

(
Xs

ij

))T
Σ−1

(
Z − H

(
Xs

ij

))]
(3)

where Z represents the elevation sequence of the measured terrain, Σ represents the error
sequence of the measured terrain, H() represents the interpolation function for the terrain
surface elevation, which can provide the elevation information at a given point based on
its horizontal coordinates, and Xs

ij represents the coordinates of the search point within the
search interval, where ij represents its index sequence number.
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The TERCOM algorithm can calculate the likelihood Lij of each search point corre-
sponding to the prior terrain map using RTM data [49]. By computing the maximum value
of Equation (4), the position of the RTM in the DEM can be estimated.

Lij =
1

σ
√

2π
exp

−∑m=M,N=n
m=1,n=1

(
zmn − h

(
Xs

ij

)
mn

)2

2(MN − 1)σ2

 (4)

Here, m and n represent the row and column indices of the measurement footprint
sequence of the RTM, respectively, M and N represent the numbers of rows and columns in
the measurement footprint sequence of the RTM, respectively, zmn represents the measured
elevation of the footprint with index (m, n), h( ) represents the terrain surface function,
which describes the relationship between the horizontal coordinates and the elevation at
each grid point on the terrain surface, Xs

ij represents the horizontal coordinates correspond-
ing to the index point (i, j) within the search interval Xs, and σ represents the measurement
error of the terrain elevation.

The mapping relationship between the RTM measurement points and the AUV po-
sition is unique. As shown in Figure 7, the RTM measurement point ci obtained in the
bathymetric sonar coordinate system O − x

′
y
′
z
′

can be transformed to the vehicle coordi-
nate system G − xyz through geometric relationships and then transformed to the AUV
navigation coordinate system E − ξζη through the navigation system, which is represented
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by Equation (5). Therefore, Lij describes the probability distribution estimation of the AUV
positioning points in the prior terrain map space.

Xsonar
mn = Xn

t + Rn
b

(
X0 + Rb

s Xb
mn

)
(5)

where Xsonar
mn represents the coordinate sequence of the RTM measurement footprints

in the navigation coordinate system, Xb
mn represents the coordinate vector of the RTM

measurement footprints in the sonar coordinate system, Rb
s represents the rotation matrix

for transforming the RTM footprints from the sonar coordinate system to the vehicle
coordinate system, X0 represents the coordinate vector of the sonar installation position in
the vehicle coordinate system, Rn

b represents the attitude rotation matrix for transforming
from the vehicle coordinate system to the navigation coordinate system, and Xn

t represents
the navigation output positioning at the measurement time.
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In one study [5], the characteristics of the TERCOM algorithm were investigated
extensively. It was found that the likelihood function obtained from terrain-matching posi-
tioning using the TERCOM algorithm exhibits asymptotic Gaussian distribution properties.
However, the TERCOM algorithm has been found to have issues with poor stability and
reliability, which has led many researchers to investigate improvements to the algorithm. Li
et al. addressed these issues by introducing geometric features as descriptors to construct a
multivariate feature vector for terrain representation. This approach increased the amount
of terrain-matching information, leading to improved positioning accuracy and stabil-
ity [49]. In addition to the TERCOM algorithm, the iterative closest point (ICP) algorithm
and its variants, such as the improved convergence-constraint point (ICCP) algorithm, are
commonly used for TAP based on point cloud data [62,63,85]. Because terrain elevation
data can be treated as point cloud data, many researchers have applied the ICP algorithm
to estimate the TAP. The principle of the ICP algorithm is illustrated in Equation (6), where
the point set X = {x1, . . . , xN} represents the reference point set, and P = {p1, . . . , pN}
represents the point set to be aligned. Here, N represents the number of elements in the
point set [86]. Point set P can be aligned with point set X through rotation matrix R and
translation matrix T. 

xi = Rpi + T + ei

J =
i=N
∑

i=1
∥xi − (Rpi + T)∥2 (6)
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where R represents the rotation matrix, T represents the translation matrix, ei represents
the error vector, and J represents the sum of the squared distance residuals between point
sets P and X after rotation and translation. The optimal rotation and translation matrices
are obtained when J is minimized.

The ICP algorithm is widely used in outdoor mobile robot navigation for point cloud
data matching and localization based on point cloud information [87–89]. Therefore, the
ICP algorithm and its improved versions have been widely applied in underwater TAP.
A previously proposed ICCP algorithm [64] provides an improved method for matching
and positioning accuracy in scenarios with significant initial errors. This method models
the terrain distribution feature as a two-dimensional Gaussian distribution to reduce the
interference of the heading error, and a terrain feature descriptor with rotation invariance
is established. Other researchers [90,91] addressed the problem of filter divergence that
inertial navigation systems face when encountering large track deviations. They improved
the trajectory accuracy in ICCP using the difference between the matching result and the
output of the inertial navigation system as the measurement value of the Kalman filter (KF).
In another work [62], a multipath parallel ICCP algorithm was proposed, which considers
the error differences in the measurement frames of the multibeam sonar, thus enhancing
the stability of the ICCP algorithm. However, the ICP/ICCP algorithm is sensitive to initial
deviations, may converge slowly, and is prone to local minima when dealing with large
initial deviations, leading to mismatches.

