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Abstract: As a key method of ocean exploration, the positioning accuracy of autonomous underwater
vehicles (AUVs) directly influences the success of subsequent missions. This study aims to develop a
novel method to address the low accuracy in visual simultaneous localization and mapping (SLAM)
within underwater environments, enhancing its application in the navigation and localization of
AUVs. We propose an underwater multisensor fusion SLAM system based on image enhancement.
First, we integrate hybrid attention mechanisms with generative adversarial networks to address the
blurring and low contrast in underwater images, thereby increasing the number of feature points.
Next, we develop an underwater feature-matching algorithm based on a local matcher to solve the
feature tracking problem caused by grayscale changes in the enhanced image. Finally, we tightly
couple the Doppler velocity log (DVL) with the SLAM algorithm to better adapt to underwater
environments. The experiments demonstrate that, compared to other algorithms, our proposed
method achieves reductions in both mean absolute error (MAE) and standard deviation (STD) by up
to 68.18% and 44.44%, respectively, when all algorithms are operating normally. Additionally, the
MAE and STD of our algorithm are 0.84 m and 0.48 m, respectively, when other algorithms fail to
operate properly.

Keywords: underwater visual SLAM; multisensor fusion; image enhancement; hybrid attention

1. Introduction

Since the twenty-first century, due to the increasing shortage of land resources, the
ocean, as a newly developed treasure trove for humanity, has emerged as a new world
center [1,2]. Due to the complexity of the marine environment, the cost of manual oper-
ation in this environment is high, and there are various hidden dangers. Autonomous
underwater vehicles (AUVs) [3,4], owing to their autonomous navigation capabilities,
can effectively replace manual underwater operations such as seabed exploration, seabed
archaeology, and seabed minesweeping [5,6], and have gradually become essential tools for
executing underwater tasks. The prerequisite for AUVs to perform underwater missions is
the availability of a high-precision navigation and localization system. Hydroacoustic local-
ization systems [7,8], inertial navigation and localization systems [9,10], and simultaneous
localization and napping (SLAM) technology [11,12] have been proposed as solutions to
the underwater navigation challenges faced by AUVs.

The process of the hydroacoustic positioning system is summarized as the interaction
between an acoustic transmitting transducer and a receiving transducer to determine the
target position. As hydroacoustic positioning systems generally use acoustic waves as
the communication carrier, they are affected by the underwater environment, leading
to increased noise in the hydroacoustic signal, longer communication delays, and other
issues that significantly impact the accuracy and real-time capabilities of navigation and
positioning. Additionally, hydroacoustic positioning systems are expensive and difficult to
install, further limiting their application scenarios.
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Inertial navigation and positioning systems achieve a high degree of covertness and
autonomy by using the acceleration and angular velocity data obtained from accelerometers
and gyroscopes to perform dead reckoning, thereby determining the current position. In
practical applications, this information is generally provided by inertial measurement
devices. High-precision navigation equipment is expensive and generally not suitable for
civilian use, while low-cost micro-electro-mechanical system inertial measurement units
(MEMS IMUs) are less accurate and cannot be used independently for extended periods.

With the development of computer technology, SLAM technology with a laser or
camera as the core sensor is increasingly employed. Laser SLAM [13,14], which achieves
navigation and positioning by comparing the emitted and reflected laser beams, is gradu-
ally being applied in underwater environments. For example, the literature [15,16] proposes
the use of single-photon underwater LiDAR for bathymetric measurements, and the mea-
surement results are highly consistent with synchronized sonar data. Visual SLAM [17,18],
which determines position through image data, has the advantages of no drift and high
stability, and can provide high-precision navigation and positioning for AUVs.

Currently, SLAM algorithms applied to AUVs are broadly classified into two cate-
gories: EKF-SLAM, based on the extended Kalman filter (EKF); fast SLAM, based on the
particle filter (PF); and graph-SLAM, based on graph optimization.

The computation of EKF-SLAM [19] is divided into four processes: prediction, obser-
vation update, data association, and state dimension expansion. A study [20] proposed an
algorithm for underwater localization using acoustic signals based on the EKF-SLAM algo-
rithm, which fuses inertial sensors and the direction angle of the acoustic source obtained
from Bayesian estimation for position estimation. Authors [21] developed an enhanced
EKF-SLAM, and the algorithm uses position error models based on side-scan sonar and
AUV inertial navigation systems as input data, rather than directly using the data from iner-
tial sensors and side-scan sonar. EKF-SLAM inherits the advantages and disadvantages of
the EKF algorithm. The algorithm’s principle is simple and easy to implement, but the error
caused by system nonlinearity may lead to nonconvergence and high computational cost.

