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Abstract: Miniaturized underwater profilers have the advantages of small size, low cost, and flexible
deployment, which play together an important role in the persistent monitoring of a designated
ocean area. Based on the demand for ocean observation, the system design, dynamic modeling, and
dead reckoning algorithm of a miniaturized underwater profiler are carried out. The process of the
persistent monitoring of designated area with a miniaturized underwater profiler is analyzed, and
the overall structure of the miniaturized underwater profiler was designed. Additionally, the kine-
matic and dynamic model of the miniaturized underwater profiler is given based on the inertial and
body coordinate systems. Then, according to the state equation and the observation equation of the
miniaturized underwater profiler, a dual-mode square root cubature Kalman filter (DSRCKF) algo-
rithm, combining standard SRCKF and adaptive SRCKEF, is proposed for the dead reckoning of the
miniaturized underwater profiler. Finally, a comprehensive comparison of EKF, UKF, CKF, SRCKF,
and DSRCKF and the associated simulations and experiments are conducted to verify the perfor-
mance of the underwater dead reckoning algorithm for the miniaturized underwater profiler. The
results show that the DSRCKEF algorithm has a certain role in the dead reckoning of the miniaturized
underwater profiler, particularly in the z direction and attitude. In future, a real underwater dead
reckoning test using miniaturized underwater profiler will be carried out.

Keywords: miniaturized underwater profiler; dead reckoning; dual-mode square root cubature
Kalman filter; structure design; modeling

1. Introduction

Ocean designated area persistent monitoring technology can obtain small range and
long-term ocean data, providing data support for the comprehensive and reliable analysis
of ocean-related phenomena. It is thus important in terms of its application in military
exploration and in the observation of major ocean emergencies. As a result, countries at-
tach great importance to the research and development of ocean observation technology
[1]. As underwater designated area monitoring platforms, miniaturized underwater pro-
filers have the advantages of low noise, low cost, small size, convenient transportation,
and flexible deployment. Therefore, this study focuses on the relevant content of a minia-
turized underwater profiler in ocean designated area persistent monitoring technology.

Currently, the common underwater mobile platforms that can perform designated
area persistent monitoring include four types: underwater gliders, autonomous underwa-
ter vehicles, profiling floats, and underwater profilers. Examples of these include
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Seaglider [2], Slocum [3], Tsukuyomi [4], Anchor Diver [5], Wirewalker [6], the Air-Sea
Interaction Profiler [7], the Ice-Tethered Profiler [8], Arvor-C [9], ZJU-HUP [10], etc. How-
ever, these underwater mobile platforms have larger sizes and high costs. For small range
designated area monitoring operations, it is imperative to miniaturize the design of an
underwater profiler.

In order to complete the underwater designated area persistent monitoring task, an
underwater profiler needs to have the ability to resist time-varying ocean currents and
undergo horizontal displacement correction [11]. The method of designated area moni-
toring largely determines the performance of the profiler in small-range observation pro-
cesses. However, it is crucial to obtain accurate navigation information of the relevant
miniaturized underwater profiler when implementing designated area monitoring strat-
egies. The position, attitude, and velocity information of underwater profiler carriers gen-
erally rely on the accelerometers and gyroscopes carried by the profiler. Due to the inher-
ent physical characteristics of gyroscopes and accelerometers, the sensors show drift and
noise. This results in continuous error accumulation and significant deviation in the esti-
mated value of the navigation information.

The estimated navigation information can be correct by additional sensing elements,
such as magnetometers, Doppler velocity logs (DVLs), etc. Magnetometers can provide
accurate navigation information and can be used to test magnetic field strength and direc-
tion, locate equipment orientation, and assist in eliminating errors caused by integration.
However, the output of the magnetometer is affected by hard and soft magnets, and cali-
bration and compensation are required [12]. The DVL-assisted inertial component, also
known as the dead reckoning method, is currently the most commonly used method in
underwater navigation [13-19]. A DVL is a velocity measurement device, based on the
sonar Doppler effect, that can provide high-precision carrier velocity information and
whose errors do not accumulate over time. During underwater navigation, a DVL can
serve as an important auxiliary means by which to suppress accumulated errors. How-
ever, this paper focuses on miniaturized underwater profilers, which are small in size,
lightweight, and low cost and thus are not suitable for a DVL. Moreover, the dead reck-
oning method cannot directly measure the position of the carrier, but instead integrates
the velocity based on the time azimuth angle in order to obtain the navigation information.
Measurement errors introduced during the speed and attitude angle measurement pro-
cess can result in a continuous increase in position errors. Once these errors exceed the
upper limit threshold, they can significantly degrade navigation estimation performance
[20].

Data fusion algorithms are another navigation method. By fusing information from
multiple data sources through algorithms, a more reliable and accurate state estimation is
generated than is generated by a single data source. The Kalman filter (KF) algorithm is a
mature and widely used data fusion algorithm. This algorithm utilizes linear system state
equations to perform the optimal estimation of system state through input and output
observation data. However, this method requires the system equation to be linear, so it is
not suitable for nonlinear systems. In response to the shortcomings of KF, researchers have
proposed a large number of excellent nonlinear filtering methods, and the extended Kal-
man filter (EKF) is one of these [21]. The unscented Kalman filter (UKF) is a method that
uses an unscented transform to solve the mean and variance of prediction models and is
simpler than EKF. Allotta et al. [22] designed a new navigation strategy for AUVs based
on UKF, achieving an effective balance between accuracy and computational load.
Through experiments, it was found that UKF has better navigation performance than EKF,
especially in discontinuous and strongly nonlinear situations where the UKF navigation
strategy has a significant effect. However, the UKF has parameter selection issues, and the
performance of UKF is affected by the initial filtering value [23]. Davari and Gholami [24]
proposed an asynchronous adaptive direct KF method to filter out nonlinear processes
and measurement noise and improved the accuracy of underwater integrated navigation.
The experimental results indicate that the relative root mean square error of the estimated
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position was reduced by an average of 61%. Emami and Taban [25] proposed an H infinity
algorithm filter that effectively reduces the impact of system modeling errors, noise, and
DVL outliers on dead reckoning. This algorithm was evaluated through multiple sea tri-
als. Huang et al. proposed adaptive EKF [20], smooth parameter UKF [26], and multi-
model EKF [27] to address the issues of high-precision attitude angle calculation and head-
ing determination for underwater gliders. These algorithms were applied to underwater
navigation and positioning processes and effectively improved the stability and accuracy
of underwater glider dead reckoning. Zhang et al. [28] introduced a multi-sensor adjusta-
ble period combination navigation approach, utilizing multi-level signal triggering, to
tackle the issue of underwater navigation sensors producing output signals with varying
periods that fluctuate over time. This method fully utilizes the effective signals of each
sensor and performs data fusion.

