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Abstract: Deep learning methods paired with sidescan sonar (SSS) are commonly used in underwater
search-and-rescue operations for drowning victims, wrecks, and airplanes. However, these techniques
are primarily used to detect mine-like objects and are rarely applied to identifying features in dynamic
dredge pit environments. In this study, we present a Sandy Point dredge pit (SPDP) dataset, in which
high-resolution SSS data were collected from the west flank of the Mississippi bird-foot delta on
the Louisiana inner shelf. This dataset contains a total of 385 SSS images. We then introduce a new
Effective Geomorphology Classification model (EGC). Through ablation studies, we analyze the
utility of transfer learning on different model architectures and the impact of data augmentations
on model performance. This EGC model makes geomorphic feature identification in dredge pit
environments, which requires extensive experience and professional knowledge, a quick and efficient
task. The combination of SSS images and the EGC model is a cost-effective and valuable toolkit for
hazard monitoring in marine dredge pit environments. The SPDP SSS image dataset, especially the
feature of pit walls without a rotational slump, is also valuable for other machine learning models.

Keywords: sidescan; sonar; geomorphology; deep learning; coastal restoration; EfficientNet

1. Introduction

Barrier islands play a critical role in safeguarding inland wetlands and preserving
estuarine conditions [1]. The barrier islands within the Mississippi River delta plain are
facing rapid deterioration due to a combination of factors, including a significant relative
sea-level rise of approximately 0.9 cm/year, a shortage of coastal sand supply, and erosion
from storm-induced waves and currents [2–5]. These challenges have been extensively
documented over the past decades, highlighting coastal islands’ vulnerability and the
pressing need for conservation efforts [6–8].

Dredging, recognized globally as a critical excavation activity, entails the extraction
and transfer of sediments from the beds of oceans, rivers, and lakes. This process serves
multiple purposes, ranging from the creation and enhancement of maritime infrastructure
such as harbors, waterways, and dikes to coastal restoration and protection and land
reclamation efforts. Additionally, dredging is integral to flood and storm mitigation, the
harvesting of minerals for infrastructure projects, and the remediation of contaminated
sediments. This is detailed in various studies, including references [9–14]. Specifically,
dredging activities on the inner Louisiana continental shelf are of notable economic and

J. Mar. Sci. Eng. 2024, 12, 1091. https://doi.org/10.3390/jmse12071091 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12071091
https://doi.org/10.3390/jmse12071091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0001-7785-9380
https://orcid.org/0000-0002-7218-4318
https://orcid.org/0000-0002-3696-6160
https://doi.org/10.3390/jmse12071091
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12071091?type=check_update&version=1


J. Mar. Sci. Eng. 2024, 12, 1091 2 of 15

societal importance, with over 50,000 km of pipelines on the Gulf of Mexico’s seabed. The
Energy Information Administration highlights the Gulf of Mexico’s (GOM) substantial
contribution to the U.S. ‘s offshore oil and natural gas production, alongside its pivotal
role in housing a significant portion of the country’s petroleum refining and natural gas
processing capacities. Therefore, landslide monitoring is significant for sediment and
energy management.

Synthesizing historical data and continuously monitoring the pits have been of interest
to mineral resource managers and decision makers [15–19]. Conventional approaches to
analyzing the pre-dredging, dredging, and post-dredging phases incorporate a variety of
techniques, such as geophysical surveys (including bathymetric, subbottom, and sidescan),
sediment sampling through corings and grabs, water analysis, and continuous monitoring
with optical and acoustic sensors [19,20]. These methods are complemented by profiling
and ship-based transects, among others. While coring and geophysical surveys are effective
in identifying sediment characteristics, they often come with constraints regarding spatial
coverage and high survey costs. Sediment coring, although accurate for ground-truthing
conditions on the seabed, is notably time-intensive and requires significant labor, typically
executed intermittently over extended periods (for example, during seasonal studies) [21].
Multi-beam bathymetric surveys offer detailed insights into morphological changes but
are expensive, leading to infrequent monitoring of many dredge sites, possibly only once
every few years [20,22,23]. In contrast, sidescan sonar, with its broader survey range,
stands out as a potential cost-effective method for identifying various sediment substrates,
including rocky terrains, wrecks, oyster beds, sand, and mud, demonstrating its versatility
and efficiency in marine substrate detection [20,24,25].