The basis of FAST-SLAM is the PF, whose core idea is to use a series of randomly
drawn samples and their weights to represent the posterior probability distribution of the
state. When the number of samples is sufficiently large, the true posterior distribution
can be well approximated by such random sampling. Researchers [22] utilized the mean
trajectory graph, a method that reduces computational consumption by retaining only
the current estimated position of the AUV in its particles, while all historical states of
the AUV are stored in the mean trajectory graph. Others [23] proposed a particle-filter-
based bathymetric simultaneous localization and mapping (BSLAM) method with mean
trajectory map representation, where the particles of the algorithm retain only the current
estimated position of the AUV, while all historical states of the AUV are stored in the
averaged trajectory map. The disadvantages of FAST-SLAM include the problem of particle
“degeneracy” and the difficulty of finding a general selection criterion for the importance
density function used to generate particles.

In graph-SLAM, the position of an AUV is represented as a node or vertex, and the
relationships between positions constitute edges. The process is mainly divided into two
parts: the front end, responsible for processing the data collected by the sensors, and the
back end, which uses a nonlinear optimization algorithm to determine the robot’s position.
The literature [24] proposes a collaborative SLAM framework where each AUV generates
its own local map while using marginalized pose and sparsified information matrices to
reduce the size of communication packets, ultimately achieving collaborative localization
and mapping. In a study [25], to enhance the robustness of SLAM, a robust estimator that
fuses the robot’s kinematic model with proprioceptive sensors was proposed to propagate
the pose when the visual inertial odometer (VIO) fails, ensuring proper localization. Graph-
optimization-based algorithms were previously considered too time consuming to meet
the real-time requirements of SLAM. However, with the emergence of efficient solving
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algorithms and the rapid development of related hardware, graph-optimization-based
algorithms have regained attention and become a hot topic in the current SLAM research.

The disadvantages of underwater images [26,27], such as color deviation and blurring,
pose the risk of crashing the SLAM operation. In this study, to meet the demand for
AUV underwater navigation and localization, an underwater multisensor fusion SLAM
algorithm based on image enhancement was designed by integrating an underwater image
enhancement module into VINS-Mono [28], which belongs to the graph-SLAM category,
and fusing data from various sensors such as a monocular camera, IMU, and Doppler
velocity kog (DVL).

The main contributions of this study are summarized as follows:

• In this paper, an underwater image enhancement algorithm based on a generative
adversarial network [29] is proposed. To improve the quality of underwater images,
we designed a hybrid attention module, consisting of channel attention and spatial
attention, and applied it to the generator to enhance the underwater image enhance-
ment effect. Additionally, we constructed a multinomial loss function to improve
training efficiency.

• In this paper, a multisensor fusion SLAM algorithm is proposed, based on the VINS-
Mono framework, incorporating DVL, and making corresponding improvements to
its measurement preprocessing, initialization, and nonlinear optimization compo-
nents. Additionally, to address the impact of grayscale changes caused by image
enhancement on image matching, this paper proposes an underwater image matching
algorithm based on a local matcher.

In Section 2, we describe the specific algorithms used in this study. The results obtained
from the system are presented in Section 3. Finally, we provide a brief discussion in Section 4
and the conclusions in Section 5.

2. Materials and Methods

In this section, we describe the programs and methods used in this study, divided
into the following two aspects: First, the underwater image enhancement algorithm based
on a generative adversarial network is presented. Second, the integration of DVL into the
VINS-Mono algorithm and the underwater feature-matching algorithm based on the local
matcher are introduced.

The algorithm proposed in this paper is based on the traditional VINS-Mono frame-
work and consists of four parts: measurement preprocessing, initialization, nonlinear
optimization, and loop closure. The system framework of the proposed algorithm is shown
in Figure 1.

Camera

IMU/DVL

Feature Detection

and Tracking

IMU/DVL Pre-integration

Vision-only

Structure-from-Motion

Visual-Inertia 

Alignment

Oldest                       Sliding Window          Newest
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Figure 1. The system framework for the proposed algorithm. The color-coded parts indicate the
components that were improved in this study.
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2.1. Underwater Image Enhancement Algorithm Based on Generative Adversarial Network

The disadvantages of underwater images, such as partial color, blurring, and low
contrast, lead to a significant reduction in the number of extractable feature points, which
in turn can cause the collapse of the entire SLAM system. To address this problem, this sub-
section proposes a generative adversarial network based on a hybrid attention mechanism
to enhance underwater images. The hybrid attention module, which serves as the core
part of the generator, aims to restore the color and texture of the image and consists of a
channel attention module and a spatial attention module. The overall network framework
is a generative adversarial network, with the adversarial network framework based on
U-Net [30]. The generator network framework and hybrid attention module network
framework are shown in Figure 2.
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Figure 2. Network framework: (a) generator network framework; (b) hybrid attention module
network framework.