The cubature Kalman filter (CKF) approximates the state mean and covariance of a
nonlinear system using a set of cubature points. However, in the process of using CKF,
the error covariance matrix of the state variables must ensure two attributes: the first is
symmetry and the second is positive definiteness [29,30]. Due to the word length limita-
tion of the microcontroller used, truncation phenomena inevitably occur during the cal-
culation process, leading to the loss of positive definiteness. In some special cases, the loss
of positive definiteness can cause the CKF algorithm to diverge or even terminate. In order
to improve the filtering performance of CKF, the square root of the error covariance matrix
is introduced in the CKF filtering process to ensure the symmetry and positive (semi-)
definiteness of the CKF error covariance matrix, thus forming the square root cubature
Kalman filter (SRCKF) algorithm [31]. This avoids instability and divergence problems
and improves the accuracy of calculations. However, the changes in measurement condi-
tions have a significant impact on the standard SRCKF algorithm, which is not adaptive
to the changes in measurement conditions and system model uncertainties. Adverse
measurements or changes in the system model can affect the filtering performance or even
lead to filtering failures. Therefore, in order to ensure that the SRCKF algorithm is robust
against poor measurement values of miniaturized underwater profiler, an adaptive
SRCKEF is also required. In applications, it is necessary to balance estimation accuracy,
implementation difficulty, numerical robustness, and computational complexity in order
to choose a suitable filtering method. Taking into account the characteristics and cost of a
minijaturized underwater profiler, this paper designs a dual-mode square root cubature
Kalman filter (DSRCKF) algorithm, which combines the standard adaptive SRCKFs and
is suitable for miniaturized underwater profiler dead reckoning. When the measured val-
ues perform normally, the standard SRCKF algorithm is used and when the measured
values perform poorly, the adaptive SRCKF algorithm is used. In this way, the accuracy
of dead reckoning can be improved.

In this paper, we explain clearly the system design, the dynamic modeling, and the
filtering approach used to correct the movement of the miniaturized underwater profiler.
Simulations and experiments are performed in order to validate the overall system design,
especially the DSRCKEF algorithm used in the dead reckoning. The obtained results show
improvements in comparison with other filters in use (including EKF, UKF, CKF, and
SRCKEF). The rest of this paper is organized as follows: Section 2 analyzes the system struc-
ture of the miniaturized underwater profiler designed by our team and conducts relevant
kinematic and dynamic modeling. The method for the dead reckoning of the miniaturized
underwater profiler is studied and a DSRCKF algorithm is proposed in Section 3. Section
4 utilizes simulation and experimentation to verify the superiority of the algorithm. Sec-
tion 5 summarizes the main conclusions of this paper.

2. Structure and Modeling of the Miniaturized Underwater Profiler

In order to meet the needs of low cost and miniaturization in ocean designated area
persistent monitoring, the design of an underwater profiler necessitates a miniaturized
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structure, and the corresponding kinematical and dynamical model can provide a theo-
retical foundation for subsequent dead reckoning and monitoring strategies.

2.1. Structure of Miniaturized Underwater Profiler

The designated area persistent monitoring process of a miniaturized underwater pro-
filer can be divided mainly into three stages: (1) vertical diving data acquisition; (2) gliding
and floating upward displacement correction; and (3) sea surface positioning data trans-
mission. The entire process is shown in Figure 1.

sea surface

positioning data Sea Surface
transmission
-
gliding and
floating -
upward .
displacement
correction
Seabed

Figure 1. Schematic diagram of the designated area persistent monitoring process of the miniatur-
ized underwater profiler.

Based on the designated area persistent monitoring process, we designed a miniatur-
ized underwater profiler (Figure 2). The overall underwater profiler system includes the
following: pressure chamber, main control module, buoyancy regulating system, bary-
center control system, communication module, navigation and positioning module, etc.
The barycenter control system adjusts the motion posture of the miniaturized underwater
profiler by controlling the position of the removable mass block. The buoyancy regulating
system uses the piston’s extending and retracting to change the drainage volume of the
miniaturized underwater profiler, thereby adjusting the net buoyancy and allowing the
underwater profiler to rise or dive. The navigation module includes components such as
gyroscopes, accelerometers, and magnetometers, which can provide information about
the attitude angle, acceleration, and angular velocity of the miniaturized underwater pro-
filer, providing data support for the obtainment of the underwater navigation information
of the underwater profiler. In order to facilitate comparison, the main parameters of the
miniaturized underwater profiler proposed in the study and the ZJU-HUP profiler de-
scribed in [10] are shown in Table 1.
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Figure 2. Diagram of the entire structure of the miniaturized underwater profiler: (a) schematic di-
agram and (b) physical structure.

Table 1. Main parameters of the miniaturized underwater profiler and ZJU-HUP profiler.

Parameters Miniaturized Underwater Profiler ? ZJU-HUP?
Mass 11.25kg 82 kg
Hull dimensions D0.12mx12m 0.2377 m x 2.31 m
Buoyancy adjustment 03L 1.8L
Maximum dive depth 300 m 1200 m

Designated area persistent
monitoring ability
Buoyancy adjustment mode Piston Oil bladder
! Designed by the authors. 2 Described in [10].