Machine learning (ML) has emerged as a pivotal technology in the enhancement
of feature identification within sidescan sonar imagery, a critical tool for underwater
exploration—including seabed types, marine habitats, archaeological sites, and man-made
objects like shipwrecks and debris—and monitoring [26–28]. A recent study [29] dis-
cussed SSS image augmentation for sediment classification; the results indicate that the
pretrained EfficientNet model improves accuracy after fine-tuning the parameters in fea-
ture identification and object classification using SSS images. A study [30] confirmed that
the segmentation method based on conventional neural networks (CNNs) and Markov
random fields (MRFs) is applicable in SSS image segmentation. Some researchers [31]
combined semisynthetic data generation and deep transfer learning, which has proven to
be an effective way to improve the accuracy of underwater object classification. The authors
of [32] presented textural analyses of SSS images from Stanton Banks on the continental
shelf off Northern Ireland. They detected faint trawling marks and differentiated between
the different types of seafloor. A study [33] discussed an automated pipeline for identifying
sites of archaeological interest off the coast of Malta from SSS images collected by an au-
tonomous underwater vehicle (AUV). Their algorithm achieved precision and recall of up
to 29.34% and 97.22%, respectively, which indicated a high number of false positives and
that the model is good at identifying most of the positive instances, respectively. Based on
the above literature review, the main contributions and work of this study are as follows:

1. This automation significantly improves the efficiency and accuracy of SSS image
analysis, overcoming the traditional challenges of manual interpretation, which is
time-consuming and subject to human error in dredge pit sedimentary environments.

2. A pit wall collapse could threaten the safety of ambient pipelines and platforms. The
combination of the EGC model and SSS images is a promising tool for future dredge
pit geomorphic feature evolution and hazards related to dredging.

3. As the first dredge-pit wall collapse SSS images, they could be used in other environ-
ments for hazard monitoring.
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2. Sandy Point Dredge Pit Dataset and Effective Geomorphology Classification Model
2.1. Sandy Point Dredge Pit Dataset

In this section, we first introduce the area of interest. Then, the data collection process
is explained, and multiple data augmentation techniques used for the training of deep
learning models are presented.

2.1.1. Study Area

The Sandy Point dredge pit, situated 20 km west of the modern Mississippi River bird-
foot delta, reaches a depth of about 18 m post-dredging, contrasted with the surrounding
water’s depth of approximately 11 m (Figure 1). This pit originated from a paleo-sandy
river channel covered extensively by muddy deposits [7]. The nearby fluvial deposits
from Grand Pass in the Mississippi Delta, about 12.5 km northeast of the pit, influence
its shape and dynamics significantly. Over time, sediment dispersal from the Mississippi
River has led to a seabed predominantly composed of mud around the Sandy Point pit
area. Specifically, the bottom sediment composition here is 90% mud (particles finer than
63 µm) and 10% sand, contributing to its unique characteristics [7].
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sional maps of the seafloor while providing co-registered simultaneous sidescan and bath-
ymetric data. Seafloor features such as pit edges, failure scarps, and bedforms as small as 
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Louisiana State University was used for all fieldwork. The bathymetry and sidescan ac-
quisition devices were pole-mounted and fixed on a bowsprit ahead of the vessel. Addi-
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Figure 1. Map of the Mississippi bird-foot delta. (B) Bathymetry map for Sandy Point dredge pit.
Bathymetric data for (A) are downloaded from ETOPO1 (https://www.ngdc.noaa.gov/mgg/global/,
accessed on 12 July 2022). Oil platform and pipeline data are from BOEM website (https://www.data.
boem.gov/, accessed on 12 July 2022). Bathymetric data for Sandy Point dredge pit were collected in
May 2022 by [19]. ‘SPDP’ stands for Sandy Point dredge pit.