2.1.1. Channel Attention Module

The channel attention module reallocates channel resources to aid in the color restora-
tion of images. It aggregates feature map information using both maximum pooling and
average pooling and achieves adaptive selection through learned parameters, ensuring
that the two pooling results have different weights to obtain better channel attention maps.
The network framework is shown in Figure 3, and the specific process is detailed below:
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Figure 3. Channel attention module network framework.
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Step 1: The input feature map X ∈ RCin×Hin×Win undergoes two pooling operations in
two pooling layers. The pooling results are then weighted by the learning parameters α and
β and summed element-wise with their mean to obtain the feature tensor f add ∈ RCin×1×1.
This process can be expressed by the following equation:

f add = (α ⊗ AvgPool(X))⊕ (β ⊗ MaxPool(X))⊕ (0.5 ⊗ (AvgPool(X)⊕ MaxPool(X))) (1)

where AvgPool represents average pooling; MaxPool represents max pooling; ⊕ denotes
element-wise summation; and ⊗ denotes element-wise multiplication. The parameters
α and β belong to (0, 1], and the network achieves adaptive tuning of channel weights
through these two learning parameters.

Step 2: The feature tensor f add undergoes dimensionality reduction followed by
dimensionality enhancement to achieve cross-channel information interaction, resulting in
the feature tensor f z ∈ RCin×1×1. The process can be expressed by the following equation:

f z = Φ1

(
Φ2

(
f add

))
= C2DCin×d

1×1

(
δ
(

BN
(

C2Dd×Cin
1×1

(
f add

))))
(2)

where Φ1 represents the ascending operation; Φ2 represents the descending operation;
C2DCin×d

1×1 denotes a 1 × 1 2D convolution with the number of output channels as Cin and

the number of input channels as d; C2Dd×Cin
1×1 denotes a 1 × 1 2D convolution with the

number of output channels as d and the number of input channels as Cin; BN represents
batch normalization; and δ is the ReLU activation function. The parameter d is determined
by the hyperparameter r:

d = max(Cin/r, L) (3)

In the final step, the feature tensor f z is normalized and multiplied element-wise with
the input feature map X to obtain the output feature map Y ∈ RCin×Hin×Win :

Y = σ( f z)⊗ X (4)

where σ is the so f tmax activation function.

2.1.2. Spatial Attention Module

The spatial attention module strengthens the network’s learning of information-rich
regions, aiding in the recovery of the highly textured parts of the image, and determines
the importance of the features in each part of the different channels through learning. To
ensure the network pays more attention to the highly textured parts of the image, this
paper proposes a feature separation algorithm that divides the features in each channel
into important and minor features. The spatial attention module first uses the proposed
algorithm to achieve feature separation, then applies average pooling and max pooling
operations along the channel dimensions, and finally passes the two pooling results through
a series of convolutional layers to obtain the final spatial attention map. The network
framework is shown in Figure 4, and the specific flow is detailed below:

1F

SummationSummation MultiplyMultiplySummation Multiply

Input Feature Map
Output Feature Map

Step 1 Step 2 Last Step

1F

1F

2F
7 7 Convolution

3

3

1SAf

2SAf

AvgPool

MaxPool

AvgPool
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Figure 4. Spatial attention module network framework.
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Step 1: The input feature map X ∈ RCin×Hin×Win undergoes adaptive average pooling
to obtain the average value of each layer. The part above the average value is defined as
important features, and the part below the average value is defined as secondary features.
Two tensors are then defined to store the results: one tensor sets the important features to 1
and the secondary features to 0, while the other tensor does the opposite. The two tensors
are then multiplied element-wise with the input feature map to obtain the important feature
map F1 ∈ RCin×Hin×Win and the secondary feature map F2 ∈ RCin×Hin×Win . The Python code
is shown in Algorithm 1.

Algorithm 1 Python code for feature separation.

Input: X
Output: F1 , F2

1: def channel_separation(X):
2: one = torch.ones_like(X)
3: zero = torch.zeros_like(X)
4: avg_pool = nn.AdaptiveAvgPool2d(1)
5: avg = avg_pool(X)
6: important_tensor = torch.where(X > avg, one, zero)
7: subimportant_tensor = 1 - important_tensor
8: F1 = X *important_tensor
9: F2 = X *subimportant_tensor

10: return F1 , F2

Step 2: The feature maps F1 and F2 undergo a pooling layer, a 7 × 7 shared convo-
lutional layer and a series of nonlinear operations to obtain the corresponding spatial
attention tensors f SA1 ∈ R1×Hin×Win and f SA2 ∈ R1×Hin×Win . The process can be expressed
as follows:

f SA1 = Φ3

(
C2D1×1

7×7([AvgPool(F1); MaxPool(F1)])
)

f SA2 = Φ3

(
C2D1×1

7×7([AvgPool(F2); MaxPool(F2)])
) (5)

where Φ3 represents a series of nonlinear operations consisting of a sequence of BN layers
and ReLU functions; and C2D1×1

7×7 denotes a 7 × 7 2D convolution with 1 output channels
and 1 input channel.

