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Abstract: Ocean currents pose a significant challenge in the path planning of autonomous underwater
vehicles (AUVs), with conventional path-planning algorithms often failing to effectively counter
these influences. In response to this challenge, we propose a path-planning algorithm that can
consider the influences and constraints of ocean currents, which leverages the strengths of two widely
employed path-planning algorithms, A* and the genetic algorithm (GA), to account for the influences
of ocean currents on the planned paths. Specifically, it enhances the initial population generation,
formulates a fitness function tailored to ocean current conditions, and employs an adaptive mutation
approach to enhance population diversity and stability. By utilizing simulated and real-world ocean
current datasets, we validated the feasibility of the proposed algorithm with quantitative metrics.
The results demonstrate that in comparison to conventional methods, the new algorithm can deal
with the influences and constraints of ocean currents in AUV path planning, resulting in notable
enhancements in path smoothness, energy efficiency, and safety.

Keywords: AUV; pathplanning; ocean currents; genetic algorithm; path performance evaluation

1. Introduction

The autonomous underwater vehicle (AUV) is a specialized type of unmanned un-
derwater vehicle (UUV) that equips advanced guidance systems and on-board energy
storage, thereby enabling sustained autonomous operations lasting from several hours
to multiple days [1]. This autonomy enables AUVs to undertake tasks within intricate
marine environments that are typically inaccessible or pose challenges for human inter-
vention. A noteworthy illustration of AUV capabilities can be observed in the case of the
Bluefin-21, owned by General Dynamics (a U.S. company), which effectively conducted an
independent search for debris from the ill-fated Malaysia Airlines MH370 passenger jet in
2014 [2].

In the autonomous task of AUVs, path planning is paramount, as it is necessary to
determine an optimal and obstacle-free path to reach the desired destination. In other
words, path planning serves as a foundational technology for AUVs, exerting substantial
influences on the efficacy and applicability of AUV deployments across diverse scenar-
ios [3]. Compared to the path-planning tasks of unmanned aerial vehicles (UAVs) and
unmanned ground vehicles (UGVs), AUVs operate within highly intricate underwater
domains, which differ significantly from the conditions encountered by terrestrial and
aerial vehicles. The presence of ocean currents exerts non-negligible influences on the
path-planning process for AUVs. It is noteworthy that in previous research endeavors
focused on AUV path planning, a relatively limited proportion of studies considered the
factor of ocean currents [4]. Therefore, it is crucial that planned paths are optimized for
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navigation in ocean current environments, which include creating smooth paths with
minimized turning angles, avoiding dangerous high-speed ocean current areas to improve
safety, and adhering to ocean current directions to maximize energy efficiency. Hence, the
imperative arises to cultivate path-planning algorithms expressly tailored to AUVs, taking
into account the influences and constraints of ocean currents.

A range of classical path-planning algorithms has been investigated for the au-
tonomous navigation of AUVs, including Dijkstra [5], rapidly exploring random tree
(RRT) [6], and artificial potential field (APF) [7]. Among these, A* is notably the most
widely applied, persisting as a popular choice for AUV path planning [8]. Recent research
continues to focus on A* to optimize AUV path planning, reflecting ongoing efforts to
refine its application [8–12]. Intelligence-based algorithms such as ant colony optimiza-
tion (ACO) [13] and particle swarm optimization (PSO) [14] have also gained traction in
recent years. Additionally, evolutionary algorithms, with the genetic algorithm (GA) as a
prominent representative, have emerged as a prevalent choice for path planning. The GA,
in particular, is widely acknowledged for its effectiveness as an optimization technique in
the domain of path planning [15]. Notably, various studies have undertaken the task of
enhancing the GA to yield superior results. For instance, an enhanced GA variant has been
developed to generate smoother and more cost-effective paths for UUVs [16]. To expedite
convergence and refine path optimization, the GA incorporates the use of the chamfer
operator [17]. Furthermore, in addressing the issue of premature convergence in AUV path
planning, a combined approach involving adaptive crossover probability and mutation
probability has been integrated into the GA [18].

The algorithms mentioned above can perform path planning of AUVs. Nevertheless,
they exhibit notable limitations when referring to environmental conditions. For example,
A* determines optimal solutions based on a heuristic search, but it is only suitable for
simple environments. The GA can better adapt to complex search spaces, but it is more
computationally resource-intensive and prone to fall into local optima. Ocean currents
present a notable challenge in path planning of AUVs. Thus, algorithms for path planning
of AUVs should not only be suitable for environments with ocean currents and reduce
computational resource consumption but also have efficient search strategies for achieving
global optimal solutions. In view of this, we argue that the integration of diverse path-
planning algorithms could be a promising strategy, for instance, combining the GA with
A*. The combination of different path-planning algorithms, as discussed in the outlook
and future directions sections of reference [3], holds the potential to effectively address the
path-planning challenges of AUVs.