TERCOM localization remains the most commonly used matching and localization
method for terrain-matching navigation systems. The TERCOM algorithm is less sensitive
than the ICP and ICCP methods to errors and exhibits higher robustness. In addition, TER-
COM describes the similarity between terrains using Euclidean distance and an exponential
function, and the likelihood function obtained by TERCOM exhibits asymptotic Gaussian
distribution characteristics [5]. These advantages provide significant convenience for the
fusion of terrain-matching localization data and primary navigation localization data.

4.1.2. Image Matching Positioning

In addition to such methods as TERCOM, ICP, and ICCP, which utilize point cloud
information for matching and positioning, underwater terrain matching and positioning
algorithms based on image-matching techniques have been studied, including side-scan
sonar images and optical camera images. In previous studies [92,93], matching and posi-
tioning algorithms based on side-scan images were investigated. They utilized log-polar
transformation to solve the problem of estimating the rotation angle between real-time
maps and reference images, thereby improving the matching accuracy and stability when
there is an angular deviation in the measurement images.

In another work [94], a detailed comparison was made between the speeded-up robust
features (SURF), oriented FAST and rotated BRIEF (ORB), binary robust invariant scalable
keypoints (BRISK), and SURF–Harris algorithms, which were originally developed for
optical image analysis. It was concluded that the further development of current feature
description methodologies might be required for underwater acoustic image analysis. Other
researchers [95] used an image attribute transfer algorithm and an advanced local feature
descriptor to solve the problem of underwater acousto-optic image matching. The technique
made it possible to preprocess multimodal images to obtain accurate matching results.

In one study [96], an underwater acoustic image simulation system was designed
specifically for underwater acoustic image navigation. Building upon this system, research
has been conducted on navigation systems based on forward-looking sonar images [97].
The system utilizes deep-learning methods for image processing and registration, as well
as for the estimation of the attitude of the AUV [98], demonstrating the advantages of
deep-learning methods in underwater acoustic image matching, positioning, and navi-
gation. In other research [99], a novel 3D preprocessing filter, additions to line and line
segment detection methods, a system description using concepts from the theory of mul-
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tilevel hierarchical systems, and extensive evaluation tests using synthetic and real data
were proposed.

Although the statistical moment information of the images enhances the noise resis-
tance of the system to a certain extent, it reduces the dimensionality of the terrain elevation
information, thereby weakening the amount of matching information. In the context of
matching and positioning based on optical images, researchers [100–102] have investigated
techniques for the simultaneous matching, stitching, and localization of images. These
techniques make it possible to expand and map terrains in unknown underwater environ-
ments. The research conducted in these studies is important for achieving fine-grained
measurements of unknown underwater topography and the high-precision positioning of
AUVs. These technologies are commonly employed for precise measurements in such fields
as underwater archaeology, underwater geological surveys, and underwater ecosystem
assessments, as well as for the high-precision positioning of underwater robots [103–105].
In addition, image feature-based terrain matching and positioning techniques are widely
applied in planetary rover landing positioning and navigation [106–109].

4.2. Iterative Filtering Methods for TAN

The filter serves as the data fusion center in TAN systems, where it combines informa-
tion from the TAP and primary navigation positioning at the time step of the navigation
solution. The TAP error is bounded in the spatial and temporal domains, whereas the
propagated navigation error accumulates indefinitely. However, there is a strong correla-
tion between the navigation points. Underwater TAN filtering algorithms integrate the
boundedness of the TAP error and the strong correlation of the propagated navigation
positioning, thereby harnessing the advantages of both positioning information types and
obtaining more stable and accurate positioning information. Filtering methods for TAN
systems have become an important research direction for underwater TAN technology.
With the development of underwater mapping technology, computer hardware technology,
and nonlinear estimation theory, filtering algorithms for TAN systems have gone through
three major stages: Kalman, nonparametric, and robust filtering. Particle filtering has
become the primary filtering method for underwater terrain-matching navigation.

4.2.1. Kalman Filter and Its Improvements

The initial iterative filtering estimation method is Kalman filtering [110]. However, the
KF is a linearized filter that requires linearization of the terrain during the filtering process—
specifically, linearizing the H( ) term in the state observation equation of the underwater
TAN system and estimating the terrain slope [111]. Owing to the strong nonlinearity of the
terrain, significant linearization errors are introduced, leading to filter divergence. Some
researchers [73,112] have studied a TAN method based on the innovation transformation
Kalman filtering technique, which mitigated the adverse effects of linearization errors to
some extent. Comparative experiments with a particle filter (PF) and point mass filter
showed that the PMF achieved the highest positioning accuracy when the measurement
information was limited. As the measurement information increased, the PF approached
the accuracy of the PMF, but both outperformed the KF and unscented KF in terms of
positioning accuracy. Owing to the strong nonlinearity of the terrain and the non-Gaussian
nature of the measurement errors, the Kalman filtering algorithm struggles to adapt to
TAN systems with strong nonlinearity and non-Gaussian characteristics. PF and PMF
methods, based on posterior Bayesian estimation theory and their direct numerical solution
techniques, offer higher robustness and adaptability, making them particularly suitable
for addressing the positioning estimation problem in TAN systems. Consequently, they
have gradually replaced Kalman filtering methods as the most commonly used methods
for state estimation in TAN systems.
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4.2.2. Posterior Bayesian Estimation and Its Numerical Solution

