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Abstract—This paper explores the possibility of using com-
puter vision and underwater Remotely Operated Vehicles
(ROVs) to detect medical waste, such as masks and gloves in
oceans. We use a single-stage detector to train the machine
learning approach and then validate the results using the video
feed from the tethered ROV.
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I. INTRODUCTION

The ongoing COVID-19 disease has negatively impacted
the lives of everyone and the country’s economy [1]. There-
fore, the demand for these products has increased signif-
icantly. To control the spread of the virus, governments
recommended that PPE (personal protective equipment), such
as face masks and plastic gloves, be used daily in public and
shared spaces.

Since many of these medical products are disposable,
they generate millions of tons of plastics and other plastics
derivatives [2], [3]. In the short two-year span, an alarming
amount of waste has ended up in the environment by indirect
or deliberate actions ranging from waste mismanagement to
illegal dumping. Studies have shown that face masks and other
PPEs could release chemical pollutants and nanoplastics into
the ocean, raising concerns from scientists, environmentalists,
and environmental activists.

Face masks and plastic gloves increase the amount of
marine debris circulating in the oceans. This is an urgent
issue due to ocean currents that disperse litter across all major
bodies of water and at all depths of the ocean. Plastic waste
also lingers in the marine environment and destroys marine
ecosystems. Marine organisms risk suffocation, entanglement,
drowning, and physical rupture of internal organs [4]. Further-
more, nanoplastics could be accidentally ingested by these
organisms, leading to starvation, hydration, or malnutrition
due to false satiation.

As we know, underwater remotely operated vehicles
(ROVs) could mitigate the problem by finding and removing
marine litter [4]. To achieve this goal, it is essential that
ROVs can detect medical waste successfully in underwater
environments. To the best of our knowledge, this is the first
paper to use ROVs and YOLOv5 to detect medical waste in
oceans.

The paper is divided as follows. Section I describes the
urgency of the issue we are trying to solve, followed by
a discussion of related work. Then we introduce an object
detection algorithm, specifically YOLOv5. We then discuss
how we annotated our custom dataset for training and testing

and trained YOLOv5 to solve our problem in Section III. Fi-
nally, we describe how we improved the efficiency of YOLO5
medical waste detection, followed by results, discussion, and
conclusions.

II. RELATED WORKS

YOLO, or ”You Only Look Once”, is a family of open-
source models. We have found that YOLO has been utilized
in many real-time object detection studies through research.
We have divided the relevant studies into two categories. One
for detecting debris in the ocean. Another for identifying mask
wear in public spaces.

YOLOv5, as mentioned, can be easily deployed on embed-
ded devices. An embedded device is an object that contains a
special-purpose computing system [5]. Running YOLOv5 on
devices such as ROVs or buoys can help detect marine plastic
debris more accurately. Therefore, many studies focus on
training YOLOv5 for such purposes. Tata et al. used YOLOv5
in their research. The discussion section of their paper sug-
gests improving the data augmentation, object detection algo-
rithm, dataset, and camera to increase classification efficiency.
They mentioned data augmentation techniques to improve
the model’s variability, including grayscale, saturation, and
vertical/horizontal flipping. The dataset can also be enhanced
by adding more images from different locations with different
types of water conditions [4].

Another study by Lin et al. focused on re-designing the
YOLOv5 algorithm to detect floating debris [6]. They intro-
duced a feature map attention layer (FMA) at the end of
the backbone to improve the ability to extract features. To
maintain the number of output channels consistent with the
input without increasing the computation time of the neck
section, the FMA layer employs a self-attention method to
weigh each channel of the top layer feature map and 1 ×
1 convolution to manage the number of output channels.
They also applied mosaic data augmentation to improve the
detection impact of tiny targets during training and a dataset
extension strategy to increase the training dataset from 1920
to 4800 images.