<500 m 384 m

In order to adjust different angles when the miniaturized underwater profiler is div-
ing or rising, the attitude adjustment system of the miniaturized underwater profiler must
have greater angle adjustment capabilities. Compared with the traditional single mass
block barycenter control method, the dual mass block barycenter control system has a
wider range of attitude angle adjustments. Given the internal space of the underwater
profiler, the battery pack can be used as the barycenter control mass block. The position
of the gravity center of the miniaturized underwater profiler is controlled by driving the
mass block to translate and rotate, thereby adjusting the attitude of the underwater pro-
filer. The structure and regulation principle of dual mass block barycenter control system
are shown in Figure 3.

Large gear
Limited rod Motor Battery Screw rod

Slider rod Battery chamber Bearing
Small gear Stepper motor

(a) (b)
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Figure 3. Dual mass block barycenter control system of the miniaturized underwater profiler: (a)
schematic diagram, (b) real product, and (c) the relationships between the position of dual mass
block and the attitude of the profiler.

The miniaturized underwater profiler has no propeller or other power-driving de-
vice, therefore, the buoyancy regulating system is the key to the entire observing move-
ment, which provides upward/downward force. Considering the miniaturization require-
ments of underwater profilers, a variable volume method is chosen for net buoyancy ad-
justment. We have designed a piston-type buoyancy regulating system which uses a serve
motor to drive the screw rotation and push the piston motion. Consequently, the require-
ment of changing the overall drainage volume of the profiler can be achieved. The buoy-
ancy regulating system of the miniaturized underwater profiler is shown in Figure 4.

Servo motor

Reducer

Anti-reverse Coupling

mechanism Bearing

Screw rod

Piston

(a) (b)

Figure 4. Buoyancy regulating system for the miniaturized underwater profiler: (a) schematic dia-
gram and (b) the real product.

2.2. Kinematic and Dynamic Modeling of the Miniaturized Underwater Profiler

Based on the motion form of the miniaturized underwater profiler, the relevant coor-
dinate system of the miniaturized underwater profiler is established. The defined coordi-
nate system is shown in Figure 5.
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Inertial frame

Body frame

Figure 5. Definition of the coordinate system of the miniaturized underwater profiler.

The position and attitude of the miniaturized underwater profiler in the inertial co-
ordinate system can be expressed as follows: X; = [x,y,z]" and 0 = [¢,0,9¥]”, where x,
y, and z represent respective position information and ¢, 6, and Y represent roll, pitch,
and yaw angles, respectively. The linear and angular velocities of the miniaturized under-
water profiler in the body coordinate system can be expressed as follows: Vy = [u, v, w]”
and 2 = [p, q,r]", in order to facilitate the calculation of viscous hydrodynamic forces and
moments for the miniaturized underwater profiler, as well as to describe the relationship
between the motion direction of the miniaturized underwater profiler and the body coor-
dinate system. In the velocity coordinate system, the angle of attack can be expressed as
a = arctan (K) and the drift angle can be expressed as = arcsin (ﬁ)

u u“+ve+w

The velocity relationship of the miniaturized underwater profiler in the body coordi-

nate system and the inertial coordinate system can be expressed as follows:

XI = RIB(O)VB
6 =J3(0)2
cOcyy spsOcy) —cpsyp  cpsOcy + spsy

cOsyY  s@psOsyY + cpc)  cPpsOsp — spcy , J5(0)
—s0 s¢ch cpcl

@™

where RL(O) =

1 s¢s@ cpso
ia 0 c¢pco —Sd)cﬁl, and the relevant symbols are abbreviated with ¢ = cos() and s =
0 s¢ co
sin().

The translational momentum of the miniaturized underwater profiler in the inertial
coordinate system is defined as p and the angular momentum is 7. According to New-
ton’s law, the derivative of momentum over time is used to obtain the relationship be-
tween the external force and external moment that the miniaturized underwater profiler
is subjected to in the inertial coordinate system, as follows:

p=fex+(ms+md+mb_Am)gk

2
T =T, + megk X q; + mygk X q4 + mygk X q, @)

where f., and t,, are the external forces and the moments exerted by the external envi-
ronment on the miniaturized underwater profiler, respectively; m;, myq, mp, and Am
represent the static mass, removable mass, adjustable buoyancy mass, and drainage mass
of the miniaturized underwater profiler, respectively; q;, q4, and q;, represent the posi-
tions of the static mass center of gravity, the removable mass center of gravity, and the net
buoyancy center of the miniaturized underwater profiler in the inertial coordinate system,
respectively; and g is the magnitude of local gravitational acceleration. The unit vector k
pointing towards the direction of gravity in the inertial coordinate system.

P and IT represent the translational and angular momentums of the miniaturized
underwater profiler in the body coordinate system, respectively. The following relation-
ship between the translational and angular momentums in the inertial coordinate system
and the body coordinate system are as follows:
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T=RL(OIT+X,xXp
Take the derivative of Equation (3) to obtain the following:
p = R5(0)(P + 2P) @
T =RL(O)(IT+ QIT) + R;(O)Vy xp+ X, X P
By combining Equations (2) and (4), the following can be concluded:
P = Px 0 +m,g(RLO)I) + RE(0) fos -

V,=M" {—

M

IM=Mx0+PxVz+ (mgrs+mury +m,ry)g x (R5(0)"k) + R5(0) 1.,

where, rg, 14, and 1, are the positions of the static mass center of gravity, removable
mass center of gravity, and net buoyancy center of the miniaturized underwater profiler
in the body coordinate system, respectively.

The generalized relative velocity of the miniaturized underwater profiler in the body
coordinate system is defined as V,, which can be expressed as follows:

=[5 0

The generalized momentum of the miniaturized underwater profiler in the body co-
ordinate system can be expressed as follows:

= [1]- v, "

where M is the generalized inertia matrix.
By taking the derivative on both sides of Equation (7), the following can be con-
cluded:

i=P|=mv, + v, ®)
Equation (8) can be rewritten as follows:
. |4 . .
v, =" = M - v, ©

By substituting Equations (5) and (8) into Equation (9), we can obtain the dynamic
model of the miniaturized underwater profiler, as follows:

Px02+ mbg(Rﬂ;(@)Tk) + Rg(Q)Tfex ]}

vV, + [ 10
9 IMxQ+PxXVy+ (mers + myry + myr,)g X (R5(0)Tk) + R5(0)'t,, (10)

where Fz = R5(0)"f,, and Ty = R5(0) 7., can be used to represent the hydrody-
namic forces and moments acting on the miniaturized underwater profiler in the body
coordinate system.