The posterior Bayesian estimation equation for the underwater TAN states, as shown
in Equation (7), consists of the state transition equation of the primary navigation system
as the first term and the posterior Bayesian estimation equation of the system state as the
second term. Solving the equation p(xt|Yt) requires an evaluation of the integral term∫

R2 p(yt|xt)p(xt|Yt−1)dxt. However, p(yt|xt) does not have an analytical form, mainly
because the mapping relationship between the AUV positioning and the terrain surface
cannot be represented analytically. Although under the assumption of linearization and
Gaussian error distribution, the Kalman filtering equations can be derived through deriva-
tion [5], the instability of the system caused by terrain linearization errors and non-Gaussian
errors has become an insurmountable bottleneck. PF and PMF methods based on numerical
solution techniques have been proposed to solve the state estimation problem of nonlinear
dynamic systems [68,69,74,113]. The PMF and PF approximate the probability distribution
function p(yt|xt) of the TAN positioning using finite grids and particle sets, making pos-
sible a direct numerical solution of the posterior Bayesian estimation of the TAN system
positioning probability distribution in Equation (2) and significantly reducing the influence
of terrain nonlinearity. Numerical solution methods based on Bayesian theory, such as PMF
and PF, significantly improve filtering accuracy and stability [114], thereby advancing the
development and application of underwater TAN technology.{

p(xt|Yt−1) =
∫

R2 p(xt − ut−1 − xt−1)p(xt−1|Yt−1)dxt−1
p(xt|Yt) = α−1

t p(yt|xt)p(xt|Yt−1)
(7)

where p(xt|Yt−1) represents the predicted positioning probability distribution of the under-
water TAN system at time t, p(xt|Yt) represents the posterior corrected probability of TAP
in the underwater system, αt =

∫
R2 p(yt|xt)p(xt|Yt−1)dxt is the normalization parameter

related to the terrain measurement error, p(xt − ut−1 − xt−1) represents the probability
distribution of the propagated navigation system estimated position (where ut−1 is the
system state input information from time t − 1 to t), p(xt−1|Yt−1) is the system state at time
t − 1,

∫
R2 dxt−1 represents the integration range for solving the probability distribution of

underwater TAN positioning, and p(yt|xt) represents the conditional distribution probabil-
ity of observation value yt obtained by xt at time t. Equations (7) and (8) make it possible
to estimate the TAP points.

xtap
t =

∫
R2

xt p(xt|Yt)dxt (8)

Similarly, the estimation of the underwater TAP error can be obtained using Equation (9):

Ctap
t =

∫
R2

(
xt − xtap

t

)(
xt − xtap

t

)T
p(xt|Yt)dxt (9)

(1) Particle Filter

The FFI was one of the earliest research institutions to apply TAN technology to under-
water navigation [46,47,115,116]. In the 1980s, FFI researchers introduced nonparametric
filtering methods for state iteration estimation in TAN systems. The FFI also developed the
TERLAB simulation platform specifically for the research on and application of underwater
TAN technology [116]. Subsequently, an increasing number of researchers have studied un-
derwater TAN technology based on PF methods. PFs approximate probability distributions
with randomly distributed particles that convert an integral operation into a summation
operation (Figure 8). Therefore, it can be very convenient to solve non-Gaussian problems
and integral operations without analytic representations.