In recent years, an increasing number of studies started to consider the influences
of currents on AUV path planning [19–22]. These studies introduced simple ocean cur-
rent models and integrated current dynamics into AUV path planning, enhancing the
adaptability of AUV paths to the prevailing current conditions.However, these studies
do not adequately simulate changes in currents around obstacles, resulting in inaccurate
current representations in such areas. Moreover, the evaluation of these models has pri-
marily occurred within simulated environments. In contrast, some studies use real-world
ocean current observations to enable AUVs to navigate based on actual ocean currents [23].
Nonetheless, despite these advancements, the models still fail to address obstacle-related
factors and do not meet the obstacle-avoidance requirements of AUVs. One approach incor-
porates an adaptive GA to obtain globally optimal paths and proposes a local path-planning
method based on vector APF [24]. While this method has been tested with authentic ocean
current data, it falls short in addressing issues such as path smoothness and adherence to
AUV dynamics constraints. Another study integrates the GA with ACO and the simulated
annealing (SA) algorithm to improve AUV path convergence and mitigate the risk of falling
into local optima [25]. This research introduces an ocean current model to validate the
adaptability of the algorithm to ocean currents, but it does not incorporate obstacles within
the ocean current environment and does not address the effectiveness of obstacle avoidance
within such conditions.
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In summary, ocean currents significantly influence and constrain AUV path planning.
Current research often does not fully address these complexities, as reliance on a single tra-
ditional algorithm typically falls short in dynamic underwater environments. To overcome
these limitations, this paper proposes a novel path-planning algorithm for environments
influenced by ocean currents. Inspired by the strengths of the A* algorithm in determining
optimal solutions and the global optimization capabilities of the GA in complex settings,
our approach integrates these into a fusion algorithm. The proposed algorithm combines
the best features of both A* and GA, enhancing computational efficiency and reducing
the risk of stagnation in local optima. It leverages the optimization capabilities of the GA
to adapt to the dynamic and intricate underwater current environment. This innovative
approach promises a more effective solution for AUV path planning in challenging oceanic
conditions.

The main contributions are as follows:

1. A fusion algorithm that can consider the influences and constraints of ocean currents
is proposed.

2. A more realistic ocean current model is designed and used to verify the effectiveness
of the algorithm.

3. Based on requirements of AUV path planning in environments with ocean currents,
cost and fitness functions are established.

4. We present new criteria for path comparison, quantitatively expressing the adapt-
ability of a path to ocean currents, which can be used for more precise performance
analysis of navigation paths of AUVs.

The rest of this article is organized as follows: Section 2 defines the problem of
path planning in ocean current environments. Section 3 provides details of the proposed
algorithm. Section 4 carries out experiments to verify the feasibility of the algorithm and
offers a quantitative analysis and comparison of path performance. Finally, Section 5
concludes the research and discusses potential future work.

2. Problem Description

In this paper, we simplify the navigation environment by modeling it as a two-
dimensional plane to simulate the fixed-depth navigation of an AUV. A navigation path (S)
of an AUV can be represented as a series of waypoints, as shown in Equation (1):

S = ⟨P1, P2, P3, P4 · · · Pi⟩ (1)

where Pi is the ith waypoint on the path, and each waypoint can be mapped onto a grid map.
The grid map consists of a series of cells, each representing a specific area, which can

be assigned a value based on the characteristics of the area (e.g., the presence or absence
of obstacles) [26]. The grid map is defined as a two-dimensional array M, where M[i][j]
represents the grid cell at the i-th row and j-th column, with each cell portraying a specific
geographic or environmental characteristic. The value of a cell can be marked by two
numbers: “0" or “1". If a grid unit is marked by “0", it indicates that this unit is passable,
while “1" denotes a unit that is impassable (such as occupied by an obstacle).

2.1. Modeling of Ocean Currents

It is inappropriate to model ocean currents in a single, straightforward vector [27].
In this paper, we introduce a comprehensive ocean current model that encompasses two
distinct types of currents: random currents and Lamb–Oseen vortices [28]. The former is
generated using a normal distribution (Equations (2) and (3)). This approach introduces a
level of complexity to the modeled currents that surpasses the simplicity of constant-speed
currents.

Cθi,j ∼ N(µ, σ2) (2)
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where Cθi,j is the angle of the current at the position (coordinates are (i, j)) on the grid map.
µ and σ are the mean and variance of the ocean current directions, respectively.

CVi,j ∼ U(Vmin, Vmax) (3)

where CVi,j is the velocity of the ocean current at (i, j). The velocity of the ocean current in
the direction of x and y is (Equation (4)) as follows:{

velx = CVi,j · cos(Cθi,j)

vely = CVi,j · sin(Cθi,j)
(4)

The latter, the Lamb–Oseen vortex, is a well-established mathematical model that
finds widespread application in simulating realistic ocean currents [23]. This model is
typically represented as a two-dimensional, incompressible, viscous fluid, as expressed in
Equation (5). 