Furthermore, YOLOv5 was successfully applied to identify
the mask and unmask person during the COVID-19 pandemic.
In one of the studies, we found that Liu et al. improved
YOLOv5’s default settings by using data augmentation and
anchor adjustment without gathering additional data; data
augmentation allowed practitioners to expand the diversity
of data available for training models significantly. Liu et



al. have implemented methods such as data flipping, data
rotation, image scaling, image clipping, image translation,
and noise addition [7]. Anchor adjustment involves using K-
means to calculate anchors and improve the detection rate of
the bounding box [7]. Applying those methods successfully
increased the efficiency and accuracy of YOLOv5’s models
in mask-wearing detection. We will use similar methods
discussed above to improve the accuracy of detecting masks
and other medical waste in the ocean and then apply the model
to the ROV.

III. PROBLEM STATEMENT

YOLOv5 provides multiple training models for different
object detection cases. We will compare the YOLOv5n model
(nano) with the YOLOv5s (small) model to see which model
produces the most accurate results in detecting face masks
and plastic gloves in the ocean.

We can compare the performance of each model using the
mean average precision (mAP ) using the average precision
of each class. The higher mAP , the more accurate the
model is based on the dataset. In the following equation,
ApMask refers to the average precision of the mask class,
and ApGlove refers to the average precision of the glove
class.

mAP = (ApMask +ApGlove)/2 (1)

IV. METHODOLOGY

A. Dataset

The dataset created to train the neural network includes
images found on Google and screenshots taken from Youtube
videos of plastic gloves and masks in an ocean environment.
Currently, we are only focusing on plastic gloves and blue
disposable face masks. The images have masks or gloves on
the ocean’s surface or submerged. We made sure that the
backgrounds varied, for example, the colouring, light levels,
and different locations in the ocean. Some examples in our
dataset are images of masks submerged in shallow water
where there are more light or images where algae slightly
cover the object on the ocean floor. We also included images
that show a large amount of waste in the ocean. Having
a greater variety of backgrounds helps to increase object
detection accuracy when looking at masks and gloves in
different environments.

B. Object Detection

There are mainly two types of state-of-the-art object detec-
tors. The two-stage detector uses the Region Proposal Net-
work to generate regions of interest. Then, it sends those re-
gion proposals down the pipeline for object classification and
bounding-box regression. Examples of two-stage detectors are
R-CNN (Region-Based Convolutional Neural Networks) and
Mask R-CNN. These detectors have the highest accuracy rates
but are typically slower, making them less ideal for real-time
object detection.

On the contrary, single-stage detectors are excellent trade-
offs between accuracy and speed. They take inputs such as

Fig. 1. Examples of images in the dataset

images and learn class probabilities and bounding box coor-
dinates in a single step. Examples of single-stage detectors
are YOLO and SSD (Single Shot MultiBox Detector) [8].

1) YOLO: The YOLO real-time object detection model is
renowned for its accuracy and speed. It turns the detection
process into a regression problem, simplifying many cal-
culation processes [9]. YOLO was the first object detector
to connect the procedure for predicting class labels in an
end-to-end differentiable network [10]. YOLO implements its
architecture by dividing images into a grid system and having
each cell in the grid detect objects within itself.

The YOLO network has three main components: the back-
bone, neck, and head. The backbone is a convolutional neural
network that aggregates and forms image features at different
granularities [10]. It is for pre-training and can run on GPU
or CPU platforms [11]. The neck is a series of layers between
the backbone and the head. These layers are used to collect
feature maps from different stages. The neck is composed of
several bottom-up paths and several top-down paths. Lastly,
the head is used to predict classes and bounding boxes
of objects [12]. It can be a one-stage detector for dense
prediction or a two-stage for sparse prediction objects [11].

Fig. 2. The object detection process of YOLO

2) YOLOv5: For this project, we will use YOLOv5, the
latest version of the YOLO series. It has a model architecture
similar to YOLOv4 but has achieved performance improve-
ment due to PyTorch training procedures [10]. YOLOv5 has
achieved top performance in two official object detection
datasets: Pascal VOC (visual object classes) and Microsoft
COCO (common objects in context) [9].