The operation of a PF typically involves three steps: prediction, updating, and re-
sampling. During the prediction step, the particle set is moved to the next navigation
point based on the primary navigation information. In the updating step, the particle
weights are adjusted based on the probability distribution function of TAP. The resampling
step involves adjusting the distribution and weights of particles based on their weights
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to prevent particle degeneration. Strong nonlinearity and non-Gaussian input errors in
TAN systems often lead to significant discrepancies between the true and proposed particle
distributions. Furthermore, the problem of pseudopeaks in the probability distribution
functions caused by terrain self-similarity further affects the stability and accuracy of the
PF. Several studies [75,117,118] have addressed the issues of non-Gaussian and multi-
modal distributions in particle filtering owing to terrain self-similarity by proposing PF
algorithms based on regularized representations and clustering analysis. To address the
problem of intractable state prediction in TAN systems caused by observation equations, a
Gaussian process PF method based on historical observation data and Gaussian models
was proposed [119] for terrain prediction in underwater vehicle motion. A data-driven
particle-filtering framework [75] was also proposed to avoid the explicit modeling of system
disturbances. Another approach [76] addressed the non-Gaussian nature of the particle
distribution by approximating the Bayesian function using multiple Gaussian components.
To mitigate the computational burden caused by an increasing number of particles, an edge
PF based on a more computationally efficient marginalized particle filter (MPF) was applied
to state estimation in TAN systems [70]. A combined MPF that integrates a KF and a PF
was proposed [81] to reduce the computational load of the PF process. An improved PF
method based on the Huber function for modifying the particle weights was presented [77].
Furthermore, to address the problem of an explosive increase in particle quantity during the
initial stage, an adaptive PF TAN filtering method utilizing the Kullback–Leibler distance
measure was introduced [78]. A three-dimensional marginalized PF was proposed to en-
hance the filtering robustness and reduce the computational load in underwater TAN under
uncertain conditions of tidal depth deviation [66,77]. An initialization sampling method for
a PF based on constraints from TAP intervals was proposed [5] to reduce the particle spread
range and quantity and improve the computational efficiency and convergence speed. A
PF-based TAN method [120] that incorporates a nonrigid terrain transformation model
that can correct nonrigid terrain transformation errors caused by the absence of a sound
velocity profile and eliminate its impact on TAN was proposed. Because of its advantages in
handling nonlinear and non-Gaussian noise in dynamic system state estimation problems,
the PF algorithm has become the primary estimation method in TAN.
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Similar to the PF algorithm, the MPF is a numerical method for solving posterior
Bayesian estimation. It employs a finite grid approximation of the probability distribution
function and is well suited for nonlinear and non-Gaussian state estimation in dynamic
systems. In recent years, it has been widely applied to TAN. The MPF algorithm was
initially proposed by Bucy and first applied to underwater TAN by Bergman [114,121]. As
shown in Figure 9, the MPF algorithm divides the integral continuous probability function
surface into volumes by using rectangular prisms with a base length of δ and a height equal
to the probability value at that point. This transforms the integration of the continuous
probability function surface into a volume summation problem. A comparative study of
the MPF and PF methods in TAN state estimation was conducted [51,122], demonstrating
that the MPF has a higher computational accuracy, but the computational complexity of the
algorithm increases rapidly with the dimensionality of the state. However, although the
PF has a lower accuracy than the MPF, it exhibits a higher computational efficiency when
dealing with high-dimensional problems.
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Because a standard grid is used in the implementation of the PMF algorithm, the
grid quality can affect the estimation accuracy. The adaptive grid PMF algorithm was
proposed [123,124] to achieve higher accuracy with a lower computational load. In another
study [66], the application performance of the PMF algorithm under complex conditions
was investigated, and it was found that the algorithm is significantly affected by mea-
surement depth errors and initial position deviations. In other work [66], a marginalized
PMF in three dimensions was developed to concurrently estimate and compensate for
tidal depth bias. In this method, the tidal depth bias is extended as a state variable and
estimated using a KF, whereas the horizontal position state is estimated using the original
two-dimensional point mass filter. Using multibeam sonar, simulation experiments in a
real DEM demonstrated that the method can accurately estimate the tidal depth bias and
obtain a robust navigation solution in suitable terrain.

Although the PF- and PF-based filters have significant advantages in the state esti-
mation of TAN systems, strong nonlinearity and non-Gaussian input errors still lead to
filter instability. Currently, the techniques for measuring and reconstructing underwa-
ter terrain maps primarily include gravity field inversion, acoustic measurement, and
optical measurement.
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5. Other Relevant Technological Advancements

The practical application of underwater TAN technology requires high-precision prior
terrain maps, which makes the practical application of underwater TAN difficult. However,
the greatest bottleneck affecting the practical application of underwater TAN technology is
the insufficient reliability of underwater TAN systems. The main application prospects of
the underwater TAN technology lie in long-term, long-distance detection and development
in deep-sea and remote areas. Because of the high investment, difficulty, and risk associated
with deep-sea exploration and development, the autonomous equipment used for deep-
sea exploration must possess high reliability to ensure the safety and smoothness of the
detection equipment and processes. This requires underwater navigation systems with
sufficiently high reliability. However, underwater terrain-aided navigation systems face
several challenges and unresolved difficulties.

5.1. Prior Digital Elevation Model

Obtaining high-precision prior DEMs is crucial for effective and reliable positioning
information of underwater TAN systems. However, the acquisition of underwater terrain,
particularly large-scale high-precision bathymetric maps in deep and remote ocean areas,
remains a global challenge. Currently, the techniques used for bathymetric map measure-
ment and reconstruction primarily include gravity field inversion, acoustic ranging, and
optical imaging.

Researchers [71,125,126] have proposed methods for obtaining bathymetric maps
based on gravity field inversion, which can achieve global bathymetric inversion. However,
the accuracy and resolution of the inversion results based on the gravity field are low, mak-
ing them unsuitable for underwater TAN systems. High-precision bathymetric detection
mainly relies on acoustic sounding techniques, such as single-beam or multibeam echo
sounding. Based on the carrier of the acoustic sensor, these techniques can be categorized
as shipborne, towed, or underwater-robot sounding systems. Currently, most global bathy-
metric data are derived from shipborne sounding systems. However, less than 20% of the
seafloor has been adequately surveyed.

In 2017, the Japan Society for the Promotion of Science and the General Bathymetric
Chart of the Oceans jointly discussed how marine mapping can support the United Nations’
sustainable development goals and proposed the Seabed 2030 project, which aims to
achieve 100% global seafloor coverage by 2030. As of 2023, 24.9% of the global bathymetric
mapping was completed [127]. However, high-precision and high-efficiency deep-sea
bathymetric mapping remains a bottleneck that must be overcome.