Vθ(r, t) =
Γ

2πr

(
1− e

− r2

r2
c (t)

)

rc(t) =
√

4νt + rc(0)2

(5)

where r denotes the radius, Vθ is the velocity of the ocean current, and rc(t) is the core
radius of the vortex which changes over time. ν is the liquid viscosity, Γ is the vortex
circulation, and rc(0) signifies the core radius at the initial time.

Although the vortex field may undergo a series of changes as time progresses, we
assume that the vortex field is relatively stable during the traversal of an AUV, because
when an AUV traverses such a region, the time difference of its passage is much smaller
than the time in which significant changes in the vortex occur. Therefore, we can disregard
the time-domain changes of the vortex field. Then, the term − r2

r2
c (t)

can be further simplified

to − r2

R2
c
, where Rc signifies the radius of the vortex core. Then, the Vθ(r, t) in Equation (5)

becomes Equation (6):

Vθ(r) =
Γ

2πr

(
1− e

− r2

R2
c

)
(6)

It is important to highlight that many prior studies have either overlooked the con-
sideration of obstacles within ocean currents or simply superimposed ocean currents onto
obstacles. Such practices disregard the fact that currents around obstacles undergo alter-
ations, creating erroneous modeling that the currents can freely traverse these obstacles.
In path planning, however, the presence of currents around obstacles, even if they are
relatively weak, is a factor that cannot be dismissed. Therefore, the ocean current model
should be capable of adapting to obstacles, allowing for a more accurate modeling of
currents around the periphery of obstacles.

In this paper, the velocity of positions (units) occupied by obstacles is set to zero. If the
velocity at a position is non-zero but an obstacle is present within one unit on the Y axis,
the vely component is set to zero while the velx component is retained. A similar approach
is applied to the velx settings on the X axis. This method is outlined in Algorithm 1.
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Algorithm 1 Ocean currents modeling around obstacles.

1: if O(x, y) == 1 then
2: vel_x(x, y)← 0
3: vel_y(x, y)← 0
4: end if
5: if O(x, y) == 0 then
6: if O(x, y + 1) == 1 or O(x, y− 1) == 1 then
7: vel_y(x, y)← 0
8: end if
9: if O(x + 1, y) == 1 or O(x− 1, y) == 1 then

10: vel_x(x, y)← 0
11: end if
12: end if

2.2. Mechanical Modeling of AUV

As this paper primarily discusses path planning for AUVs at a fixed depth, we assume
that the AUV operates within a two-dimensional plane. To simplify the model and focus on
the core issue, this study does not consider complex dynamics such as sideslip or rolling that
the AUV may encounter during operation. Hence, we regard the AUV as moving steadily
and linearly within the horizontal plane, disregarding any dynamic changes in the vertical
direction and any tilting or rotation in three-dimensional space. This assumption helps us
to more accurately analyze and optimize the path-planning problem at the specified depth.
In modeling the mechanical characteristics of the AUV (Figure 1), we take into account the
effects of the propulsion force Fp and rotational torque Mp, as well as the resistance forces
Fd and Md. The distance (di) is defined as the Euclidean distance between the center of the
AUV at its current moment and the center of the AUV at its subsequent moment. Similarly,
the angle (∆φi) is the angular difference between the current orientation of the AUV at the
current moment and its orientation at the subsequent moment.

Figure 1. Illustration of AUV movements on a plane.

The energy consumption of the AUV encompasses both the energy expended due to
the propulsion force and the energy consumed by the rotational torque. Therefore, the
energy consumption along the path (S) can be expressed as depicted in Equation (7):

E =
n−1

∑
i=1

((kv · v2 + m · a) · di + (kω · (v ·
∆φi
di

)2 + (Mp −Md)) · ∆φi) (7)

where a is the linear acceleration, m is the mass of the AUV, v is velocity, ω is angular
velocity, kv is the linear velocity resistance coefficient, and kω is the drag coefficient of
angular velocity.
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If we assume that v and Mp are constants, an increase in ∆φi corresponds to a rise
in E. In simpler terms, a planned path with excessively large turning angles or frequent
turns will consume more AUV energy for direction adjustments, posing greater control
challenges. It is essential to note that AUVs cannot engage in high-frequency or large-scale
steering maneuvers due to their operational constraints [29]. This means that paths with
sharp turning angles, which correspond to small radii of curvature, are not achievable.
Therefore, the planned path should prioritize smoothness, incorporating gradual changes
in direction to adhere to these limitations.

2.3. Influences of Ocean Currents

The progress of AUV is usually affected by the force of the ocean current (Figure 2).

Figure 2. Illustration of AUV influenced by ocean currents.