YOLOv5 incorporated a partial cross-stage network (CSP-
Net) to formulate the features of the image [9]. CSP models
are based on DenseNet, designed to better connect layers in



a convolutional neural network [10]. The CSPNet addresses
the duplicate gradient problem in other larger ConvNet back-
bones. It integrates the gradient changes into the feature maps,
supporting feature propagation and encouraging the network
to reuse features. It also reduces the number of network
parameters and FLOPS (floating-point operations per second)
of the model [9], [13]. Ultimately, implementing CSPNet
minimizes the need for heavy computing resources and can
be cost-saving. Another feature implemented by YOLOv5 is
the PA-NET neck for feature aggregation. PA-NET adopts a
new pyramidal network feature structure (FPN) and improves
bottom-up routes in the neck of YOLOv5 [9], resulting in
an improvement in the propagation of low-level features.
Moreover, PA-NET with adaptive feature grouping links a
feature grid and additional feature levels, allowing helpful
information at each feature level to propagate directly to
the following subnetwork [9]. Most importantly, PA-NET
improves the utilization of accurate localization signals in
the lower layers, which can significantly improve the location
accuracy of the object.

YOLOv5n6 is the most compact version of YOLOv5. The
nano model maintains the depth multiple of YOLOv5s of 0.33
but reduces the width multiple of YOLOv5s from 0.50 to 0.25,
resulting in 75% fewer parameters, from 7.5M to 1.9M [14],
making it the fastest among other YOLOv5 models. Because
they are ideal for mobile and CPU-based solutions, we believe
they will be most efficient for real-time medical waste in the
ocean with ROVs.

C. Performance Evaluation

The performance of YOLOv5n can be measured by its abil-
ity to detect relevant objects accurately (Precision) and find
all appropriate cases (Recall). The most common metrics are
the average precision (AP ) and the mean average precision
(mAP ). Both are based on the IoU metric, shown in (2).

IOU =
area(gt ∩ pd)

area(gt ∪ pd)
(2)

IoU metric measures the overlap between the ground truth
mask (gt) and the predicted mask (pd). It is calculated as
the intersection area between gt and pd divided by the union
area of gt and pd. IoU can range from 0 to 1. 0 implies that
there is no overlap, and 1 means that there is perfect overlap.
To evaluate an accurate detection, it is necessary to define a
threshold (α). Correct detection occurs when IoU is greater
than or equal to α.

Based on the result of IoU , we can build the confusion
matrix to create the precision-recall curve. The confusion
matrix will then classify the situation of each training result
into four events. These four events can be classified into two
types, positive and negative events. Positive events mean that
YOLO detects the mask, while negative events mean that
YOLO does not detect the mask. True means that YOLO
is correct, while false means that YOLO is wrong.

Precision is the ratio of true positive events in all events
for which YOLO detects the mask (3). Recall is the ratio of

Fig. 3. Confusion matrix details

true positive events in all events in which there is a mask
in the ocean (4). The precision call curve will be calculated
based on these events. If we represent recall on the x axis
and precision on the y axis, the area under this curve will be
the average precision of mask class (1).

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

AP is calculated individually for each class from their
precision-recall curve. AP@alpha means AP at the IoU
alpha threshold. Ideally, it is the Area Under the PR curve
(AUC − PR). A high AUC-PR implies high precision and
high recall. mAP can be derived from AP.

V. TRAINING

We used Roboflow to annotate and augment the image set,
and the models were trained using Google Colab. We used a
small YOLOv5 model in the first experiment (YOLOv5s). In
the second experiment, we used a nano YOLOv5 (YOLOv5n).
Two models were trained on the same machine and the
same set of augmented images. We wanted our image set
to be similar to the natural underwater situation in the aug-
mentation. Therefore, we applied 25% images in grayscale,
changing the hue of the images to 50% increased or 50%
decreased and changing the blurriness to 3.5 times pixels for
each image. Moreover, in each image, we applied the Mosaic
effect. After augmentation, we applied the 70/20/10% ratio for
training/validation/test, with 1200 images. We trained using
a CPU of over 200 epochs, as the underwater ROVs do not
have the powerful GPUs onboard.

The overall loss of the neural network is based on both
the loss of training and validation. The value is from each
iteration and helps represent how well the model is perform-
ing. The goal is to have the validation loss as low as possible
and a ”perfect fitting model”, meaning that the training loss
is equal to the validation loss.