With the rapid development of underwater robotics technology, an increasing number
of research institutions have focused on developing deep-sea terrain mapping techniques
based on underwater robotic platforms. These techniques show promise for improving
the accuracy and efficiency of deep-sea terrain mapping. In one study [128], a technique
for underwater terrain mapping based on an AUV platform was devised. This technique
utilizes a multibeam sonar system mounted on an AUV to measure seabed profiles. The
obtained profile information is then integrated with the AUV navigation system to compute
the terrain profiles in the geodetic coordinate system, making autonomous underwater
terrain mapping possible by using an AUV. However, because of the accumulation of errors
in the navigation coordinate system of an AUV over time, it is challenging to achieve
long-term and large-scale terrain mapping. In another study [129], a methodology was
proposed for processing 3D multibeam sonar big data based on the stepwise processing of
a dataset with 3D models and isoline map generation that makes fast processing possible,
and the obtained DEMs were of good quality.

To address the issue of cumulative errors in AUV navigation systems over time, re-
searchers worldwide have focused on underwater simultaneous localization and mapping
(SLAM) technology. This technology aims to enable AUVs to construct global terrain maps
autonomously and perform navigation and localization in unknown underwater environ-
ments without external assistance [130–132]. This includes bathymetric SLAM (BSLAM)
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based on multibeam bathymetry information [12,16,17,133–135], sensor-based acoustic
and optical image SLAM utilizing acoustic and optical image data [136–140], and SLAM
techniques based on structured light point cloud matching [133,141]. In BSLAM, multi-
beam bathymetry systems are commonly used to acquire three-dimensional point cloud
information of the underwater terrain for matching and mapping. Image-based SLAM
techniques utilize the image information obtained from underwater optical or acoustic
devices for matching and mapping. Point cloud SLAM techniques employ stereo cameras
or line-structured light sensors for data acquisition. Figure 10 shows the seabed terrain
data obtained using multibeam sonar, an optical camera, and structured light.
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Figure 10. Visualization of data from different sensors. (a) Multibeam Single-Measurement-Frame
Footprints. (b) Multibeam Multiple-Measurement-Frame Point Cloud. (c) Camera Image Data [15].
(d) Stereo Camera Point Cloud [15]. (e) Line-Structured Light Patterns [142]. (f) Line-Structured Light
Point Cloud from Multiple Frames [142].

The comparison in Figure 10 reveals that only the camera and multiline structured
light [143] can provide information about a planar region in a single measurement, whereas
the multibeam sonar and single-line structured light can only capture a single-line mea-
surement. Because multibeam bathymetry can only obtain a strip-shaped terrain in a
single measurement, it cannot construct continuous matching and correlation information.
Therefore, submap partitioning is commonly used for map segmentation and feature match-
ing [12,131]. Figure 11 illustrates the typical workflow for multibeam bathymetric SLAM.
In contrast to single-frame multibeam bathymetry, a single-frame optical image can cover
a limited planar region, making it possible to construct matching correlations between
adjacent measurement frames. Therefore, there are significant differences in the algorithm
design between bathymetric SLAM and image-based SLAM. However, regardless of the
mapping approach, SLAM techniques rely on matching the correlations of environmen-
tal features to establish equations for AUV pose estimation. These equations serve as
constraints related to AUV pose and feature matching, and they form the optimization
equations for global mapping and AUV pose estimation.

X∗ = arglim
X

 M

∑
i=1

∥ f (Xi−1, ui)− Xi−1∥2
Q + ∑

(k,l)∈LO

∥∥h(Xk, Xl)− zk,l
∥∥2

Γk,l

 (10)