In the above figure, Fo represents the force of the ocean current, Fp is the maximum
propulsion force of the AUV, and Fh is the resultant force in the direction of travel. The angle
between Fo and Fp, denoted as αo, allows us to calculate the magnitude of Fh according to
the parallelogram law (Equation (8)):

∥F⃗h∥ =
√
∥F⃗o∥2 + ∥F⃗p∥2 + 2∥F⃗o∥∥F⃗p∥ cos(αo) (8)

This equation demonstrates that when the speed of the ocean current is constant
(Fo constant) and the maximum propulsion force Fp is fixed, the resultant force Fh increases
as the propulsion direction more closely aligns with the current direction, indicated by a
larger value of cos(αo). Therefore, the more aligned the propulsion direction is with the
current, the stronger the propulsion power is for the same amount of thrust, resulting in
energy savings. In other words, the closer the alignment between the path and the ocean
current, the less additional energy is needed. If the planned path enables the AUV to move
in the direction of the ocean current and diminishes the proportion of paths against the
current, the AUV can conserve energy and achieve a longer sailing distance.

3. The Proposed Path-Planning Algorithm

Traditional algorithms often struggle to adapt to environments with ocean currents.
In this paper, we present a path-planning algorithm designed to tackle the challenges
posed by ocean currents. The algorithm framework, illustrated in Figure 3, consists of four
fundamental components: inputs, an enhanced A*, an enhanced GA, and output.

This algorithm initiates by taking ocean maps and current data as inputs to facilitate
path planning. The path planning employs an enhanced A* algorithm, which we refer to as
the enhanced A*. This method is specifically modified to optimize several cost factors that
the traditional A* does not adequately address. These include distance costs from obstacles,
angle costs of ocean currents, and distance cost. The results obtained from the enhanced A*
are a series of waypoints.
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Figure 3. Framework of the proposed algorithm.

The use of the GA in path planning requires significant resources for comprehensive
environmental exploration and ongoing generation of new paths. However, when planning
paths for AUVs, it is crucial to account for the hardware and communication limitations.
For the GA, choosing an effective initial population method can significantly reduce com-
putational resource usage by generating a high-quality initial population [30]. To this end,
the waypoints derived from the enhanced A* algorithm are used as the initial population
in our GA approach, thus reducing the computational load typically associated with a
GA that starts with randomly generated initial populations. This strategy helps avoid the
extensive computational costs normally incurred with such random initial setups.

Furthermore, we tailor the fitness functions of the GA to address the challenges posed
by ocean currents. These functions evaluate the paths based on their length, angle, angle
deviation from ocean currents, and penalties associated with ocean current speed. Finally,
the initial populations undergo further refinement through tournament selection, crossover
operations, and adaptive mutation. To prevent premature algorithm convergence and steer
clear of local optimal solutions, we introduce adaptive mutation operators and tournament
methods. Ultimately, our approach yields the optimal path that effectively adapts to the
presence of ocean currents.

3.1. Enhanced A* Algorithm

The traditional A* algorithm primarily considers path length as the cost metric, which
is insufficient for navigating environments influenced by ocean currents. To address this
limitation, we propose a more comprehensive cost function that includes both the distance
cost from obstacles and the angle cost associated with ocean currents. This enhanced cost
function not only improves path safety but also reduces fuel consumption.

The distance cost from obstacles is quantified as (Equation (9)):
d(Pi, Oi) =

√
((xi − oxi )

2 + (yi − oyi )
2)

OPi =
ωop

min{d(Pi, Oi)}+ ε

(9)

where Pi(xi, yi) represent consecutive waypoints. Oi(oxi , oyi ) is an obstacle point, and
d(Pi, Oi) signifies the distance between the current path and all obstacles. OPi indicates
the cost associated with the closest obstacle to the current point. ωop serves as the obstacle
penalty weight. ε is a small positive number added to prevent division by zero during the
planning process.

The cost of the ocean current angle is (Equation (10)):
T(a, b) = arctan

( a
b

)
θ(Vk) = T(vyk , vxk ), k ∈ {i, j}

θ(Pi, Pj) = T(yj − yi, xj − xi)

APi = α|θ(Pi, Pj)− θ(Vj)|+ β|θ(Pi, Pj)− θ(Vi)|

(10)
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where θ(Pi, Pj) is the direction of the velocity at the current waypoint and θ(Vi) and θ(Vj)
are the directions of the current and next current velocities at the waypoint. α and β are the
weighting coefficients, which represent the weights of the current direction of neighboring
points and the current direction of the current point, respectively.

By incorporating the cost associated with the angle of the ocean current into the cost
function f (Pi), the resulting path aligns more closely with the direction of the ocean current,
effectively maintaining a greater distance from obstacles. The comprehensive cost function
for the enhanced A* algorithm is expressed as Equation (11):

f (Pi) = g(Pi) + h(Pi) + OPi + APi (11)

3.2. Encoding Method and Initial Population

We utilize a real number encoding method, treating the path of the enhanced A*
divided into discrete waypoints and further employing them as individuals (Equation (12)).

Population = {M1(SA∗), M2(SA∗), ..., Mi(SA∗)} (12)

where A∗ is the path of the enhanced A* algorithm, M is the set of waypoints that are di-
vided from the A∗, and Mi is an individual that will be replicated to generate a population.