M, C

, where each
cr It]

The generalized inertia matrix M can be represented as M = [

part has the following relationships:

M, = (ms + mg)l; + My
C. = Cy—mits —myty (11)
It = IS +Id +IA _msf'sf's _md?‘d?d

where I; represents a 3 X 3 unit matrix; I and I; represent the moment of inertia of
the static mass and the moment of inertia of the removable mass of the miniaturized un-
derwater profiler in the body coordinate system, respectively; * represents the antisym-
metric matrix and exists as Xy = x X y for the three-dimensional vectors x and y; M,,
C, and I, are the additional mass, hydrodynamic coupling term, and additional moment
of inertia of the miniaturized underwater profiler, respectively.
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3. Dead Reckoning Algorithm of the Miniaturized Underwater Profiler

Miniaturized underwater profilers are susceptible to the influence of uncertain dis-
turbances during the observation process, resulting in a gradual increase in the horizontal
displacement and in the profilers moving away from the positioning center, leading to the
failure of the designated area persistent monitoring task. In order to keep the miniaturized
underwater profiler closer to the positioning center after gliding and floating upward, it
is necessary to make decisions on the gliding angle and yaw angle of the miniaturized
underwater profiler. Therefore, it is of primary importance to effectively obtain the navi-
gation information of the miniaturized underwater profiler before making decisions.
However, under the existing conditions, it is not possible to directly obtain the navigation
information of the miniaturized underwater profiler, and this can only be obtained
through dead reckoning. Additionally, it is necessary to improve the accuracy of dead
reckoning.

3.1. State Equation and Observation Equation of the Miniaturized Underwater Profiler

In order to use the Kalman filter for underwater dead reckoning, the state equation
and the observation equation of the miniaturized underwater profiler, based on its dy-
namical model, are established as follows:

Xie = F(Xp-1,Uk—1) + Kpe_q
Vi = HQ) + 6k

The input u;_; includes the underwater net buoyancy and hydrodynamic force at
the k —1 moment of the miniaturized underwater profiler. x;_, € N(0, Q) represents
the process noise at the k —1 moment, and ¢, € N(0,R) represents the observation
noise at the k moment, both of these satisfy a normal distribution.

Considering the observability of the miniaturized underwater profiler system at the
k moment, the position X;, and attitude angle @, of the miniaturized underwater pro-
filer in the inertial coordinate system, as well as the linear velocity Vy;, and angular ve-
locity £, of the motion of the miniaturized underwater profiler in the body coordinate
system, are selected as the state vectors. The specific form of x; can be expressed as fol-
lows:

(12)

T
Xk = [XIT,k'QT' Vg,k'ﬂz] (13)
By combining the state space Equations (12) and (13), the following can be concluded:
2
I, 05 RL(O, AT 0, #
0; 1 0 L(@_)AT
Xk = OZ 033 133 J5( 831) Xi-1+| Ozyq |+ Kpy (14)
_1AT
0, 0, o0, I e
3x1

where AT is the sampling interval time and a;_; is the total acceleration generated by
the underwater net buoyancy and hydrodynamic factors of the miniaturized underwater
profiler system at the k — 1 moment.

The sensors used for underwater dead reckoning in the miniaturized underwater
profiler include micro attitude reference systems and depthometers. The micro attitude
reference system can provide information on the attitude angle changes of the miniatur-
ized underwater profiler. The depthometer can provide the information of depth and its
variation. Attitude angle data can be obtained through attitude angle calculation methods.
Based on the data obtained from sensor and attitude angle calculation, the observation
vector is selected as follows:

. T
Yi = |21, 0%, X7, 2F] (15)

During the floating upward process of the miniaturized underwater profiler, a cer-
tain pitch angle is required for the gliding motion in order to correct the errors caused by
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uncertain disturbance. At the same time, the sensors carried by the miniaturized under-
water profiler have a higher frequency of information sampling. Consequently, it can be
approximated that the miniaturized underwater profiler strictly performs the gliding mo-
tion in each cycle. Therefore, based on the data z; collected by the depthometer in the
depth direction, Z, can be obtained and, when combined with the calculated attitude an-
gle information, X, and y, atthe k moment can be inferred as follows:

Zk

X = ta;lkek cos Py 6
Vi = tan o, siny,
Therefore, from Equations (1) and (12), the following can be obtained:
[0,01] 0ixs  0Oix3  Oix3
Y = . ! O . Xt Sk 17)

03 03 RIB(Qk) 03
o, o0, o0, I,]

3.2. Extended Kalman Filter, Unscented Kalman Filter, and Cubature Kalman Filter
3.2.1. Extended Kalman Filter

The EKEF is one of the most employed nonlinear filtering approaches and is still cur-
rently applied. The EKF algorithm includes two main steps, time update and measure-
ment update.

1. Filter initialization

Py = E{[(xo — Xo) (o — X0)" 1}
where P, represents the error covariance matrix of the estimated state vector. Setting k €
{1,..,m}
2. Time update

Compute the partial derivative matrix:

OF(x)
Fi1=—3 " (19)
k-1
Estimate the propagated state and covariance matrix for instant k:
Zk = F(?k:l) (20)
Py =Fy 1Py 1Fi 1+ Qi
3. Measurement update
Compute the partial derivative matrix:
0H(x)
Hy=— ral (21)
Xk

Estimate the Kalman gain, update state and covariance matrix:

K, = P Hi (H P H} + R)™
):(k =Xr+ Kk[}’k__ H(x))] (22)
P, = (I_Kka)Pk

3.2.2. Unscented Kalman Filter

UKEF can reduce the linearization errors of the EKF. The UKF algorithm has the fol-
lowing steps.
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1.  Filter initialization