In the equations, f (Xi−1, ui) represents the state transition equation with an input
covariance matrix Q. In addition, h(Xk, Xl) represents the measurement equation with
a measurement error of Γk,l , where (k, l) represents the indices of two different measure-
ment frames that form a loop closure. Moreover, LO represents the set of indices of all
measurement frames that form loop closures, zk,l represents the actual terrain elevation
measurement sequence, Xi−1 represents the position information of the AUV, X∗ represents
the optimized trajectory of the AUV, and M represents the length of the AUV state sequence.
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Due to the large measurement range and relatively low measurement accuracy of
acoustic sensors, the SLAM technology is mainly used in the initial stage of seabed surveys,
for large-scale seabed topography and geomorphology surveys, to obtain information on
the large-scale changes in the seabed elevation and seabed substrate. Although SLAM
technology solves the problem of unknown underwater terrain detection, the process
of measuring the large-scale underwater terrain still faces the challenges of a low effi-
ciency and high cost, owing to the low speed and limited range of AUVs. To address
the efficiency issue, underwater terrain measurement techniques based on multi-robot
collaboration have been rapidly developed [143–146]. In one study [147], large-scale seabed
mapping using multiple AUVs was developed based on a graph-based cooperative bathy-
metric SLAM system that can compress many bathymetric measurements into small-scale
acoustic packets and yield accurate navigation results with a 10% loss in acoustic pack-
ets caused by unreliable acoustic communication. In another work [148], the problem of
multi-AUV collaborative online target detection was studied, and the simulation results
showed that the algorithm can improve the detection efficiency by at least 40% compared
with a single AUV. In another study [149], a path-planning method for a multi-AUV TAN
was investigated by considering constraints, such as collision avoidance, arrival times,
energy minimization, and acoustic communication between AUVs. A multi-AUV col-
laborative TAN technology [150] was studied, and it was verified through simulations
that the proposed collaborative localization technique could extend the AUV operating
time. Underwater SLAM technology was investigated [151] based on multi-robot collab-
oration, improving the terrain measurement efficiency and mapping accuracy. In other
research [152], a multi-robot collaborative measurement method suitable for larger-scale
underwater terrain measurements was developed. As shown in Figure 12, Robots A and
B are both equipped with acoustic positioning devices. During the measurement process,
Robot A is first submerged in a predetermined area and remains stationary as an acoustic
positioning reference. Robot B, with Robot A as the positioning reference, performs terrain
measurements in a certain seabed area. Once the measurement area is covered, Robot B sub-
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merges to the predetermined area and remains stationary as the new positioning reference,
and Robot A, with Robot B as the positioning reference, performs terrain measurement in
another seabed area. This cycle is repeated, theoretically allowing for the measurement of
the entire underwater terrain.
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Compared to SLAM technology based on acoustic measurement sensors, SLAM
technology based on optical information is more mature and has been widely applied in
autonomous vehicles, drones, and outdoor mobile robots [153]. While structured light
and stereo vision measurements have a limited measurement range, they can perform
close-range observation with high accuracy, making them suitable for small-scale and high-
precision measurement tasks. They have been widely adopted in underwater archaeology
for observation [154,155], the detection of underwater sediments or structures [156,157], and
other underwater tasks. Reference [156] uses 3D visual reconstruction methods to study the
sea floor hydrothermal systems and identify the habitats of Shinkaia crosnieri squat lobsters
and their population density. Reference [36] presents an extensive review of the sensors
and the methodologies used in archaeological underwater 3D recording and mapping,
together with relevant highlights of well-renowned projects in 3D recording underwater.
Furthermore, the literature [158–160] has investigated the common issue of light refraction
correction in underwater optical measurement and SLAM. In reference [101,161], visual
SLAM with a focus on a stereo camera system is presented to estimate the motion of
autonomous underwater vehicles (AUVs) and build the feature map of the surrounding
environment in real time. Reference [105] details the operations, discusses the results
of the ancient shipwreck survey, and identifies the specific challenges of adapting AUV
technology for deep water archaeology.

5.2. Terrain Adaptability Analysis and Path Planning

Underwater TAN technology can provide AUVs with positional information that has
bounded errors. In theory, as long as the terrain adaptability meets the accuracy require-
ments of matching navigation, it can provide sufficiently accurate position information for
AUVs over a long period of time. However, flat regions are likely to exist in underwater ter-
rain maps, which have low adaptability and result in poor matching localization accuracy.
This is particularly true for long-range AUV TAN, where large flat areas may exist in the
extensive prior terrain map. Once the AUV enters such an area, there is a risk of filter diver-
gence. Furthermore, AUVs have limited onboard energy; therefore, it is necessary to select
the optimal path considering such factors as the mission, energy, and navigation accuracy,
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while ensuring that the energy reserves are sufficient to meet the consumption during the
planned path tracking. Therefore, navigation path planning is a crucial research area in
underwater TAN systems. Research on path planning for underwater TAN has mainly
focused on terrain adaptability analysis, adaptability quantification, and path-planning
algorithms. Adaptability analysis involves analyzing and parameterizing terrain features
while identifying the most important terrain feature parameters that affect the matching
accuracy. In one study [54], directional feature factors that affect the matching accuracy
based on error analysis were derived, showing that the positioning accuracy of a point in
the terrain map varies in different directions. Other research [162] addressed the selection
of terrain feature parameters in adaptability analysis by constructing a binary logistic
regression classifier based on factor analysis results, confirming the rationality of the factor
interpretation and the effectiveness of the analysis results.

Adaptability quantification aims to evaluate the adaptability of the terrain quantita-
tively based on the terrain feature parameters and to divide the terrain map optimally into
highly and poorly adaptable regions. In a previous study [54], an optimal partitioning
method for terrain adaptability based on a terrain spatial standard grid was investigated.
This method divides the terrain space using standard grids and obtains the optimal grid-
based terrain map by maximizing the allocation of highly and poorly adaptable regions
to different grids [54]. Figure 13 shows the grid-based results of the prior terrain map
obtained using the method proposed [54]. The grid is determined based on the principle
of optimal segmentation according to adaptability, in which highly and poorly adaptable
regions in the terrain map are optimally allocated to different grids. Figure 14 shows the
quantified values of terrain adaptability in each grid under the optimal grid partitioning.
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Path-planning algorithms primarily focus on finding optimal navigation paths consid-
ering multiple constraints, such as terrain adaptability, distance, and energy consumption.
In one study [9], the navigation path-planning problem of guiding AUVs through the Arctic
ice cover using underwater terrain-matching navigation was investigated. Building upon
this, researchers [28] further considered such constraints as Arctic Ocean current models,
high-latitude navigation estimation errors, and terrain depth measurement errors. They
employed the optimized rapidly exploring random tree algorithm to obtain the optimal
navigation path and conducted simulations using the Autosub Long-Range 1500 (ALR1500)
AUV platform.