2.1.2. Data Collection

To collect the Sandy Point dredge pit (SPDP) dataset, we surveyed the Sandy Point
dredge pit in September 2022 using a full suite of high-resolution geophysical instruments,
including an interferometric sonar for swath bathymetry, a sidescan sonar, and a CHIRP
subbottom profiler. A bow-mounted Edgetech 4600 interferometric swath bathymetry and
sidescan sonar system was used to collect data with a swath width about 3–5 times the
water depth. The 4600 system produces real-time, high-resolution, three-dimensional maps
of the seafloor while providing co-registered simultaneous sidescan and bathymetric data.
Seafloor features such as pit edges, failure scarps, and bedforms as small as 10–20 cm can
be imaged. The R/V Coastal Profiler from the Coastal Studies Institute of Louisiana State
University was used for all fieldwork. The bathymetry and sidescan acquisition devices
were pole-mounted and fixed on a bowsprit ahead of the vessel. Additionally, we also used
a motion sensor to record high-resolution data on ship motion. The subbottom profiler
was towed off the port side of the vessel, about 0.5 m below the sea surface. Sonar data
were processed using Caris HIPS/SIPS and then exported to ArcMap to create Digital
Elevation Models (DEMs), which were then used to crop the original SSS images. The
detailed geophysical methods can be found in [20]. After an initial data analysis, a total
of five classes of environments were defined: pit wall with a rotational slump, pit wall
without a rotational slump, heterogenous pit bottom (sand–mud mixture), homogenous pit
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https://www.data.boem.gov/
https://www.data.boem.gov/


J. Mar. Sci. Eng. 2024, 12, 1091 4 of 15

bottom, as well as homogenous seabed outside the pit. A rotational slump, also known
as a rotational slide or rotational landslide, is a type of landslide that occurs along the pit
wall of the SPDP. During a rotational slump, a series of blocks of sediment slide along
a concave-upward slip surface, forming a stepwise boundary on the pit wall. It should
be noted that black and white represent high and low reflectivity, respectively, in all SSS
images in this study. Also, a close distance from the SSS to the seabed and sand seabeds
tend to produce high reflectivity (i.e., black in SSS images).

The labeling rationale is mainly based on the bathymetry data collected at the same
time, which makes it much easier to determine morphological features. More details are in
Figure 2. After class definition, we applied a data preprocessing pipeline to the original
data, as shown in Figure 3. Specifically, the original data were processed by augmentation
techniques such as rotation, translation, scaling, and cropping to simulate the various data
collection environments and enlarge the dataset size [34]. After data cleaning, a total of
385 SSS images were used, categorized into five classes. Specifications for the SPDP are
given in Table 1.
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Figure 2. (A) is the bathymetry data of the Sandy Point dredge pit. (a)~(e) are the five feature
categories highlighted as red squares. (B) is the whole sidescan data picture. (C) are samples of data
from each feature category. The red squares are the samples’ locations in the SSS images.
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Table 1. Specifications of SPDP dataset.

Class Training Validation Total

Pit wall without rotational slump 28 7 36
Homogenous pit bottom 41 14 55

Heterogenous seabed outside pit (mud–sand mixture) 97 20 117
Homogenous seabed outside pit 78 15 93

Pit wall with rotational slump 64 21 84

2.1.3. Data Augmentation

In addressing the challenges posed by the limited size of our dataset, we implemented
a strategic data preprocessing pipeline to enhance the diversity of our training samples,
as shown in Figure 3. This process not only aided in increasing the effective size of our
dataset but also played a crucial role in improving the generalizability of our model. Below,
we detail the components of our data augmentation strategy and its integration into the
data preprocessing workflow.