In the final step, the spatial attention tensors f SA1 and f SA2 are multiplied with the
feature maps F1 and F2, respectively, and the results are summed element-wise to obtain
the output feature map Y ∈ RCin×Hin×Win . The process can be expressed as follows:

Y =
(

f SA1 ⊗ F1

)
⊕

(
f SA2 ⊗ F2

)
(6)

2.1.3. Loss Function

In this method, the loss function L is obtained by linearly weighting the adversarial
loss Ladv [29], the L1 loss L1 [31], the gradient loss Lgra, and the color bias loss Lcol . The
specific form of the loss function is shown in the following equation:

L = Ladv + λg1L1 + λg2Lgra + λg3Lcol (7)

where the scaling factors λg1, λg2, and λg3 are set to 0.3, 0.3, and 0.4
Among them, the gradient loss Lgra can represent the clarity and integrity at the image

boundary to a certain extent, aiding in the generation of image details, as follows:

Lgra = Ex,y{∥∇iy −∇i[G(x)]∥1}+ Ex,y

{∥∥∇jy −∇j[G(x)]
∥∥

1

}
(8)

where ∇i,∇j are the horizontal and vertical gradient operators.
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The color bias loss Lcol is used to encourage the color distribution of the generated
image to align more closely with the real image by measuring the degree of color bias in
the generated image, as follows:

Lcol = D(y)/M(y)− D(x)/M(x)

da =

M
∑

i=1

N
∑

i=1
a

MN , db =

M
∑

i=1

N
∑

i=1
b

MN

D =
√

d2
a + d2

b

Ma =

M
∑

i=1

N
∑

i=1
(a−da)

MN , Mb =

M
∑

i=1

N
∑

i=1
(d−db)

MN

M =
√

M2
a + M2

b

(9)

where D denotes the average color difference of the image; M denotes the center distance of
the image; a and b denote the two-dimensional coordinates of the a channel and b channel of
the image in Lab space; and M and N denote the maximum values of the two-dimensional
coordinates of the image in Lab space.

2.2. Underwater Multisensor Fusion SLAM Algorithm
2.2.1. DVL Tightly Coupled to SLAM Algorithm

In this paper, (·)w represents the world coordinate system, (·)b represents the body
coordinate system (defined the same as the IMU coordinate system), (·)c represents the
camera coordinate system, and (·)d represents the DVL coordinate system. Meanwhile, the
rotation matrix R and quaternion q are used to represent rotation.

Adding DVL to VINS-Mono requires corresponding adjustments to pr-integration,
initialization, and nonlinear optimization. The following sections describe each of these
adjustments in detail.

Based on the IMU kinematic model [32], by adding the DVL information, the kine-
matic IMU/DVL model in the world coordinate system can be obtained as shown in
Equation (10):

pw
bk+1

= pw
bk
+ vw

bk
∆t +

∫∫
t∈[k,k+1] [R

w
t (ât − ba)− gw]dt2

vw
bk+1

= vw
bk
+
∫

t∈[k,k+1] [R
w
t (ât − ba)− gw]dt

qw
bk+1

= qw
bk
⊙
∫

t∈[k,k+1]
1
2 Ω(ω̂t − bω)q

bk
t dt

pw
dk+1

= pw
dk
+
∫

t∈[k,k+1]

[
Rw

t Rb
d(v̂t − bd)

]
dt

(10)

where pw
b , vw

b , qw
b denote the position, velocity, and rotation of the IMU in the world

coordinate system; pw
d is the position of the DVL in the world coordinate system; ât, ω̂t, v̂t

are the measured values of the accelerometer, gyroscope, and DVL, respectively; ba, bω , bd
are the corresponding zero biases; ∆t denotes the time difference between the two frames;
Rw

t is the rotation of the IMU in the world coordinate system at time t; gw is the acceleration
of gravity in the world coordinate system; qbk

t is the rotation increase in the IMU in the bk
frame at time t; Rb

d is the rotational parameter of IMU-DVL; ⊙ is the symbol for quadratic
multiplication; and Ω is defined as:

Ω(ω) =

[
−[ω]× ω

−ωT 0

]
, [ω]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy −ωx 0

 (11)
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Equation (10) is multiplied by Rbk
w on both sides to obtain the IMU pr-integration