The initial population method presented herein significantly alleviates the computa-
tional load by focusing exclusively on path calculations within the population and their
adjacent waypoints, circumventing the necessity to explore global points. Consequently,
this method significantly reduces the computational burden associated with the GA, making
it better suited to the constraints of limited computational resources in AUV path planning.

3.3. Fitness Function and Tournament Selection

To address the path-planning requirements of AUVs in ocean currents, we introduced
a fitness function tailored to the unique characteristics of these currents. This function
consists of four indicators, including path length (L), path smoothness (H), alignment of
path direction with that of ocean currents (C), and avoidance of high-speed ocean currents
(pcs). Together, these indicators filter the population to retain individuals that demonstrate
greater adaptability to ocean conditions, thus ensuring optimal path selection.

Path length (L): considering a path composed of n waypoints, we calculate the
distances between adjacent points to determine the path length, as shown in Equation (13):

L =
n−1

∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (13)

where L is the length of the path.
Path smoothness (H): This indicator is ascertained through the summation of the

angles formed between each successive path segment (Equation (14)). In particular, it is
built upon a concept named the turn angle. As shown in Figure 4, there are three waypoints
on the path, Pi−1(xi−1, yi−1), Pi(xi, yi), and Pi+1(xi+1, yi+1), and the path length between
Pi−1 and Pi is L1, and that between Pi and Pi+1 is L2. Then, the turn angle (θi) of this path
is the angle between

−−−→
Pi−1Pi and

−−−→
PiPi+1 (Equation (14)). It is essential to underscore that the

value of H is negatively correlated with path smoothness, that is, smoother paths have a
lower value.

H =
n−2

∑
i=1

arccos(
−−−→
Pi−1Pi ·

−−−→
PiPi+1

∥−−−→Pi−1Pi∥∥
−−−→
PiPi+1∥

) (14)

Alignment of path direction with ocean current (C): At each waypoint, an angle can
be calculated based on the angles between the current waypoint and the directions of the
ocean current. This indicator is the summation of all these angles (Equation (15)). The
definitions of θ(Vi) and θ(Pi, Pj) are explained in Equation (10). Essentially, it signifies that
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if an AUV path aligns with the direction of the ocean current, fuel consumption can be
minimized. Consequently, this indicator also serves as a measure of energy efficiency.

C =
n−1

∑
i=1

cos(θ(Vi)− θ(Pi, Pj)) (15)

Figure 4. Illustration of path angle.

Avoidance of high-speed ocean currents (pcs): To enhance AUV safety and con-
trollability in high-speed ocean currents, we incorporate a current speed penalty into the
fitness function to indicate the avoidance of high-speed ocean currents. Firstly, we define
a threshold (R). For each waypoint (Pi) on the path, we assess the current speed at this
location and its subsequent one to determine if it exceeds R. If the speed surpasses R, we
then add a penalty (denoted as pcs) to the ocean current speed. After examining all points
in the path in this way, we compute a total penalty score. A lower penalty score indicates
that the path is safer.

Considering the above scoring criteria, the total fitness score is (Equation (16)):

score = L×W1 + H ×W2 − C×W3 + pcs×W4 (16)

where W1, W2, W3, and W4 are the weight coefficients, which can be adjusted based on the
specific conditions of the ocean current.

3.4. Tournament Selection

We implement a tournament selection method to filter out individuals with high
fitness while excluding those with lower fitness levels, thereby ensuring that the retained
individuals exhibit exceptional fitness. The tournament selection process hinges on two
key parameters: the desired number of individual and the tournament size.

Once these two parameters are determined, the algorithm proceeds by selecting high-
performing individuals from the population and orchestrating a tournament selection
round within this subgroup. This entails the random selection of the desired number of
individuals from the subgroup, with each individual paired alongside their respective
fitness score to create the tournament competitors. In this paper, we define fitness inversely:
the higher the fitness, the lower the score. Therefore, the victor of the tournament is the
individual with the lowest fitness score. This champion individual is then retained for
subsequent stages of the algorithm.
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This process is repeated iteratively until the number of victorious individuals reaches
the specified target for entities. This iterative selection methodology fosters a competitive
environment, ultimately resulting in the selection of the most adaptable individuals based
on their performances.

3.5. Crossover Operator and Adaptive Mutation Operator

Before the crossover process, mutation operations are applied to each path individual
Mi within the population. This strategy diversifies the paths of individuals, enriches
the initial population, and promotes overall population diversity. Concurrently, a single-
point crossover method is used, which involves randomly selecting a point (excluding the
start and end points) along the parental path for crossover, resulting in the generation of
offspring. This approach ensures that superior individuals, as previously mentioned, are
bred to achieve the desired population count.

As for the mutation probability and process, a mutation probability m is defined, and
each point Pi within an individual (excluding the start and end points) determines whether
a mutation occurs based on this probability. If a mutation is triggered, it involves a random
(one-unit) movement in both the X and Y directions. In particular, an integer dx is randomly
selected from the set {−1, 0, 1}, and so is dy. Then, a new waypoint P′i (xi + dx, yi + dy) is
computed. This process repeats until the newly generated waypoints no longer intersect
with any obstacles.