Preprocessing and Rescaling. Initially, all images in the dataset underwent a uniform
resizing and rescaling operation. Specifically, the images were resized to standard dimen-
sions of 224 × 224 pixels, which are commonly adopted image sizes [35]. Subsequently,
pixel values were normalized to a range of 0 to 1 by rescaling with a factor of 1/255. This
normalization step is critical for optimizing the training process, as it ensures that model
inputs have a uniform scale, facilitating faster convergence during training.

Augmentation Techniques. To further enhance the robustness of our model, we em-
ployed a series of random transformations on the training dataset. These transformations,
which included random flipping, random rotation, and random contrast adjustments,
introduced a variety of perspectives and lighting conditions, simulating a broader range of
real-world data collection scenarios:

1. Random Flipping: Images are randomly flipped horizontally or vertically.
2. Random Rotation: We apply a rotation range of [−36◦, 36◦] to the images to account

for changes in object positioning and camera angle.
3. Random Contrast: Adjustments in contrast (up to 10%) are made to simulate different

lighting conditions.

For augmentation, the model transformed the images differently each time they
passed through the augmentation pipeline during training. This means each epoch could
see slightly different versions of the same image, which helped the model generalize better
from the training data by preventing it from memorizing exact details. These augmentation
techniques were applied exclusively to the training set, ensuring that the model learned
from a more diverse set of examples without altering the test sets. Examples of augmented
images are shown in Figure 4.

After random augmentations, the SSS image samples were randomly shuffled to
further enhance model robustness by preventing the model from learning unintended
patterns from the order of the samples. Finally, the images were divided into multiple
batches according to the hyperparameter batch size.

2.2. Effective Geomorphology Classification Model

Although data augmentations are beneficial to increase the variety of data, our SPDP
dataset still presents unique challenges to the design of the classification model due to its
relatively small size and unique and intricate features. These features are often subtle yet
critical for accurate classification, requiring a model that can learn effectively from limited
data without overfitting. Additionally, the new model we need for this study should also
have good training efficiency and scalability. Good training efficiency allows faster model
training and inference and can even achieve real-time inference when conducting image
collection at the same time. Good scalability allows customized model design for various
sizes of available data, which is crucial for small and unique datasets like ours. Therefore,
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we introduce an Effective Geomorphology Classification model (EGC), which aims to
balance model performance and efficiency.

In this section, we first introduce the architecture of our EGC model. Then, we
introduce the two main modules of the EGC in detail: the feature extractor and the classifier.
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bottom (sand–mud mixture), homogenous pit bottom, as well as homogenous seabed outside the pit.

2.2.1. Model Architecture

To balance model performance and computational efficiency, we introduce an EGC
model based on EfficientNet [36]. EfficientNet has shown good performance on image
classification tasks with a great tradeoff between accuracy and training and inference
efficiency, which is achieved by its innovative scaling approach. The EGC mainly has two
modules: the feature extractor, which adopts EfficientNet-B0 as the backbone to extract
various levels of grains of geomorphological features, and the classifier, which consists of
two fully connected (FC) layers to perform predictions on five classes. The architecture of
the EGC is shown in Figure 5.

As shown in Figure 5, the EGC is divided into 10 stages, and all the layers in each
stage have the same architecture. Stages 0–7 are the components of the feature extractor
module, and stages 8–9 are the layers of the classifier module.