The procedure is the same as that in Equation (18).
2. Time update

Generate the sigma points x;,_1(i = 0,1,...,2n):

Xojk-1=Xk-1,1=0

Xi,k—l = ?k—l + ("(n + /‘l)pk—1>'ii = 1; o n (23)

i

Xi,k—l = )?k—l - ( (Tl + A‘)ﬁk—Zl) ,i =n-+ 1, ,Zn

i-n
where 1 is a scaling parameter.
Propagation of sigma points:

Xik =F(Xix-1),i=0,..,2n (24)
Estimation of the propagated state and covariance matrix for instant k:

2n
A 1
o . S 25
Xk n+/1Xo,k+le(n+/1)Xz,k (25)
i=

2n

T L | A

P, = nra [Xox — Xl [Zox — i) + ;mb{i,k = Xl (X — %] (26)
+ Qk-1

3. Measurement update

Evaluation of the sigma points: x;,_,(i = 0,1, ...,2n):

Xok =Xiwi=0

Xi,kz)_(k+< ’(n-l-/l)l_’k)‘,i:l,...,n )

4

Xik = Xk —< ’(Tl+/1)l_’k> ,i=n+1,..,2n

-n
Propagation of the sigma points through the measurement model:
Yi,k = H(Xl,k);l = 0; --.,Zn (28)

Estimation of the predicted measurement, innovation covariance matrix and cross-
covariance matrix:

2n
A

Y = mYO,k + Zm],i,k

b - <1

_ _ 1T _ T
Poor = ) [}’o,k - Yk][}’o,k - Yk] + ; CED) [Yi,k - )’k][)’i,k - Yk] (29)
+ Ry,

A P 1 r

Py = ] [Xox — Xil[Yor —7i] + Z G [Zix — Xl [vik — ¥l
i=1

Estimation of the Kalman gain, update state and covariance matrix:

-1
K, = sz,k(Pzz,k)
Xie = X + Kielyie = 74 (30)
P, =P, — K\P,, K}
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3.2.3. Cubature Kalman Filter

CKF uses a set of cubature points of equal weight to calculate the means and covari-
ances of state variables which, after nonlinear transformation, yield a performance of non-
linear optimal approximation. The CKF algorithm has the following equations.

1.  Filter initialization

The procedure is also the same as that in Equation (18).
2. Time update

Calculation of the cubature points x;,—,(i = 1,2, ...,2n):

Xik-1 = (|Pr-1& + X1 (31)

where §; is a set of cubature points, which can be expressed as follows:

vn[ll; i=1,..,n
§i = { Jn " (32)
—n[l]; i=n+1,..2n
Propagation of cubature points:
Zik = F(Xije-1) (33)
Estimation of the propagated state and covariance matrix for instant k:
2n
= 1=
Xk = %Z Xik
on (34)

_ 1 L .
P, = EZ[Xi,kXiT,k] — XXk + Qi1
=1

3. Measurement update

Evaluation of the cubature points x; (i = 1,2, ...,2n):

Xik = /l_’kfi + Xk (35)

Propagation of the cubature points through the measurement model:
viee = H(xiux) (36)

Estimation of the predicted measurement, innovation covariance matrix and cross-

covariance matrix:

2n

_ 1

Yk = %Z Yik
i=1
1 2n

P, = %Z[Yi,kyg:k] — [7x7i] + Ry, (37)

i=1

2n
1 _
Py = ﬁZ[Xi,kYzT,k] — [ 77
=1

Then, estimation of the Kalman gain, update state and covariance matrix are achieved
in the same manner as in Equation (30).

3.3. Dual-Mode Square Root Cubature Kalman Filter
3.3.1. Square Root Cubature Kalman Filter

The SRCKEF algorithm ensures the symmetry and positive quality of the covariance
matrix, avoids instability and divergence problems, and improves the calculation
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accuracy. In a miniaturized underwater profiler system, the SRCKF algorithm [31] is as
follows.

1. Filter initialization

Initialize the relevant parameters in the miniaturized underwater profiler system, the
procedure is also the same as that in Equation (18), and perform Cholesky decomposition
on the initial covariance matrix to obtain its square root initial value S,:

S, = chol(P,) (38)
where chol() represents the decomposition of an any order matrix A into a lower trian-
gular matrix L, namely: A = LL”.

2. Time update

Step 1: Calculate the cubature points and bring the cubature points into the state
equation of the miniaturized underwater profiler for propagation (i = 1, ...,2n):

Xi,k—l =Sp-1§i + Xk (39)
Xik = F(Xi,k-p uk—l)

where n represents the dimension of the state vector and &; is a set of cubature points
that defines in Equation (32).
Step 2: Calculate the predicted system state value at the k moment:

1 2n
ﬂ=ﬁ2ﬁk (40)
i=

Step 3: Calculate the square root of the predicted covariance matrix of the state error
of the miniaturized underwater profiler:

S, = tria{[T, Sox-1]} (41)

where tria() represents QR decomposition, which entails decomposing the matrix A"
into an orthogonal matrix B and an upper triangular matrix €, namely €" = tria(A4);
So k-1 is Cholesky decomposition of the process state noise Qx_; at the k —1 moment.
G and S, ,_; can be represented as follows:
(* _ 1 [ * = * = * = ]
k ez Xik —XwXok — Xkr o Xonk — Xk (42)
SQ,k—l = chol(Qy-1)

3. Measurement update

Step 4: Recalculate the cubature points and bring the recalculated cubature point into
the observation equation of the miniaturized underwater profiler for propagation (i =
1,2, ...,2n), as follows:

Xik = Sk&i + X

Yie = H(xix) 3

Step 5: Calculate the predicted measurement value, as follows:

1 2n
m=52nk (44)
i=

Step 6: Calculate the square root of the covariance matrix of the measurement error
of the miniaturized underwater profiler, as follows:

Sz = tria{[pi, S} (45)

where Sg; is Cholesky decomposition of the measurement noise R; at the k moment.
px and Sz, can be represented as follows:
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1 _ _ _
Pk = \/T_n [Y1,k — Y V2ok — VY- Vonk Yk] (46)
SR,k = ChOl(Rk)
The error covariance matrix P,,; of the measurement value at the k moment and

the autocorrelation covariance matrix P,; of the measurement value can be expressed as
follows:

— T
Pzz,k - Szz,kszz,k

47
P,i.=P,— Ry @7

Step 7: Calculate the square root of the cross-correlation covariance matrix, as fol-

lows:
Py = i (48)
where {;, can be expressed as follows:
1
= — % — Xr, s -X 49
Ci m[)h,k XXk — Xk Xonk Xk] (49)

Step 8: Calculate the Kalman gain, the estimated value of the state vector at the k
moment, and the square root of the covariance matrix of the state error, as follows:

K, = (sz,k/sgz,k)/szz,k
Xi =X+ K[y — 7Vil (50)
S, = “’ia{[(k — Kyp, KkSR,k]}

3.3.2. Adaptive Square Root Cubature Kalman Filter

The changes in measurement conditions have a significant impact on the standard
SRCKEF algorithm and the SRCKF algorithm does not have the ability to adapt to changes
in measurement conditions. Therefore, in order to ensure that the SRCKF algorithm is
robust against poor measurement values of the miniaturized underwater profiler, an
adaptive SRCKEF is proposed based on the state space model of the miniaturized under-
water profiler.

The error value of the measurement at the k¥ moment of the miniaturized underwa-
ter profiler is e, = ¥y — V. According to Equation (47), there exists a relationship when
the measured values of the system are normal, as follows:

P =erei =P, + Ry (51)

However, when the measured values of the system are poor, Equation (47) is not
valid. An adaptive factor p; isintroduced, and the above relationship can be rewritten as

follows:
Pk = Pyy + xRy (52)
The square root of the covariance matrix of the measurement error becomes the fol-
lowing;:
Sszk = tria{[pe, /tcSri} (53)
The square root of the covariance matrix of the state error is also changed to the fol-
lowing;:
Sk = tria{[Q — Kxpro Ki/ucSri]} (54)

The adaptive factor u; is as follows:
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_ eiek - tT'[PZ’k]

He = tr [Rk] (55)

where tr() represents the trace operation.

3.3.3. Switching Rules

The filter structure of the underwater dead reckoning sensor system for the minia-
turized underwater profiler is shown in Figure 6. When the measured values of the min-
iaturized underwater profiler system perform normally, the standard SRCKF algorithm is
used and when the measured values of the system perform poorly, the adaptive SRCKF
algorithm is used to infer the underwater position and attitude of the miniaturized under-
water profiler.

Switching
rules
0/0 Standard SRCKF
| I Data
Sensor data output
g Adaptive SRCKF

Figure 6. The filter structure of the underwater dead reckoning sensor system for the miniaturized
underwater profiler.

In order to establish switching rules for filters, a statistical function for the quality
detection of data values measured by miniaturized underwater profilers is introduced, as
follows:

B = €L[Poi] e (56)

The statistical function satisfies condition fj~x?(n), the chi-square distribution with
degree of freedom n; n is the dimension of the measurement error vector e, of the min-
iaturized underwater profiler. Determine the threshold x5, for data quality detection
based on the accuracy & of data quality control, as follows:

P{x? > x3u} =0 (57)

Develop switching rules for standard SRCKF and adaptive SRCKEF filters, as follows:
(1) when B < )((%,M considers the measured value to be in a normal state, select the stand-
ard SRCKF algorithm and (2) when B > x5, considers the measured values to be in a
poor state, the adaptive SRCKF algorithm is chosen.

The DSRCKEF algorithm is illustrated by the pseudocode in Algorithm 1.

Algorithm 1. dual-mode square root cubature Kalman filter
Input: ¥p-1, Ux-1, Qk-1, Ry, Sk
Output: ¥, Sk
1: Setting number of cycles m

Filter initialization
)?O/ 130/ SO
while k<m do

Time update

Xik-1=Sk—1§i + Xk-1, Xix = F(Xi,k—lruk—l)
> izZn *
Ak = 5 Li=1Xik

n
O = \/% [Xik = Xio Xok — X s Xompe — Xic)r Sqie—1 = chol(Qy—1)
Sk = tria{[T;, Sou1]}

O 0 N O O &= W IN
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10:  Measurement update

11: Xik =Si&i+ X Vi = H(xix)
— 1
12: Y = %2?21 Yik
1 — — —
13: P =7 [Yik — Vi Yok — Vi oo Yanr — Vi), Sei = chol(Ry,)
14: Szz,k = tria{[pk'SR,k]}/ Pzz,k = Szz,ksgz,kr Pz,k = Pzz,k - Rk
1 — — —
15: Tk =E[X1,k_Xk:XZ,k_Xkr---’XZn,k_Xk]
16: P =GP
17:  Switching
_ -1
18: e =Y — Vi B =€u|Pui]| ex
19: B~x2(m), P{x*> x3u} =6
20: if By < x5, then standard SRCKF
21: Sk = tria{[(k — Kkpk’KkSR,k]}
22: else adaptive SRCKF
T
. __eper—tr[P, ;]
23: Hie = tr[Ry]
24: Sy = tria{[Q — Kypi, K[t Sr ]}
25: SZZ,k = tria{[pk, \/nu'_kSR,k]}
26: end if
27: K, = (sz,k/sgz,k)/szz,k
28: Xk =X+ Ki[ve — Vil
29: k—k+1

30: end while

4. Dead Reckoning for the Miniaturized Underwater Profiler
4.1. Hardware Information

In order to verify the effectiveness of the underwater dead reckoning algorithm for
the miniaturized underwater profiler, its underwater navigation performance was tested
in a simulation environment. Inertial sensor and depthometer are the two main sensors of
a miniaturized underwater profiler. The inertial sensor adopts the mini attitude heading
reference system (AHRS) KX-3DM10B, which includes a three-axis Micro Electro Mechan-
ical System (MEMS) gyroscope, three-axis MEMS accelerometer and three-axis magneto-
resistive magnetometer. The mini ARHS is small in size, weighs only 18 g, and consumes
less than 0.3 W. Its internal update rate is 100 Hz. Table 2 lists its performance specifica-
tions.