Moreover, to enhance search efficiency and minimize disturbances, we implement
an adaptive function to dynamically adjust the mutation rate. Numerous studies have
demonstrated that an appropriate dynamic mutation rate can significantly enhance the
performance of GA [31–33]. Initially, a higher mutation rate is employed to diversify the
population and expand the exploration of the solution space, which helps avoid entrapment
in local optima and accelerates the search process. As the algorithm progresses and the
population begins to converge towards optimal solutions, a reduced mutation rate is
applied to refine the search and reduce disruptions. The adaptive mutation function is
defined according to the progress of the current generation (Equation (17)). With the
increase generation, the mutation rate will decrease from the initial to the minimum
mutation rate.

mutation_rate = ini_rate× (1− cur_gen
tot_gen

) + min_rate× cur_gen
tot_gen

(17)

where cur_gen denotes the current iterations, tot_gen denotes the total iterations, ini_rate
is the initial mutation rate, and min_rate is the minimum mutation rate.

4. Experiment and Case Study
4.1. Experimental Scenarios

To test and validate the performance and adaptability of our proposed algorithm, we
conducted experiments using two distinct datasets: one comprises synthetic data and the
other comprises authentic datasets. Due to the substantial cost associated with AUVs and
in-ocean experiments, we opted for simulation-based experimentation.

The synthetic dataset consists of four scenarios (Figure 5), each spanning approxi-
mately 10,000 square meters. Although the obstacles in all four scenarios remain constant,
there are variations in ocean currents. Specifically, random currents are employed in
Figure 5a,c, while those in Figure 5b,d are three Lamb–Oseen vortices. We use the stream-
lined diagrams to visually represent the ocean currents, in which arrow directions denote
the currents direction and colors of streamline indicate the speed (blue representing low-
speed regions and red indicating high-speed). Notably, ocean currents tend to circumvent
rather than penetrate obstacles. This modeling approach is distinctly different from meth-
ods that either ignore the impact of obstacles on ocean currents or assume currents can
intersect directly with obstacles. As a result, our simulations of ocean currents more ac-
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curately reflect real-world scenarios. In the experiments with the synthetic datasets, the
speed of the ocean current ranges from 0 to 5 m/s, and the mean and standard deviation
of the ocean current direction are set at π/4 and π/12, respectively. For the Lamb–Oseen
vortex model, we include parameters for three eddies with centers located at (20, 70),
(50, 50), and (80, 30). Each eddy has a ring flow and core radius of 5 and a maximum radius
of 80. Furthermore, we establish different obstacle scenarios in each of the two current
environments.

(a) (b)

(c) (d)

Figure 5. The four synthetic datasets; (a) Scenario A; (b) Scenario B; (c) Scenario C; (d) Scenario D.

The authentic dataset utilized in our research is sourced from the Ocean Surface Cur-
rent Analyses Real-time (OSCAR) dataset (Figure 6) provided by the National Oceanic and
Atmospheric Administration (NOAA) [34]. The OSCAR dataset contains ocean mixed-layer
velocities, and its computation draws from satellite-derived sea surface height gradients,
ocean vector wind data, sea surface temperature gradients, and simplified physical models
such as Ekman and thermal wind dynamics. Covering the period from 1993 to the present
day, this dataset offers daily average surface current data for the top 30 m of the ocean
on a global grid with a spatial resolution of 0.25 × 0.25 degrees. For our experiments,
we selected data randomly from a day in June 2020, which include both horizontal and
vertical components of ocean current velocity. Utilizing the OSCAR dataset adds significant
authenticity to our research, enhancing the validity and applicability of our algorithm by
providing a real-world representation of ocean current dynamics.
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Figure 6. The OSCAR dataset is visualized with black arrows representing ocean currents. At each
location where ocean currents are present, an arrow originates from that location. The direction of the
arrow signifies the direction of the ocean current at that point, while the length of the arrow indicates
its speed.

4.2. Path Planning

The enhanced A* is employed for path planning within the ocean current to compare
with the traditional A*. Considering the trajectory of the AUV, the direction of future
ocean currents is more important. Consequently, the weight of α is typically assigned a
considerably higher value than that of β. Here, α is set as 10 and β as 5. The obstacle penalty
weight ωop is 20. In the synthetic scenarios, the departure and destination locations of the
AUV are (60, 0) to (70, 80) (Figure 7a,b) and (25, 1) to (80, 95) (Figure 7c,d).

The paths planned by the enhanced A* algorithm not only focus on path distance
but also significantly improve energy efficiency and safety compared to the traditional A*
(Figure 7). In scenario A and scenario B, it can be seen that the enhanced A* plans different
paths, which effectively solves the problem of non-conformity to ocean currents inherent in
the traditional A*. In the narrow region, the problem of the traditional A* being too close to
obstacles is solved, i.e., safety is improved (e.g., the path bypasses the narrow channel in
the upper-right corner in Figure 7c,d).