Currently, underwater TAN path planning only considers constraints in the horizontal
plane and does not consider the vertical motion of the AUV and constraints related to
vertical terrain variations. In practice, it is necessary to consider the vertical height of
the AUV during underwater TAN path planning. The vertical height of the AUV from
the seabed affects the range and accuracy of terrain detection, which directly impacts the
matching localization accuracy. Moreover, the AUV must adjust its navigation depth based
on terrain variations, which affects energy consumption. Moreover, the AUV itself has
constraints on the navigation depth. Therefore, underwater TAN path planning must
consider not only adaptability constraints in the horizontal plane but also depth constraints
for path points and even differential constraints for the path.

5.3. Initial Positioning and Accuracy Evaluation

Previous studies have mostly focused on cases with small initial localization errors,
where the use of TERCOM for initial localization can provide high-precision initial positions
and PF initialization results. However, as AUV missions extend to deep-sea and long-
range submerged navigation, navigation systems experience significant error accumulation
because deep diving and extended travel distances are necessary. In such cases, the pseudo-
peaks caused by the initial localization errors can lead to severe filter initialization errors
and affect the stability and convergence of the filter.

To address the high-precision initial localization requirement in underwater TAN
systems, a method [65] was proposed called the “terrain point diversity consistency test”
(TPDCT) based on multiple TERCOM localization points to determine the effectiveness of
TAP points. In other work [163], this method was applied to geomagnetic matching naviga-
tion, and practical experiments were conducted. However, underwater terrain acquisition
is challenging, and the region suitable for matching positioning is limited. As a passive
filtering method, TPDCT requires a considerable number of TAP points. In addition, the
errors in the TAP points are related to the terrain features, and the probability distribution of
different TAP points varies, resulting in low data utilization and poor applicability in under-
water environments. Therefore, a multiple transmission–reception point fusion positioning
(MTFP) positioning method [3] was studied based on data fusion estimation and trajectory
validity determination. The MTFP and TPDCT methods use multiple TERCOM points for
positioning estimation. Unlike the TPDCT method, the MTFP method actively uses data
to obtain positioning estimates for trajectory segments. Based on this, the estimation cost
of each trajectory segment is calculated, and the optimal trajectory is selected based on
the lowest cost condition, thereby transforming the positioning estimation problem into
a local trajectory segment estimation problem [48]. Furthermore, to address the problem
of excessive pseudo-peaks in TAP causing a high computational load, researchers [39,164]
proposed a PF initialization method based on confidence interval constraints. By estimating
the confidence interval of the initial localization probability distribution function and using
it as the distribution boundary for initializing the particle set, the number and range of
initial particles are reduced, improving the convergence speed.

Regarding the accuracy evaluation of underwater TAP, most studies have used the
Fisher information matrix as the lower bound for the error distribution of TAP [5,35,58].
However, the error distribution of the TAP estimates differs fundamentally from that of the
recursive positioning estimates. The confidence interval is not elliptical. In one study [49],
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it was demonstrated that TAP points have distinct directional distribution characteristics,
particularly in areas with significant terrain directionality. A stochastic jump model was
proposed for the confidence interval estimation of TAP points (Figure 15), and a new
equation was derived for the confidence interval estimation of TAP points, significantly
improving the accuracy of the confidence interval estimation for TAP points:

Lα =
1√

2πσp
exp

(
−

S(X)1−α

(σp)2

)
(11)
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Here, S(Xp) represents the sum of squared residuals of the TAP positions, (σp)2

denotes the variance in terrain measurement errors, and 1 − α represents the confidence
level, typically in the range of [0.95, 0.97]. The TAP points are randomly fluctuating points
associated with terrain features in the spatial domain, and their probability distribution
does not have a unique central peak but multiple pseudo-peaks, as shown in Figure 16.
Therefore, the confidence intervals for TAP points cannot be estimated using the traditional
elliptical confidence interval theory. Other position confidence interval estimation methods
of TAN in different application scenarios list in Table 3.
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Table 3. Primary method for representing confidence intervals in statistics.

Confidence Interval Estimation Equation Estimation Theory Remarks References
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where L1−α represents the lower bound of
the likelihood function value of the TAP
points at a confidence level of 1 − α,
σp represents the standard deviation of
terrain measurement errors, and
S(X)1−α represents the sum of squared
residuals of the matching residuals at a
confidence level of 1 − α.
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5.4. Simulation of an Underwater TAN System

