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Abstract: With the development of the marine economy and the increase in marine activi-
ties, deep saturation diving has gained significant attention. Helium speech communication
is indispensable for saturation diving operations and is a critical technology for deep satu-
ration diving, serving as the sole communication method to ensure the smooth execution
of such operations. This study introduces deep learning into helium speech recognition
and proposes a spectrogram-based dual-model helium speech recognition method. First,
we extract the spectrogram features from the helium speech. Then, we combine a deep
fully convolutional neural network with connectionist temporal classification (CTC) to
form an acoustic model, in which the spectrogram features of helium speech are used as
an input to convert speech signals into phonetic sequences. Finally, a maximum entropy
hidden Markov model (MEMM) is employed as the language model to convert the phonetic
sequences to word outputs, which is regarded as a dynamic programming problem. We
use a Viterbi algorithm to find the optimal path to decode the phonetic sequences to word
sequences. The simulation results show that the method can effectively recognize helium
speech with a recognition rate of 97.89% for isolated words and 95.99% for continuous
helium speech.

Keywords: helium speech recognition; spectrogram; acoustic model; language model;
saturation diving

1. Introduction
The 21st century is the era of the marine economy, with more than 50% of humankind’s

clean energy and production materials expected to be obtained from the ocean. Saturation
diving is important in the fields of navigation, marine development, marine military, marine
rescue, and so on. As such, it is an indispensable part of marine economic development.

Due to the particularity of deep-sea operations, many tasks in the ocean cannot be
completed with manned deep-sea submersibles or underwater robots. Divers are required
to directly enter the water and be exposed to the deep-sea high-pressure environments to
operate. Due to their physiological requirements in deep-sea high-pressure environments,
divers need to breathe helium–oxygen mixed gas (He-O2) during saturation diving. When
the diving operation depth is over 50 m, the voices of the divers are obviously distorted.
When the depth is over 100 m, the voices of the divers begin to be seriously distorted,
and normal speech becomes a bizarre “Donald Duck speech”, called helium speech. This
results in communication difficulties between the inside and the outside of a submersible
and between divers [1], which affects the deep-sea operations of the divers directly and
may even threaten their lives [2]. Therefore, it is urgent to resolve the voice communication
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of divers in the deep-sea saturation diving context, also known as the helium speech
unscrambling problem.

In 1962, the U.S. Navy carried out the first saturated diving experiment using the
mixed gas of He-O2 and observed voice distortion in helium speech communications. They
carried out the first quantitative voice analysis and pointed out that the resonant frequency
of speech increased in a certain proportion [3]. Subsequently, France implemented the
Precontinemt program, and Japan implemented the Sealab program, in which sea-dwelling
simulation experiments were carried out. They conducted research and experiments on
saturated diving helium speech communication technology [4]. In 1967, Sergeant first
reported the helium speech test on the intelligibility of syllable words and the misinter-
pretation table of consonants considering the use of the mixed gas of He-O2 at normal
atmospheric pressure [5,6]. In 1968, Hollien and Thornpson studied the relationship be-
tween the intelligibility of monosyllabic English words and the diving depth (the pressure
of the saturated submersible cabin) with the mixed gas of He-O2. They pointed out that
when the diving depth is over 100 m, speech is almost impossible to understand [7].

Further research has shown that it is insufficient to study the mechanism of speech
distortion in divers using only the complex acoustic model generated through conventional
speech [8]. Lunde used an acoustic transmission line sound channel model to study
the resonance peak frequency, bandwidth, and amplitude of helium speech under high
pressure. He modified the classical Fant Lindquist formula for resonance peak frequency
shift, given the formulas for bandwidth and amplitude shifts [9,10]. Brubaker et al. studied
the distortion of English vowels and consonants in a helium–oxygen environment, and
the results showed that energy loss occurs in both vowels and consonants in such an
environment. However, the energy loss in consonants is more pronounced, which reduces
the understanding of helium speech [11].

Although there are various methods for unscrambling or recognizing helium speech,
they can be divided into two types in terms of signal processing methods: time-domain
processing techniques and frequency–domain processing techniques [12,13]. The former
encompasses methods such as tape-recording playback, signal segmentation, and digital
encoding. Among these, signal segmentation is the most widely adopted in practice [14].
It can correct the resonance peak frequency distortion of helium speech and even correct
the fundamental frequency distortion. Frequency–domain processing usually includes the
frequency subtraction method, a speech coder, frequency–domain segmentation processing,
the signal analysis method, spectrograms, and so on [15]. Among these, the spectrogram is
a relatively effective method.