α
bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

and the DVL pre-integration η
bk
dk+1

:

α
bk
bk+1

=
∫∫

t∈[k,k+1]

[
Rbk

t (ât − ba)
]
dt2

β
bk
bk+1

=
∫

t∈[k,k+1]

[
Rbk

t (ât − ba)
]
dt

γ
bk
bk+1

=
∫

t∈[k,k+1]
1
2 Ω(ω̂t − bω)γ

bk
t dt

η
bk
dk+1

=
∫

t∈[k,k+1]

[
Rbk

t Rb
d(v̂t − bd)

]
dt

(12)

where Rbk
w =

(
Rw

bk

)T
, Rw

bk
represents the rotation of the IMU in the world coordinate

system for the k frame.
The first-order Taylor series expansion of Equation (12) is given by

α
bk
bk+1

≈ α̂
bk
bk+1

+ Jα
ba

δba + Jα
bω

δbω

β
bk
bk+1

≈ β̂
bk
bk+1

+ Jβ
ba

δba + Jβ
bω

δbω

γ
bk
bk+1

≈ γ̂
bk
bk+1

⊗
[

1
1
2 Jγ

bω
δbω

]
η

bk
dk+1

≈ η̂
bk
dk+1

+ Jη
bd

δbd + Jη
bω

δbω

(13)

where α̂
bk
bk+1

, β̂
bk
bk+1

, γ̂
bk
bk+1

, η̂
bk
dk+1

are the IMU/DVL preintegrated measurements; δba, δbω,
δbd are the zero-bias errors of the accelerometer, gyroscope, and DVL; and J denotes the
respective Jacobian matrix.

The estimation of the rotational parameter Rb
c and the gyroscope zero bias during

initialization is consistent with that of VINS-Mono. Therefore, only the estimation of the
accelerometer’s zero bias and the DVL’s zero bias is presented in this paper. Considering
scale s, the pose of the IMU/DVL in the world coordinate system is

Rw
b = Rw

c
(

Rb
c
)−1

spw
b = spw

c − Rw
b pb

c
spw

d = spw
c − Rw

b Rb
d pd

c

(14)

where Rw
c and pw

c are the attitude and position of the camera in the world coordinate
system; pb

c and pd
c are the translational parameters of the IMU-camera and DVL-camera;

and Rb
d is the rotational parameter of the IMU-DVL.

The state variables are selected as χ0 =
[
vb0

b0
, · · · ,vbk

bk
, vbk+1

bk+1
, gw, s

]
; Equation (10) and

Equation (14) are combined to obtain Equation (15), which is solved to obtain the external pa-
rameter estimates of velocity, gravity vector, and scale factor χ̂0 =

[
v̂b0

b0
, · · · ,v̂bk

bk
, v̂bk+1

bk+1
, ĝw, ŝ

]
.

 −I∆t 0 1
2 Rbk

w ∆t2 2Rbk
w

(
pw

bk+1
− pw

bk

)
−I Rbk

w Rw
bk+1

Rbk
w ∆t 0




vbk
bk

vbk+1
bk+1

gw

s


=

 α̂
bk
bk+1

+ η̂
bk
bk+1

−
(

I − Rbk
w Rw

bk+1

)(
pb

c + Rb
d pd

c

)
β̂

bk
bk+1


(15)

To reduce the effect of gravity on the estimated accelerometer zero bias and DVL zero
bias, a gravity refinement step is required.

gw = g
ĝw

∥ĝw∥ +
[

b1 b2
][ m1

m2

]
= g

ĝw

∥ĝw∥ + bm (16)
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where b1 and b2 are the two orthogonal bases in the gravity tangent plane, and m1 and m2
are their respective lengths.

The state variables are selected as χ0 =
[
vb0

b0
, · · · ,vbk

bk
,vbk+1

bk+1
,m,s,δba,δbd

]
. Equations (13),

(15), and (16) are combined to obtain Equation (17), which is solved to obtain the external
parameter estimates of the zero bias of the accelerometer and the zero bias of the DVL.

 −I∆t 0 1
2 Rbk

w b∆t2 2Rbk
w

(
pw

ck+1
− pw

ck

)
−Jα

ba
−Jη

bd

−I Rbk
w Rw

bk+1
Rbk

w b∆t 0 −Jβ
ba

0




vbk
bk

vbk+1
bk+1

m
s

δba
δbd


=

 α̂
bk
bk+1

+ η̂
bk
bk+1

−
(

I − Rbk
w Rw

bk+1

)(
pb

c + Rb
dpd

c

)
− 1

2 Rbk
w

ĝw

∥ĝw∥ g∆t2

β̂
bk
bk+1

− Rbk
w

ĝw

∥ĝw∥ g∆t


(17)

After obtaining the accelerometer’s zero bias and DVL’s zero bias, they are repropa-
gated for all IMU/DVL preintegrations, thereby completing the initialization of the SLAM
algorithm presented in this paper.