2.2.2. Feature Extractor Module

The foundation of our EGC is the feature extractor module, which meticulously
processes the input sidescan sonar images to distill meaningful patterns. This module is
designed to handle the nuances of underwater imagery with a good balance between model
performance and model size. Two major convolution blocks were utilized in the feature
extractor module: MBConv and Fused-MBConv, as shown in Figure 6. MBConv is the main
convolution block in MobileNet [37], which consists of two convolution layers with a kernel
size of 1 × 1 and a depthwise block. Fused-MBConv is a variant of MBConv designed
to achieve better training speed by replacing the depthwise conv3 × 3 and expansion
conv1 × 1 in MBConv with a conv3 × 3 layer.
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As shown in Figure 6, the feature extractor module begins with a standard convolu-
tional layer (conv3 × 3) that is equipped with 32 filters of size 3 × 3 and has 32 channels.
This serves as the initial feature extractor for the processed input images. The subsequent
stages, 1 through 3, implement Fused-MBConv blocks. Fused-MBConv fuses the depthwise
and pointwise convolutions into one layer for efficiency. They employ 3 × 3 kernels and
exhibit increasing complexity in terms of the number of channels, starting at 16 and pro-
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gressing to 48. Each stage incrementally captures more complex features while managing
computational efficiency. Stages 4 to 6 integrate MBConv blocks with 3 × 3 kernels. The
number of channels in these layers progressively increases from 96 to 192, allowing the
network to construct a highly detailed feature representation from the input data. Fi-
nally, a regular conv1 × 1 and fully connected layer generates the output with a vector of
1280 dimensions.

2.2.3. Classifier Module

The classifier module contains two fully connected layers, where the output of the
last layer is a vector of five dimensions, which corresponds to the number of classes in the
geomorphology classification task.

Throughout the model, the number of layers within each stage varies, signifying
the network’s complexity and depth at different levels of abstraction. This hierarchical
structure enables the model to effectively learn both low- and high-level features.

2.2.4. Experimental Settings

In our experiments, our batch size was set to 8. The total number of training epochs
was 400. We used Adam [38] as the optimizer, where a cosine-decaying learning rate
scheduler is applied with an initial learning rate of 0.001 and exponential decay rates of 0.9
and 0.999, respectively.

To evaluate the performance of our model, we utilized the top-1 accuracy metric.
This metric is a direct measure of the model’s ability to correctly classify the primary
sediment type from an image, providing a clear and interpretable assessment of the
classification performance.

To evaluate the classification performance of our EGC model, we selected a range of
CNN architectures as backbones and connected them with the classifier module, each with
varying complexities and characteristics. The specifications of the baselines are shown in
Table 2.

Table 2. Specifications of the models. The number of parameters and float-point operations (FLOPs)
is expressed in millions.

Model #Parameter (M) #FLOPs (M)

LeNet 0.005 20.00
VGG16 14.78 49.60

MobileNet Small 1.01 1.97
MobileNet Large 3.12 9.10

EGC 6.08 20.00

4. LeNet [39]: One of the earliest convolutional networks, LeNet is renowned for its
simplicity and effectiveness in image classification tasks.

5. VGG16 [35]: A deep CNN renowned for its simplicity and depth that has shown
exceptional performance on various image recognition tasks.

6. MobileNet [37] (Small and Large variants): MobileNet architectures are designed for
mobile and edge devices, emphasizing efficiency. The ‘Small’ variant represents a
more compact version, while the ‘Large’ variant is a scaled-up version with a higher
capacity for feature extraction.

As shown in Table 2, our EGC has a medium size among the baselines and a moderate
number of FLOPs. The design of the EGC balances training efficiency and model perfor-
mance. Therefore, to fully evaluate the effectiveness of the EGC on our small dataset, we
need to further measure its prediction performance in the following sections.
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3. Results
3.1. Experimental Results

In this section, we present the major findings regarding the performance of our EGC
model and ablation studies on some key components. All the experimental results pre-
sented are averaged from five independent experiments.

3.1.1. Model Performance

Typically, training CNNs from scratch where all the parameters of the model are train-
able on small datasets is difficult because CNNs usually have a vast number of parameters
that require substantial amounts of data to learn effectively without overfitting. When data
are scarce, the model may not encounter enough variation to generalize well, leading it to
memorize the limited training examples rather than learning the underlying patterns.

In this section, to evaluate the classification performance of our EGC model against
the baselines, we train each baseline model from scratch. The accuracy and convergence
speed are shown in Table 3, and the training curves are given in Figure 7.