A. YOLOv5n

When training the nano model, we noticed that the training
loss produces a slightly higher output value than the validation
loss, as seen in Figure 4. The graph shows that the model
in the training set has an output of 0.04 compared to the
validation set, which outputs 0.008. This means that the nano



model is underfitted. If a model is underfitted, the model
cannot learn the patterns in the training set. This would be
solved by increasing the size of the dataset to help the model
identify the trends of each class of objects.

Fig. 4. Yolov5n validation and training loss results

B. YOLOv5s

The small model shows that the training and validation
sets produce results similar to the nano model in terms of
the loss trends, as seen in Figure 5. The small model is
also under-fitted, as shown by the object loss graph. Since
the model produces higher values with the training set, it
shows a problem with the model not correctly detecting the
difference between the object and the background within the
box. For loss of objects, the small model produces values for
the training set of 0.04, and the validation set is 0.008. An
essential difference between the nano- and small-models is
that the small model produces much lower values within the
validation test.

Fig. 5. Yolov5s validation and training loss results

VI. PERFORMANCE TESTING

There are various metrics used to measure the accuracy and
performance of an object detection model. We used precision,

recall, and mAP (when IOU are at 0.5 and 0.95). The nano
model had 1,761,871 parameters and 4.2 GFLOPs, while the
small one had 7,015,519 parameters and 15.8 GFLOPs. Both
models ran 200 epochs with 213 layers and no gradients.

The precision graph shows the performance similarities
between nano and small versions of YOLOv5. The precision
for the nano model was 0.971, with the mask class at 0.977
and the glove class at 0.965. On the contrary, the small
model had a precision of 0.978, with the mask class at 0.98
and the glove class at 0.956. Both curves maximized their
logarithmic growth after 60 epochs and deviated less. High
precision indicates a low false-positive rate. This means that
the YOLOv5 models did not falsely detect masks or gloves
when there were no masks in the images.

Fig. 6. Precision and Recall (blue - YOLOv5n, orange - YOLOv5s)

Fig. 7. mAP (blue - YOLOv5n, orange - YOLOv5s)

For recall, the nano model has an overall recall of 0.947,
with mask class at 0.924 and glove class at 0.971. On the
other hand, the small model has an overall recall of 0.969,
with a mask class at 0.957 and a glove class at 0.982. A more
significant difference between nano and small was observed
from the recall graph. Small, represented by the orange line,
had better recall than nano. Moreover, after 80 epochs, both
versions fluctuated less. The high recall numbers are related
to a low false-negative rate, which means that YOLOv5 did
not leave masks or gloves undetected from the images.

The mAP detection metric at IOU = 0.5 shows that both
nano and small versions of YOLOv5 are strong detectors. The
mAP value for nano is 0.975, with the mask class at 0.972
and the glove class at 0.979. The mAP for small is 0.987,
with mask class at 0.987 and glove class at 0.988. And for
mAP at IOU = 0.95, the value of mAP for nano is 0.733
with the mask class at 0.704 and the glove class at 0.762. For
small, mAP is 0.778 with mask class at 0.77 and glove class
at 0.786.



VII. DISCUSSION

After the experiment, we examined the result generated
from our set of tests for the nano- and small models using
the BlueROV2 ROV. The video was recorded using the
1080p, 30fps wide-angle low-light camera. Example images
with detection are shown in Figures 9 and 10. As discussed
previously, the trained model performed well, allowing the
tethered ROV to use its CPU to detect masks and gloves in
the ocean efficiently.

Fig. 8. Image of a BlueROV2, obtained from the official website.

Fig. 9. Mask detection with high confidence level

Fig. 10. Glove detection

VIII. CONCLUSION

In this short paper, we trained two YOLOv5 models, nano
and small, using the same images. We then applied two
models in ROV, observing no significant differences in mAP ,
precision, and recall. In future work, we plan to expand our
research to detect other types of debris using ROVs, explore
various authentication strategies for ROVs [15], as well as to

use Autonomous Underwater Vehicles (AUVs) that conduct
survey missions without operator intervention [16].
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