For nonlinear optimization, the cost function after adding DVL is

min
χ

 ∑
(l,j)∈C

∥∥∥rC

(
ẑ

cj
l ,χ

)∥∥∥2

P
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,χ
)∥∥∥2

P
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+
∥∥rp − Jpχ
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 (18)

where rC

(
ẑ
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l ,χ

)
,rBO

(
ẑbk

bk+1
,χ
)

,
{

rp,Jp
}

are the visual residuals, IMU/DVL preintegrated
residuals, and marginalization constraint. The visual residuals and marginalized residuals
are consistent with VINS-Mono, and the IMU/DVL preintegrated residuals is
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(19)

where δα
bk
bk+1

, δβ
bk
bk+1

, δγ
bk
bk+1

, δη
bk
dk+1

are the measurements residual of IMU/DVL pre-
integration; δba, δbω, δbd are the zero bias residual of IMU/DVL.

2.2.2. Underwater Feature-Matching Algorithm Based on a Local Matcher

After the underwater images undergo image enhancement, although their clarity and
contrast improve, the grayscale also changes to some extent, as shown in Figure 5, thus
putting the optical flow algorithm [33] at risk of failure. To solve this problem, this paper
proposes an underwater feature-matching algorithm based on a local matcher.
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Figure 5. Grayscale comparison before and after underwater image enhancement.

Assuming that the two consecutive frames of the image are the ck frame and the
ck+1 frame, the corresponding IMU measurements are the bk frame and the bk+1 frame,
and the DVL measurements are the vk frame and the vk+1 frame. The relative position
∆p and relative attitude ∆q between the two frames can be obtained according to the
following equation:

∆p = Rc
d

[
(vk−bd)+(vk+1−bd)

2 ∆t
]

∆q =
∫

t∈[k,k+1]
1
2 Rc

bΩ(ω̂t − bω)q
bk
t dt

(20)

where Rc
b and Rc

d are the rotational parameters for the camera-IMU and camera-DVL.
Assume that the normalized coordinates corresponding to the projections of a way-

point on the images of the ck frame and the ck+1 frame are pck and pck+1 , the camera’s
internal reference is K and the pixel coordinates corresponding to pck is uck . The predicted
value ûck+1 of the pixel coordinate pck+1 corresponding to uck+1 can be obtained using the
following equation:

pck = K−1uck

pck+1 = ∆Rpck + ∆p
ûck+1 = Kpck+1

(21)

where ∆R is the matrix form of q.
To apply the predicted value ûck+1 to feature matching, a local matcher with a search

window was designed. First, a search window is created, which is a circular or square
area centered on the predicted value ûck+1 , and its radius varies from small to large. Next,
candidate features are searched within the small radius area. If the number of candidates
exceeds the preset threshold (20 features), then the 20 features with the maximum response
value are retained. Otherwise, the radius of the search window is enlarged, and the above
search steps are repeated until 20 candidate points are detected or the detection area reaches
or exceeds the size of the entire image. Finally, the feature points in the search window are
regarded as potential matching candidates, and the feature point with the closest descriptor
distance is obtained by brute-force matching in a small range.

Through the local matcher, even if there is a certain discrepancy in the enhancement
effect between the two consecutive frames, it can still ensure that the feature points of
the former image have a candidate match in the latter image. Then, after applying the
RANSAC algorithm [34], a better matching result can be obtained. The flowchart of the
underwater feature-matching algorithm is shown in Figure 6.
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Figure 6. Underwater feature-matching flowchart.

3. Results

In this study, we verified the localization accuracy and robustness of the proposed
algorithm through simulation and physical experiments, using the proposed algorithm as
the experimental group and VINS-Mono as the control group.

3.1. Simulation Experiments

In this study, the underwater AFRL dataset [35] was selected for simulation verification.
According to the authors’ suggestion, COLMAP [36] was used to generate the reference
trajectories of the dataset, which could be considered as the ground truth (GT). To be more
representative, the Bus subdataset with poorer image quality in the AFRL dataset and
the Cave subdataset with better image quality were selected for simulation experiments.
Only the “left eye” informationwas used during the simulation process. Additionally, new
datasets including the DVL information were generated based on the two subdatasets
according to Figure 7 to validate the SLAM algorithm proposed in this paper.

Estimation of carrier 

system velocity from 

rotational and translational 

truth values

Add DVL measurement 

noise(0.01m/s) to generate 

simulated DVL data.