Table 3. Classification performance and convergence speed of different models. Acc. denotes the
best validation accuracy, and Converge Epoch denotes the number of epochs required to achieve
0.80 validation accuracy. The best result is in bold.

Model Acc. Converge Epoch (Efficiency)

LeNet 0.66 /
VGG16 0.26 /

MobileNet Small 0.85 216 (2.25×)
MobileNet Large 0.84 264 (2.75×)

EGC 0.82 96 (1×)
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As shown in Figure 7, from the training accuracy and training loss curves, the EGC,
along with MobileNet Small and MobileNet Large, converges fast and reaches the per-
formance plateau with more than 0.95 accuracy at about epoch 200, while LeNet and
VGG16 converge to the local minimum (Figure 7A,C). This indicates that LeNet and VGG16
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are underfitting and not able to effectively extract the key features from our sidescan
sonar images.

As shown in Table 3, the EGC has a significantly fast convergence speed and good
generalization ability, achieving a stable validation accuracy of 0.80 after only 96 epochs of
training. Although MobileNet Small and MobileNet Large have slightly higher accuracy
than the EGC after 300 epochs of training, they are much less robust than the EGC with
high fluctuations between epochs, as shown in Figure 7B. Moreover, MobileNet variants
need a warmup of about 150 epochs to improve their validation accuracy, which shows
significantly low training efficiency (Figure 7B).

3.1.2. Model Trained from Scratch versus Pretrained Model

The decision to train a CNN from scratch or to employ transfer learning of a model
pretrained on a large dataset is critical to the success of model training, especially when
faced with a small dataset. In this section, we evaluate the performance of two variants of
our EGC model: EGC, trained from scratch, and EGC (Pretrained), which leverages transfer
learning. Specifically, the feature extractor module of EGC (Pretrained) is pretrained on
ImageNet, which is a vast and diverse image dataset, and the weights of the feature
extractor are fixed, which leaves only the classifier to be updated on our SPDP dataset.

It is worth noting that we also apply transfer learning to other baselines. However,
only VGG16 (Pretrained) shows good performance and reveals some interesting findings.
Therefore, we add VGG16 and VGG16 (Pretrained) to the comparison. The results are
shown in Figure 8.
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The EGC model, trained from scratch, demonstrates exceptional validation accuracy,
with a training accuracy of up to 1.0 and a validation accuracy of up to 0.82, indicating that
its architecture is well suited for the nuances of the dataset at hand (Figure 8B). Its superior
performance suggests that, even without the benefits of transfer learning, the model is capa-
ble of learning robust and discriminative features specific to geomorphology classification.

Both VGG16 and EGC (Pretrained) exhibit signs of underfitting, as seen from their
lower training accuracies (Figure 8A,B). In the case of VGG16, this could be attributed to
its depth and the large number of parameters, which may be difficult to train effectively
without a sufficiently large dataset. For the pretrained EGC, underfitting could be due to
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the significant domain shift between natural images in ImageNet and the sonar imagery
in our dataset. The model may struggle to adjust these features to the new task during
fine-tuning, leading to poor performance in both the training and validation phases.

Complex models like VGG16, known for their performance on large and diverse
datasets, may not always be the optimal choice for smaller, domain-specific datasets. For
these models, transfer learning is beneficial because of the reduced number of trainable
parameters. Instead, more specialized architectures like our EGC can capture the essential
features effectively without transfer learning.

3.1.3. Ablation Study on Image Processing

In this ablation study, we investigate the impact of data preprocessing on the perfor-
mance of our EGC model. By comparing the EGC with and without these preprocessing
steps, we aim to understand their contribution to the model’s learning efficacy. The results
are shown in Figure 9.
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EGC is more resistant to overfitting and shows better generalization ability. Although
EGC (W/O Preprocessing) initially exhibits a more rapid convergence during the early
epochs of training, it begins to overfit after approximately 50 epochs, as evidenced by
the divergence of training and validation loss (Figure 9C,D). Moreover, the EGC model,
incorporating preprocessing steps, maintains steadier convergence and achieves higher val-
idation accuracy by a large margin of 0.1 (Figure 9B). Overall, EGC shows better resistance
to overfitting and better generalization ability, benefiting from data processing.