Table 2. Performance specifications of mini ARHS KX-3DM10B.

Parameters Accelerometer Gyroscope Magnetometer
Measurement range 8¢g +300°/s +1.3Gs

Bias stability 10.003 g 10.2°/s 0.01Gs

Nonlinearity 0.2% 0.2% 0.4%

The high precision depthometer MS5837 is selected to provide depth information for
the miniaturized underwater profiler. The MS5837 is small and lightweight, and weighs
only 12 g. Its maximum measurement depth is 300 m, its measurement error is less than 1
m, and the power consumption is less than 0.5 W. All of the relevant error parameters of
the sensors are taken as Gaussian noise with a mean value of 0, and their error parameter
settings are shown in Table 3.
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Table 3. Error parameter settings for underwater dead reckoning.

Error Parameters Value
Depthometer 1m
Attitude angle 2°

Angular velocity 0.2°/s

4.2. Simulations
4.2.1. Motion in Fixed Pitch Angle

The miniaturized underwater profiler must adjust the yaw and pitch angles as it
floats upward to correct the horizontal offset. A system model is established in MATLAB
R2024a software and underwater dead reckoning simulation is conducted. Assuming that
the miniaturized underwater profiler performs a gliding and floating motion, the initial
floating point of the miniaturized underwater profiler at the depth of the underwater tar-
get is selected as the starting point for the underwater dead reckoning process. In the ini-
tial stage of floating upward, the miniaturized underwater profiler completes a turning
motion with a certain turning radius to reach the desired yaw angle. Then, the miniatur-
ized underwater profiler steadily glides upward at a fixed pitch angle until it reaches the
sea surface. The exit point of the miniaturized underwater profiler is taken as the termi-
nation point of the underwater navigation process. The position of the starting point is set
to a depth of 300 m, with initial yaw angle 120°, desired yaw angle 30°, initial pitch angle
40°, initial axial velocity of 0.5 m/s, and sampling period 3 s.

Set the initial filter values to y, = [0; 0; 300; 0; 407t/180; 1207 /180 0.5; 0; 0; 0; 0; 0],
Py = diag(1,1,1,1,1,1,1,1,1,1,1,1) , R, = diag(1,0.1,0.1,0.1,0.1,0.1,0.1,0.2,0.2,0.2) , Qo =
diag(0.01,0.01,0.001,0.002,0.002,0.002,0.001,0.001,0.0002,0.0002,0.0002,0.0002), and select a
data quality control accuracy & of 0.99. According to the chi-square distribution table, it
can be found that, when the degree of freedom n is 10, 3, is2.558.

Compare the solution results of EKF, UKF, CKF, SRCKF, and DSRCKEF algorithms in
simulation experiments. As shown in Figure 7, the results obtained when directly using
the sensor measurement values have significant errors and EKF, UKF, CKF, SRCKF, and
DSRCKF algorithms all have inhibitory effects on measurement errors. Figure 8 shows the
displacement and their error plots of the miniaturized underwater profiler in the x, y, and
z directions when using EKF, UKF, CKF, SRCKF, and DSRCKEF. Figure 9 shows the atti-
tude and their error plots of the miniaturized underwater profiler in the roll, pitch, and
yaw.

——Real
Measured
04 ——EKF
f ——UKF
05 CKF
100 4 SRCKF
_ ——DSRCKF
£ 150 -
N
200 200
250
100
300
0
100 0 x [m]

y [m] 200
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Figure 7. Motion trajectory diagram of the miniaturized underwater profiler in simulation.
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Figure 8. The position and error values of the miniaturized underwater profiler: (a) the position and
error values in the x direction, (b) the position and error values in the y direction, and (c) the position
and error values in the z direction.
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Figure 9. The attitude and error values of the miniaturized underwater profiler: (a) the attitude and
error values in roll, (b) the attitude and error values in pitch, and (c) the attitude and error values in
yaw.

In order to compare the effectiveness of these algorithms in the underwater dead
reckoning of the miniaturized underwater profiler and to eliminate the influence of acci-
dental errors on simulation results, the root mean square error (RMSE) value is used for
quantitative analysis. Figure 10 shows position and attitude RMSE values of the miniatur-
ized underwater profiler under 50 times simulations.

8 25 :
| I Measured UKF [ SRCKF
I Veasured [ EKF I cKF I DSRCKF
6l I EKF 1
G
E I cKF
Wy I SRCKF |
g [ DSRCKF
4
2 L

(a) (b)

Figure 10. The position and attitude RMSE values of the miniaturized underwater profiler in fixed
pitch angle: (a) position and (b) attitude.

In Figure 8, compared with the position error value in the z direction, the position
error values in the x and y directions are always larger, and there is no trend of conver-
gence. This is because the data in the x and y directions cannot be directly measured by
sensors. Instead, the velocity information in the depth direction and the attitude angle
information obtained from the current cycle solution are used to calculate the velocity
information in the horizontal direction, and the velocity information is integrated in order
to obtain the position information, leading to a certain amount of cumulative error. In the
process of underwater dead reckoning (Figures 7-10), depth and attitude angle infor-
mation directly measured by sensors have measurement errors. The measurement error
can be significantly reduced through these filtering algorithms, and the values obtained
by the DSRCKEF algorithm have minimum errors (Figure 10). Therefore, it is demonstrated
that the DSRCKEF algorithm proposed in this paper has a certain degree of effectiveness.

4.2.2. Motion in Different Situations

To directly reflect the performance of these navigation algorithm of the miniaturized
underwater profiler under various situations, different initial values, such as yaw angles,
pitch angles, and axial line velocities of the miniaturized underwater profiler are set.
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Different initial conditions for dead reckoning simulation are shown in Table 4, and cor-
responding underwater dead reckoning simulation analysis is conducted.

Table 4. Initial conditions for dead reckoning simulation analysis of the miniaturized underwater
profiler.