Generate DVL topics

Dataset Raw Data

Timestamp Alignment,

Coordinate System 

Conversion

Generate Camera Topics,

Generate IMU Topics

Recorded as the bag file 

for simulation experiments

Figure 7. Underwater feature-matching flowchart.

The simulation experiment results are shown in Figures 8 and 9, and the experimental
errors, including mean error (MEAN), standard deviation (STD), and root mean square
error (RMSE), are shown in Table 1. From Figures 8 and 9, it can be seen that the VINS-Mono
algorithm can run normally only on the Cave subdataset, but the absolute pose error (APE)
is relatively large. This includes max (maximum error), min (minimum error), std (same as
STD), median, mean (same as MEAN), and mse (mean square error). The SLAM algorithm
proposed in this paper ran normally on both underwater subdatasets. Although the APE
was a little larger on the Bus subdataset than on the Cave subdataset, it was still within a
reasonable range.
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From Table 1, it can be seen that compared with the VINS-Mono algorithm, the SLAM
algorithm proposed in this paper has better adaptability and robustness. On the Bus
subdataset, with a total mileage of about 53 m, the VINS-Mono algorithm could not run
properly, while the RMSE of the SLAM algorithm proposed in this paper was 0.29 m. On
the Cave subdataset, with a total mileage of about 87 m, the RMSE of the VINS-Mono
algorithm was 0.35 m, while the RMSE of the SLAM algorithm proposed in this paper was
0.16 m, which is 54.29% lower.

(a) (b)

Figure 8. Comparison plot of the two algorithms on the Bus subdataset: (a) trajectory comparison
chart; (b) APE comparison chart.

(a) (b)

Figure 9. Comparison plot of the two algorithms on the Cave subdataset: (a) trajectory comparison
chart; (b) APE comparison chart.
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Table 1. Comparison of the errors of the two algorithms.

Subdataset Algorithm MEAN (m) STD (m) RMSE (m)

Bus subdataset VINS-Mono * - - -
Our 0.24 0.16 0.29

Cave subdataset VINS-Mono 0.32 0.13 0.35
Our 0.14 0.06 0.16

* Indicates algorithm could not run properly.

3.2. Physical Experiments

In this study, the algorithm proposed in this paper was validated through underwater
physical experiments. BlueROV was selected as the experimental platform, carrying sensors
such as an underwater camera, an IMU, a DVL, and an underwater global positioning
system (GPS). The underwater experiments were divided into open-loop and closed-loop
experiments, and the reference trajectories (i.e., GT) were provided by the underwater GPS.

3.2.1. Open-Loop Experiment

The total length of the underwater open-loop experimental trajectory was about 83.18
m. The experimental trajectory is shown in Figure 10. RVIZ is a 3D visualizer for the Robot
Operating System (ROS) framework.

(a) (b)
Figure 10. Underwater open-loop experimental trajectory: (a) experimental satellite trajectory map
(hand-painted); (b) RVIZ trajectory map.

The experimental results are shown in Figures 11 and 12, and the experimental errors
are shown in Table 2. From Figures 11 and 12, it can be observed that in the feature-rich
region, both the proposed algorithm and VINS-Mono coulie detect the feature points that
satisfy the operation of their respective algorithms. However, the proposed image en-
hancement algorithm significantly increased the number of feature points, which improved
localization accuracy to a certain extent. From Table 2, in terms of mean absolute error
(MAE) and STD, the proposed algorithm reduced these values by 1.20 m and 0.40 m,
respectively, compared to those of the VINS-Mono algorithm.

(a) (b)

Figure 11. Two algorithms’ feature-matching results: (a) VINS-Mono; (b) the algorithm proposed in
this paper.
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Table 2. Comparison of the errors of the two algorithms.

Algorithm MAE (m) STD (m)

VINS-Mono 1.76 0.90
Our 0.56 0.50

.

Building on VINS-Mono, the proposed algorithm uses image enhancement to optimize
the original image. Additionally, the DVL used for velocimetry has a certain inhibitory
effect on the velocity dispersion of the IMU accelerometer, resulting in better performance.

(a)

(b)
Figure 12. Results of underwater open-loop experiments with two algorithms: (a) trajectory compari-
son chart; (b) error comparison chart.

3.2.2. Closed-Loop Experiment

The total mileage of the underwater closed-loop experimental trajectory wa about
209.04 m. The experimental trajectory is shown in Figure 13.

(a) (b)
Figure 13. Underwater closed-loop experimental trajectory: (a) experimental satellite trajectory map
(hand-painted); (b) RVIZ trajectory map.