4. Discussion

In response to sea-level rise and land subsidence, dredging is a global human activity
aimed at restoring coastal environments and slowing down land loss. It is anticipated that
more dredge pits will be formed in future decades in response to growing sand mineral
needs. Detecting pit walls and calculating the distances from pit walls to oil and gas
pipelines and platforms are critical to the safety of marine mineral management. The data
generated by our EGC model can help decision makers to better evaluate the setback buffer
distance from pit walls to oil and gas pipelines, which is currently about 304 m as used by
the U.S. Bureau of Ocean Energy Management. Moreover, submarine landslides are a type
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of geohazard widely found in marine environments and pose a threat to nearby oil/gas
pipelines and submarine fiber cables. Our EGC model can also be adapted and applied to
the detection of the walls of gullies and lobes formed in the areas of submarine landslides,
which can be triggered by hurricane waves, earthquakes, and tsunamis. It can also be used
to detect complex shipwrecks in coastal and marine environments.

Several machine learning studies related to dredging activities have been reported
in recent years, including identifying sediment types and sand mining [40,41]. However,
utilizing machine learning methods to identify geomorphic features like dredge pit walls is
still very limited. In September 2022, for example, some researchers [19] observed large
submarine landslides on the west wall of the Sandy Point dredge pit (Figure 1). This
was the first time that landslides occurred in dredge pits in muddy environments. This
phenomenon has great implications for the safety of ambient gas and oil pipelines and
platforms, as well as submarine fiber cables. Sand mineral management and dredging-
related hazards require fast and efficient machine learning tools.

Compared with bathymetry and coring methods, sidescan sonar data are cheaper to
collect and easier to process. Sidescan data are also excellent at detecting the edges and
boundaries of contrasting seafloor objects. In recent years, a large amount of SSS data have
been collected in coastal marine environments. Therefore, the combination of SSS data and
machine learning is a promising method to monitor the geomorphic evolution of dredge
pits and to study geohazards triggered by dredging activities. In this study, the EGC shows
an excellent balance between model performance and training efficiency. Furthermore, it
learns effectively from a relatively small dataset (Figure 7). The EGC model introduced in
this study is promising to identify geomorphic features and even artificial infrastructure
like oil platforms, pipelines, and the foundations of wind turbines in marine environments.
This EGC model can be used for geomorphic feature identification and hazard monitoring
in both sandy and muddy environments on the Louisiana continental shelf and even in
other dredge pits around the world. Furthermore, marine dredging pit environments
are on a relatively small spatial scale of 0.1 to several km. On a larger spatial scale of
tens to hundreds of km, marine geomorphic features like shorelines, marsh edges, reef
edges, delta fronts, continental shelf breaks, submarine canyons, seamounts, and guyots
can also be identified. This model could be used to detect similar geomorphic features
in a larger dataset or to monitor the temporal evolution of these features. Furthermore,
submarine sediment transport could lead to significant erosion and deposition on the
seabed during energetic events like hurricanes and storms. This often leads to the exposure
of previously buried gas or oil pipelines on the seabed. Our EGC model can be used to
detect the boundaries of metal pipes and mineral sediment and to identify the location of
pipeline exposure. Thus, our EGC model will eventually benefit energy and environmental
management in the marine environment.