While the enhanced A* initially adapts paths to ocean currents, these paths often lack
smoothness and do not fully account for current speeds. To address this issue, we utilize
the enhanced GA for further path optimization, where the path planned by the enhanced
A* is selected as the initial population entity. Replication and initial mutation are performed
to increase the population size and boost its diversity, preventing the population from
settling into a local optimum. We can adjust the weight parameters of the fitness function
based on different driving requirements and the actual ocean current conditions in the sea
area. In this experiment, emphasis is placed on the smoothness and the adaptability to
the ocean currents of the path. We designate regions with velocities exceeding 2.5 m/s as
“high-speed areas" (0.1 m/s in scenario B and scenario D). W1, W2, W3, and W4 are set as 20,
1, 20, and 1, respectively. A larger weight coefficient indicates a heightened emphasis on
optimizing the corresponding aspect during the route optimization process. The parameter
settings of the GA are detailed in Table 1.
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(a) (b)

(c) (d)

Figure 7. Simulation of enhanced A* path in the four synthetic scenarios; (a) Scenario A;
(b) Scenario B; (c) Scenario C; (d) Scenario D.

Table 1. Parameters of the proposed algorithm.

Generations
Number

Population
Size

Mutation
Rate

Tournament
Individual

Tournament
Size

800 200 0.1 50 20

The paths generated by the enhanced GA (Figure 8) demonstrate significant improve-
ments in smoothness compared to those planned by the enhanced A*, specifically in the
elimination of sharp turns and erratic segments. This optimization not only enhances the
adaptability to ocean currents but also increases the safety of the path. We tested the pro-
posed algorithm across four scenarios to verify its effectiveness. The results show that the
final optimal path can follow the direction of the currents in a complex eddy environment,
and the path avoids the narrow parts and chooses open areas that follow the direction of
the currents.

The experiments were also validated on the OSCAR dataset. We set the latitude and
longitude range from (116,32) to (130,41), treating land as an obstacle. The latitude and
longitude coordinates of the start point are set to (120,38) and the end point to (128,33). In
this experiment region, where current velocities are generally low, our focus was primarily
on enhancing the smoothness and energy efficiency of the path. The final result is presented
in the subsequent Figure 9.
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(a) (b)

(c) (d)

Figure 8. Simulation of final optimal path in the four synthetic scenarios; (a) Scenario A; (b) Scenario B;
(c) Scenario C; (d) Scenario D.

Figure 9. Comparison of path planning by using the OSCAR dataset.

The path can align with the direction of the ocean current, simultaneously enhancing
path smoothness. When compared with the traditional A* path, the performance index and
path rationality of the proposed algorithm significantly surpass those of A*. This aligns
well with AUV path planning under the constraints of an authentic current environment,
hence demonstrating that the algorithm is superior in performance in actual ocean current
conditions. Our results confirmed the algorithm is able to meet the requirements of
authentic ocean currents.
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4.3. Three Criteria for Path Evaluation

The following three criteria characterize the advantages and disadvantages of paths
obtained by various path-planning algorithms.

Smoothness: This criterion is exactly the same as the path smoothness (H) that is
defined in the fitness function (Equation (14)). A lower score means a smoother path and
better performance.

High-speed area (safety): This criterion calculates the score of traversing through
a high-speed area (such as a fast-current zone) along a path. If the current speed at the
waypoint (Pi) exceeds the threshold R, it indicates a high-speed area, and one point is
added to the high-speed area score (hsai) (Equation (18)). When the i-th waypoint in the
path is reached, the hsai score accumulates, eventually returning the total score for the
high-speed area. A lower score means the path passes through fewer high-speed areas of
ocean current, indicating better safety.

hsai =

{
1 θ(Vi) > R
0 otherwise

(18)

Alignment with current direction (energy efficiency): This function evaluates the
directional consistency of the given path with the current, which can be computed by
Equation (15). For each point along the path, it calculates the included angle between the
path direction and the current direction, summarizing these values using the cosine of
each angle. A smaller included angle indicates greater alignment with the current, which
correlates with better energy efficiency. The higher the score, the better the alignment
between the path direction and ocean current direction, thus indicating superior energy
efficiency for the path.

4.4. Evaluation of Path and Algorithms

Because of the scale, it is difficult to discern the details of ocean currents and paths
from the visualized results of the experiments, making it difficult to visually analyze energy
efficiency and safety. Therefore, we use three criteria for path evaluations. Although
the path of A* looks “smoother", its turning angle is too sharp, and its adaptability to
ocean currents is very low, which does not meet the path requirements of AUVs. The
experimental results demonstrate that the enhanced A* algorithm not only surpasses the
traditional A* in path performance but also retains its advantages. Therefore, we believe
that only a comparison between the enhanced A* and the proposed algorithm is needed,
which focuses on the improvement of path performance by using the GA.