The experimental results are shown in Figures 14 and 15, and the experimental errors
are shown in Table 3. From Figures 14 and 15, it can be seen that in feature-scarce regions,
VINS-Mono could not run properly due to its inability to detect the required feature points.
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The image enhancement algorithm proposed in this paper effectively solved this problem
by providing enough feature points for the algorithm, thereby guaranteeing its normal
operation. From Table 3, in terms of MAE and STD, the proposed algorithm had errors of
0.84 m and 0.48 m, respectively, and these errors are relatively small. (Note: Tte errors of
the VINS-Mono algorithm shown in Figure 15 and Table 3 represent the errors before it
failed to run.)

(a) (b)

Figure 14. Two algorithms’ feature-matching results. (a) VINS-Mono; (b) the algorithm in this paper.

(a)

(b)

(c)
Figure 15. Results of underwater closed-loop experiments with two algorithms: (a) trajectory
comparison chart; (b) error chart of the proposed algorithm; (c) error chart for the nonfailed part
of the VINS-Mono algorithm. (Due to the significant numerical difference between the errors of
the proposed algorithm and the VINS-Mono algorithm, the errors are plotted separately to better
illustrate the details.)
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Table 3. Comparison of the errors of the two algorithms.

Algorithm MAE (m) STD (m)

VINS-Mono * 2.32 2.01
Our 0.84 0.48

* Represents the error of the nonfailed part of the VINS-Mono algorithm.

In the underwater closed-loop experiments, the proposed algorithm detected the
loopback and initiated the repositioning and position optimization session, resulting in
a small error near the starting point. Additionally, the proposed algorithm incorporated
more image enhancement and DVL constraints compared to the VINS-Mono algorithm,
which improved robustness and positioning accuracy.

4. Discussion

To improve the accuracy and robustness of underwater visual SLAM, this paper
proposes an underwater multisensor fusion SLAM system based on image enhancement.
The system uses an underwater image enhancement algorithm based on a generative
adversarial network to optimize the underwater images. An underwater feature-matching
algorithm based on the local matcher is used to solve the feature-matching problem due to
the grayscale change in the enhanced images. Additionally, the DVL is tightly coupled to
the visual SLAM system, which ultimately reduces the accuracy error.

In the experiments, the main reason for the failure of the VINS-Mono algorithm was
the low input image quality, which could not provide sufficient feature points. In contrast,
the image enhancement part of the proposed algorithm effectively solves this problem.
Additionally, the above optimization further improves the navigation accuracy of the
proposed algorithm. In the open-loop experiment, the MAE and STD of the proposed
algorithm were reduced by 68.18% and 44.44%, respectively, compared to those of VINS-
Mono. In the closed-loop experiment, the MAE and STD values of the proposed algorithm
were 0.84 m and 0.48 m, respectively.

The proposed algorithm is mainly suitable for areas with rich and easily distinguish-
able underwater features. However, in special underwater environments, AUVs sometimes
move to areas with weak or repetitive textures, such as a flat seabed with all sand, resulting
in insufficient or mismatched features. In this case, the proposed algorithm has the possibil-
ity of crashing. To solve this problem, in future research, we plan to add Kalman filtering
to the algorithm as an alternative navigation scheme. We are investigating the navigation
accuracy confidence between the two, the timing of switching between them, and the re-
lated problems faced by visual SLAM when rerunning on an existing map. Additionally, to
further bolster the algorithm’s robustness, we will explore integrating a magnetometer and
a depth gauge into the algorithm, which will help with obtaining more accurate heading
angle and depth information. Therefore, the code is not open-source.

5. Conclusions

In this paper, we proposed an underwater multisensor fusion SLAM system based on
image enhancement, which uses a generative adversarial network with hybrid attention to
enhance underwater images. To obtain feature matching between the enhanced images,
based on the a priori information provided by the gyroscope and the DVL, we use the
proposed local matcher to accomplish feature tracking. Meanwhile, the addition of the
DVL information enhances the system’s robustness and accuracy.

Specifically, the main focus of this study was on underwater image enhancement
and tight DVL coupling. Underwater image enhancement is the foundation of the entire
algorithm, directly determining whether the algorithm can run normally. Its role is to
process poor-quality underwater images into images that meet the system’s requirements,
providing enough feature points for the algorithm. The role of tight DVL coupling is mani-
fested in two aspects. First, it provides a priori information for the feature matching of the
underwater enhanced image, increasing the speed and accuracy of the matching. Second,



J. Mar. Sci. Eng. 2024, 12, 1170 17 of 19

it provides real speed information to optimize the initialization and nonlinear optimization
of the algorithm, which in turn improve the accuracy of navigation and positioning.

To validate the proposed algorithm, we conducted AFRL dataset simulation experi-
ments and physical experiments. The results of these experiments demonstrated that our
proposed algorithm has good accuracy and underwater adaptability. Additionally, our
system provides significant improvements in terms of MAE and STD over VINS-Mono.
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