5. Constraints and Future Work

The EGC model has limitations in identifying geomorphic features in dredge pit envi-
ronments (see Figure 10). This could be a result of the small dataset and the complexity
of geomorphic features. For example, Figure 10E shows an incorrect prediction, which
is likely because the pit wall fraction is too small and quite different from a typical pit
wall. Figure 10G,H present a similar problem. Additionally, Figure 10F yielded a wrong
prediction because data noise makes the collapse feature incomplete and unpredictable.
Therefore, in the future, creating a bigger SSS image dataset and conducting more train-
ing could make the EGC model robust and accurate. Moreover, a model specialized in
identifying types of geomorphic features could be developed based on our EGC model.



J. Mar. Sci. Eng. 2024, 12, 1091 13 of 15J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 10. (A–D) are examples of typical features. (E–H) are examples of wrong predictions. The 
red dashed circles highlight the target features. The yellow dashed circles highlight the noise pro-
duced in the nadir of the SSS during data collection. 

6. Conclusions 
The use of machine learning models to identify geomorphic features from high-res-

olution SSS images is discussed in this study. The major conclusions are as follows:  
1. Our EGC model was introduced to identify geomorphic features in marine dredge 

pit environments. The EGC model has the best training accuracy and validation accuracy 
when compared with several other machine learning models. Additionally, the EGC 
shows a better balance between model performance and training efficiency. Compared to 
other models, the EGC model trained from scratch has superior validation accuracy with-
out transfer learning. The EGC model with preprocessing is more resistant to overfitting 
and shows better generalization ability.  

2. Dredging-induced submarine landslides are a threat to the ambient energy and 
fiber cable infrastructure on the inner Louisiana continental shelf. The EGC model could 
be used to monitor landslides in dredge pits. Compared to the bathymetry data, SSS im-
ages are more cost-effective. The combination of SSS images and machine learning models 
(e.g., the EGC) could be a promising tool for monitoring geomorphic evolution and land-
slides in dredge pit environments. Moreover, the EGC model introduced in this study and 
the comprehensive SSS image dataset are valuable to future machine learning studies.  

Author Contributions: Conceptualization, W.Z. and K.X.; formal analysis, W.Z., X.C., and K.X.; 
funding acquisition, K.X.; methodology, W.Z. and X.C.; software, W.Z. and X.C.; visualization, W.Z. 
and X.C.; writing—original draft, W.Z. and X.C.; writing—review and editing, K.X., X.Z., J.C., J.Y., 
and T.Z. All authors have read and agreed to the published version of the manuscript. 
Funding: This study was funded by the Bureau of Ocean Energy Management Agreement Number 
M14AC00023 and multiple others, with Barton Rogers, Christopher DuFore, and Michael Miner 
serving as project officers of the Bureau of Ocean Energy Management. This study was also partly 
funded by the U.S. Coastal Research Program (W912HZ2020013) and the National Science Founda-
tion RAPID program (2203111). 

Institution Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 10. (A–D) are examples of typical features. (E–H) are examples of wrong predictions. The red
dashed circles highlight the target features. The yellow dashed circles highlight the noise produced
in the nadir of the SSS during data collection.

6. Conclusions

The use of machine learning models to identify geomorphic features from high-
resolution SSS images is discussed in this study. The major conclusions are as follows:

1. Our EGC model was introduced to identify geomorphic features in marine dredge
pit environments. The EGC model has the best training accuracy and validation accuracy
when compared with several other machine learning models. Additionally, the EGC shows
a better balance between model performance and training efficiency. Compared to other
models, the EGC model trained from scratch has superior validation accuracy without
transfer learning. The EGC model with preprocessing is more resistant to overfitting and
shows better generalization ability.

2. Dredging-induced submarine landslides are a threat to the ambient energy and
fiber cable infrastructure on the inner Louisiana continental shelf. The EGC model could be
used to monitor landslides in dredge pits. Compared to the bathymetry data, SSS images
are more cost-effective. The combination of SSS images and machine learning models (e.g.,
the EGC) could be a promising tool for monitoring geomorphic evolution and landslides
in dredge pit environments. Moreover, the EGC model introduced in this study and the
comprehensive SSS image dataset are valuable to future machine learning studies.
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