We consider high-speed areas, which are the units in which the speed of the current is
higher than 2.5 in scenarios A and C. In scenarios B and D, the threshold R becomes higher
than 0.1. The optimized path shows the paths have significant improvements in the three
aspects (smoothness, high-speed area, and alignment with current direction); therefore, we
conclude that the algorithm better fulfills the requirements for an AUV path to adapt to
ocean currents (Figure 10).

Applying GA optimization to the enhanced A* results in notable improvements in
various performance metrics. Compared with the enhanced A*, the smoothness of the final
optimal path is significantly improved, and the total path turning angle is reduced by 48%,
31%, 40%, and 35%, respectively. This substantial decrease in total path turning angles
addresses a previous issue of the enhanced A* algorithm, which tended to generate paths
with excessive numbers of turns and total turning angles.

Furthermore, the optimization process effectively tackles the challenge posed by high-
speed areas, such as in scenarios A and C. Here, the points corresponding to high-speed
ocean currents decrease by 16% and 6%, respectively. By accounting for these high-speed
areas, the optimized path significantly improves path safety. In scenarios B and D, where
high-speed areas are minimal, the need for optimizing path safety is limited, resulting in
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unchanged safety performance before and after optimization. In all scenarios, the optimized
path shows improved alignment with current direction, with increases of 7%, 50%, 3%, and
2%, respectively. Particularly noteworthy is the alignment achieved in scenario B, where the
path closely follows the Lamb–Oseen vortex, creating a beneficial downstream effect. This
demonstrates how GA optimization builds upon the adaptive capabilities of the enhanced
A* algorithm, further enhancing its ability to navigate ocean currents effectively.

(a) (b)

(c) (d)

Figure 10. Path performances in the four synthetic scenarios; (a) Scenario A; (b) Scenario B;
(c) Scenario C; (d) Scenario D.

In experiments using the OSCAR dataset, areas with velocities exceeding 0.03 m/s
were defined as “high-speed areas”. Comparisons between the enhanced A* algorithm
and the proposed algorithm reveal notable improvements: smoothness increased by 67%,
the high-speed area decreased by 8%, and alignment with current direction improved by
8% (Figure 11). These results highlight the effectiveness of GA optimization in reducing
total turning angles, improving safety by reducing high-speed areas, and enhancing energy
efficiency through better alignment with ocean currents. Therefore, we conclude that the
proposed algorithm exhibits superior path performance across authentic ocean current
datasets, demonstrating its efficacy in real-world scenarios.

To ensure stability, we set the random seed to 49 and conducted 20 repeated exper-
iments. The results, detailed in Table 2, indicate that the proposed algorithm can stably
improve the performance, enabling the AUV to find paths that are better aligned with the
ocean current environment.
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Figure 11. Path performance comparison in the authentic ocean current dataset.

Table 2. Performance of different algorithms.

The Proposed Algorithm
Enhanced A*

Average Variance Maximum

Smoothness 24 4.5 19.6 41.6
High-speed area 41.4 6 37 44
Current direction 58.7 1.6 61.3 54.2

5. Conclusions and Future Work

This research presents a path-planning algorithm tailored for AUVs, which takes into
account the intricate influence and constraints posed by ocean currents. This algorithm
amalgamates the strengths of both A* and the GA. The key components encompass enhanc-
ing the cost function of A* and utilizing its output as an initial population, crafting a fitness
function tailored to the prevailing ocean current conditions, employing adaptive mutation
within the GA framework to further optimize path performance, and culminating in a path.
We establish quantitative evaluation metrics for path planning and conduct performance
comparisons in both simulated and authentic ocean current environments. Our exper-
imental results demonstrate a substantial improvement over traditional path-planning
methodologies in terms of path smoothness, energy efficiency, and safety. This underscores
the practical value and applicability of our approach in real-world AUV applications.

It is essential to acknowledge that our study simplifies the AUV and ocean currents
into two-dimensional models, overlooking the complexities of dynamic models and three-
dimensional path planning. In three-dimensional space, path planning entails not only
horizontal movement but also vertical ascent and descent, necessitating the consideration
of a broader spectrum of dynamic and static obstacles. Our future work will delve into ad-
vanced obstacle-avoidance algorithms to enable AUVs to navigate flexibly within intricate
3D environments, such as evading collisions with floating objects or challenging terrain.
The overarching goal is to ensure that AUVs can reach their destinations swiftly and safely
while minimizing fuel consumption.

Additionally, path planning for the swarm is emerging as a pivotal development
direction in AUV applications, in which the coordination strategy among AUVs plays a
critical role. This includes aspects such as resource sharing, task allocation, and collision
avoidance. In our future research, we intend to explore advanced collaborative path-
planning algorithms to guarantee the efficient and secure operation of AUV swarms.
Moreover, we plan to apply the algorithm presented in this paper to practical AUV missions
such as underwater exploration, aiming to advance the field of AUV path planning and
foster innovation in underwater robotics.
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