Parameters Values
Pitch angle (°) 40, 50, 60
Yaw angle (°) 90, 120, 150
Axial line velocity (m/s) 0.3,04,0.5,0.6
Initial depth (m) 300
Desired yaw angle (°) 30

Analyze the RMSE of the pose of the miniaturized underwater profiler in the simu-
lation results to obtain their average values. The position and attitude RMSE values of the
miniaturized underwater profiler are shown in Figure 11.

RMSE [m]

' ] 25 Il Veasured [ |UKF [ SRCKF
I Veasured I EKF I CKF [ DSRCKF
I EKF F |
[CTJUKF
I CKF
[ SRCKF

[ DSRCKF -

(@) (b)

Figure 11. The position and attitude RMSE values of the miniaturized underwater profiler in
different situations: (a) position and (b) attitude.

From Figure 11, showing a comprehensive comparison of EKF, UKF, CKF, SRCKF,
and DSRCKEF for different situations dead reckoning, it can be seen that the RMSE values
obtained by using the DSRCKF algorithm in the z direction position and the three-direc-
tional attitude angle are smaller than those obtained by other methods. However, the re-
sults of those algorithms in the horizontal position (x and y directions) are similar. There-
fore, the DSRCKEF can provide more reliable underwater pose information for the minia-
turized underwater profiler. In order to verify the DSRCKF algorithm, the relevant exper-
imental verification will be conducted in the next section.

4.3. Experiments

Due to the inconvenience of carrying high-precision underwater navigation tracking
sensors with large volume and weight for the miniaturized underwater profiler, it is dif-
ficult to obtain its real and precise underwater position and attitude. The working princi-
ples of drones and underwater profilers are similar in terms of the process of dead reck-
oning [32,33]. Therefore, this study uses a drone platform to carry the sensors needed for
underwater dead reckoning and simulates the movement of the miniaturized underwater
profiler while flying in the air. Figure 12 shows the dead reckoning experiment platform,
which includes the sensor platform and the drone platform. An RTK device can provide
centimeter-level positioning accuracy, so the position information collected by the RTK
device can be taken as the real value. AHRS is used to collect the data of the original angle
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speed, acceleration and geomagnetic strength. The main control module is used to per-
form attitude angle solution and dead reckoning.

Sensor platform - ] Experiment platform

Figure 12. Experiment platform, including sensor platform and drone platform.

In order to simulate the “diving” and “rising” processes of the miniaturized under-
water profiler, the movement of the drone on the horizontal plane is roughly rectangular
and the movement of the drone on the vertical plane is sawtooth. The starting point of the
drone on the ground is used as the coordinate original point. At the beginning, the drone
flew to a certain height, the position is [0, 0, 21.92] m. The measured value of RTK is used
as a real trail of the mobile platform and, when combined with AHRS data, the sampling
frequency is 1 Hz and the verification of the algorithm of the dead reckoning is performed.

Figure 13 shows the trajectories of the experiment platform obtained by the RTK and
the different dead reckoning algorithms. Figures 14 and 15 show the respective position
and attitude values and their errors for the experiment platform. The position and attitude
RMSE values of the experiment platform are represented in Figure 16. In Figure 16, the
data in the x and y directions cannot be obtained directly, the measured value of the hor-
izontal direction of the experiment platform is obtained by combining attitude angle and
height data, while other measurements are directly obtained from the sensor. Therefore,
the RMSE values for both z direction position and attitude angle of experiment platform

are 0.
25
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Figure 13. Comparison of the real and the calculated trajectory of the experiment platform: (a) 2D
and (b) 3D.
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Figure 14. The position and error values of the experiment platform: (a) the position and error values
in the x direction, (b) the position and error values in the y direction, and (c) the position and error
values in the z direction.
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Figure 15. The attitude and error values of the experiment platform: (a) the attitude and error values
in roll, (b) the attitude and error values in pitch and (c) the attitude and error values in yaw.

I Measured

50

I Measured

I EKF I EKF
[CukF 40 [TUukF
I CKF I CKF
I SRCKF [ SRCKF
[ DSRCKF &30 - [EIDSRCKF

L

)

s

20t

(a) (b)

Figure 16. The position and attitude RMSE values of the experiment platform: (a) position and (b)
attitude.

Combined with Figures 13-16, it can be seen that the position values that are directly
calculated by the sensor data show the same trend, and that the position errors in the x
and y directions are larger than the error in the z direction. According to the position,
attitude, and RMSE values, although the DSRCKF algorithm is not optimal in all direc-
tions, it can obtain relatively good results, such as in the z direction, pitch angle and yaw
angle. This shows that the DSRCKF algorithm proposed in this paper has a certain role in
dead reckoning. However, the experiment is based on the verification of the algorithm by
drone, and a real underwater test using miniaturized underwater profiler should be car-
ried out in future work. This study does not consider the effect of ocean currents in dead
reckoning and wind factors were also not considered during the experiment. Therefore,
dead reckoning and designated area persistent monitoring with the miniaturized under-
water profiler under the effect of an ocean current should be carried out in subsequent
research.

5. Conclusions

Based on the low-cost requirements of ocean designated area persistent monitoring,
this paper focuses on the system structure design, dynamic modeling, and underwater
dead reckoning algorithm of a miniaturized underwater profiler. The process of desig-
nated area persistent monitoring for a miniaturized underwater profiler has been ana-
lyzed, and the overall structure of a miniaturized underwater profiler, including bary-
center control system and buoyancy regulating system, is designed. Additionally, a dy-
namic model of the miniaturized underwater profiler is given. The state equation and ob-
servation equation of a miniaturized underwater profiler are given. Combining standard
SRCKEF and adaptive SRCKF, the DSRCKF algorithm is proposed for the dead reckoning
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of the miniaturized underwater profiler. A comprehensive comparison of EKF, UKF, CKF,
SRCKF, and DSRCKEF, and of simulations and experiments are conducted. The results
show that, compared with the EKF, UKF, CKF, and SRCKEF algorithms, the DSRCKEF al-
gorithm can improve the accuracy of dead reckoning in the z direction position and atti-
tude angle.
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