Underwater TAN technology is primarily used for long-duration, long-distance nav-
igation and positioning in the deep sea and remote underwater spaces. The deep-sea
environment is a communication-denied space, where it is difficult for human intervention
to occur quickly and effectively during operational processes. Therefore, underwater TAN
systems must be sufficiently stable and reliable. Field trials and simulation experiments
are important means of testing system performance. However, conducting field trials
in deep-sea environments is challenging and risky. Therefore, shallow-water tests are
often used as substitutes. This leads to significant differences between the experimental
environment and the actual operating conditions, and the terrain features may also be
limited, resulting in limited practical reference values for actual experiments. Simulation
experiments offer such advantages as a low risk, high efficiency, and safety control, and
they have been widely adopted in research on underwater autonomous systems. In recent
years, they have been extensively used in underwater TAN research.
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Obtaining system input information with high fidelity is essential to simulating un-
derwater TAN systems, particularly when simulating input errors, which must have
probabilistic completeness. This means that the input errors must encompass all possible
error input patterns with a certain level of confidence. In previous research [166], a surface
vessel was employed as a simulation platform to conduct sea trials using underwater TAN
and SLAM techniques. FFI developed the NavLab integrated navigation simulation system
and the TerrLab terrain-matching navigation simulation system [47,167]. These systems
can be used for the algorithm verification and data postprocessing of underwater TAN
systems, making them the earliest underwater TAN simulation platforms. The University
of Southampton, UK, conducted research on the feasibility of using TAN technology to sup-
port AUVs in performing ultralong-range missions using the 6000AUV as the carrier. They
also conducted a simulation verification using underwater TAN technology to assist AUVs
in crossing the Arctic ice cover [9,28,168]. Currently, almost all the research institutions
engaged in underwater TAN technology have developed their own simulation systems.
However, most simulation studies have been limited to algorithm verification platforms
based on data playback. In general, an underwater TAN simulation system should include
a basic terrain measurement simulation, an AUV dynamics simulation, a TAN algorithm
simulation, and other components (Figure 17). In particular, it should possess probabilistic
completeness simulation capabilities for different terrain conditions and measurement
systems, making it possible to simulate almost all possible operating conditions in a limited
number of simulation experiments. These tasks cannot be accomplished through actual sea
trials and are the core content of underwater TAN simulation systems. Some progress has
been made in related research. For example, in terms of bathymetric system error analysis,
researchers [169–172] have studied the error composition of multibeam bathymetric mea-
surement systems with multiple sensors. They analyzed the distribution characteristics of
depth measurement errors with respect to the wave speed and incident angle in a single
measurement frame. Figure 18 shows the estimated measurement errors of multibeam
bathymetric measurements at different beam angle positions as output by this simulation
system. These results provide a theoretical basis for simulating bathymetric measurement
errors using multibeam systems.

Currently, accurately simulating input errors for TAP systems is difficult. This is
primarily because of the highly nonlinear characteristics of terrain measurement systems,
where measurement errors are the result of coupling among various sensors in the mea-
surement system. Figure 19 shows the residual sequence of the matching points in TAP.
The signal in Figure 19b exhibits high autocorrelation and does not follow a Gaussian
distribution, mainly because the prior terrain map was obtained through low-resolution
map interpolation. Although it has been proved [5] that the residuals of terrain-matching
positioning systems exhibit asymptotic Gaussian characteristics, the residual sequence of
individual measurement beams still demonstrates a strong autocorrelation. Furthermore,
matching residuals are closely related to terrain features, prior terrain maps, underwater
acoustic environments, seabed geological conditions, and other factors. Therefore, the
primary challenges are simulating non-Gaussian signals that match the measurement
system, terrain features, acoustic environment characteristics, etc. and ensuring that the
limited number of simulated residual signals satisfies the statistical completeness require-
ments of error signals. This is essential for conducting effective and reliable simulations of
terrain-matching positioning and is a problem that must be addressed urgently.
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6. Conclusions and Outlook

Underwater TAN performs tracking and positioning navigation with non-Gaussian
inputs, strong nonlinearity, and analytically intractable system state transition equations.
Compared with other navigation methods, such as dead reckoning and acoustic positioning,
TAN not only shares common issues related to position information fusion and estimation
but also faces specific system characteristic problems owing to the uniqueness of the
system input information (terrain information, terrain measurement errors, etc.). These
issues result in non-Gaussian positioning errors, weak correlations between TAP points,
initial instability during system operation, and the poor generalization performance of the
algorithms. In addition, underwater TAN faces technical challenges, such as insufficient
prior terrain maps and their accuracy, inadequate adaptability to terrain features, the
accuracy and effectiveness evaluation of positioning, and high-precision system simulation.
This article summarized the status of these issues, and the technical challenges that are
currently faced were discussed.

Although underwater TAN technology has undergone more than 40 years of develop-
ment, it has not yet been widely applied, and several important technical challenges must
be overcome. Specifically, the following aspects should be addressed.

(1) The stability and reliability of filters remain significant challenges, particularly for state
estimation in non-Gaussian and nonlinear dynamic systems. Therefore, there is an
urgent need to develop robust and reliable filtering algorithms and filters. In addition,
filters should possess self-awareness and self-correction capabilities to enhance the
generalization performance of the algorithms. For example, the work [97,98] has
introduced machine learning into image matching, the work [173] has incorporated
intelligent algorithms into Particle Filters (PFs), and the work [75] has proposed data-
driven methods that can learn approximate proposal distributions from previous data.
These are all good attempts.
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(2) With the diversification and refinement of AUV sensing information, there are differ-
ences in the granularity, data structures, and physical characteristics of the matching
information. This involves matching and assimilating different resolutions, granulari-
ties, and data structure information.

(3) The integration of TAN technology with underwater robot planning and control is
crucial. The incorporation of TAN information into intelligent decision-making and
control systems for AUVs should be explored.

(4) The availability of large-scale, high-precision prior terrain maps remains a major bot-
tleneck in the development of underwater TAN technology. Promising breakthroughs
can be achieved through multi-AUV cooperative underwater positioning and terrain
mapping techniques, which have the potential to improve the measurement accu-
racy and efficiency for unknown seafloor terrain. For instance, the work [174] and
the work [152] proposed two different strategies for collaborative SLAM techniques
involving multiple Autonomous Underwater Vehicles (AUVs).
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