A spectrogram is a spectrum obtained by processing time-domain signals. It provides
a large amount of information related to the characteristics of speech signals, including
resonance peaks, fundamental frequency periods, energy, and other parameters. In other
words, the spectrogram contains all the original spectral information of the speech signal.
Deep learning has powerful learning capabilities that allow systems to process correlations
between input features. Introducing deep learning into helium speech recognition can
improve the recognition rate of helium speech. The experiment conducted showed that
using spectrograms as input features for deep learning systems outperforms one using
classical Mel frequency cepstrum coefficients (MFCCs) as input features due to the rich
phonetic feature information contained in the spectrogram features [16]. It is worth noting
that speech recognition networks can be implemented using fully convolutional networks,
which may completely discard the connection layer. Although some feature information
may be lost, the speech recognition performance is not reduced. Moreover, fully convo-
lutional neural networks can quickly capture prior information and automatically learn
the mapping relationship between input data and target data. This not only improves the
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accuracy but also shortens the training time [17,18]. Li et al. proposed a helium speech
correction algorithm based on deep neural networks (DNNs). In a DNN, the character-
istic extraction network extracts the four features of helium speech—formant frequency,
formant bandwidth, formant amplitude and pitch—to train the input feature values of
the DNN. Each neuron in the neural network layer is connected to all neurons in the
previous layer, and each connection has a weight; that is, the input of each neuron in the
current layer is the output of the neuron in the previous layer. This algorithm proposed the
first machine learning-based helium speech recognition [19]. Reference [20] proposed an
adaptive audio-based metric generative adversarial network (AMGAN). In the AMGAN,
an adaptive segmentation algorithm and a fusion loss function are used to enhance the
ability to learn helium speech features while overcoming the shortcomings of traditional
methods in high-pitch correction. This solves the problems of pitch period distortion and
formant shift in helium speech and improves the clarity and intelligibility of corrected
helium speech. However, due to the limited availability of helium speech data and the lack
of supervised information in helium speech recognition training, the learning ability of
neural networks is limited.

In order to effectively recognize helium speech based on small samples, we propose a
spectrogram-based helium speech recognition method (BS). The helium speech recognition
system consists of an acoustic model and a language model with deep learning. The
spectrogram features of helium speech, including the fundamental frequency, harmonics,
and peaks, are input into the acoustic model, where the helium speech signals are converted
to phonetic sequences. In addition, a maximum entropy hidden Markov model is used to
decode the phonetic sequence into the word sequence. The main contributions of this work
are summarized as follows:

(1) We extract the time-varying patterns of fundamental frequency, harmonics, and peaks
of helium speech from spectrograms, which are used to as the acoustic features of the
neural network in the recognition system.

(2) We introduce deep learning to connectionist temporal classification to form an acoustic
model, which can directly learn previously obtained helium speech acoustic features to
capture further historical information and future information with stronger robustness
and expressive ability.

(3) A maximum entropy hidden Markov model is employed as a language model to
convert the phonetic sequences to word outputs, which can find the optimal path to
complete the decoding of phonetic sequences to word sequences and improve the
accuracy and fluency of speech recognition.

The rest of this paper is organized as follows. Section 2 describes the helium speech
recognition system model based on spectrograms. Section 3 analyzes speech spectrograms
and shows the differences and relationships in spectrograms between helium speech and
normal speech. Section 4 gives the acoustic model in helium speech recognition. Section 5
presents the language model in helium speech recognition. Section 6 summarizes the
helium speech recognition algorithm based on spectrograms. Simulation results are shown
in Section 7. Finally, some conclusions are drawn in Section 8.

2. System Model
The helium speech recognition system based on spectrograms with acoustic and

language models is shown in Figure 1. After pretreatments such as frame segmentation
and windowing, the spectrogram features of helium speech are extracted as the input to the
acoustic model. The acoustic model consists of a deep fully convolutional neural network
(DFCNN) and connectionist temporal classification (CTC); it is used to transcribe sound
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waveform signals into phonetic sequences. In the language model, the maximum entropy
Markov model (MEMM) is used to convert phonetic sequences into words.

Heliumspeech input

Pretreatment
Feature 

extraction
DFCNN CTC-loss

Maximum 

entropy hidden 

Markov model

Word output

Acoustic model Language model

Phonetic 

sequence output

···

Two-dimensional 

convolutional layer

Maximum 

pooling layer

···

···
Figure 1. Helium speech recognition system based on spectrograms.

3. Helium Speech Spectrogram
The key to the spectrogram-based helium speech recognition method is to extract the

spectrogram of helium speech as an acoustic feature for the neural network. A spectrogram
is a visual representation that uses a two-dimensional plane to express three-dimensional
information. It converts time-domain signals into a three-dimensional expression of time,
frequency and energy through a short-time Fourier transform (STFT), represented by the
horizontal axis, vertical axis, and color depth, respectively. The darker the color, the stronger
the speech energy at that point. The spectrum only analyzes the frequency distribution of
a single time signal, with the horizontal axis representing frequency and the vertical axis
representing intensity (amplitude or sound pressure), reflecting the energy relationship
of instantaneous frequency components. In this study, we use spectrograms to study the
dynamic frequency characteristics of helium speech signals over time, including the time-
varying patterns of fundamental frequency, harmonics, and peaks. In addition, we can
extract the features of plosives, fricatives, and vowels in helium speech through short-pulse
straight lines, irregular random patterns, and horizontal bars in spectrograms.

Spectrograms have a small bandwidth in frequency and a large bandwidth in time.
Therefore, they require high-frequency resolution and can clearly represent the various
harmonics of speech. For example, in the spectrogram of the helium speech phrase “we
are ready”, shown in Figure 2, we can clearly see the voice frequency and harmonics. In
Figure 2, the frequency range of the low stripes in the horizontal direction represents the
pitch frequency. Among these horizontal stripes, some of them are darker in color than other
horizontal stripes at the same time. These darker horizontal stripes represent the resonance
peak of helium speech. Specifically, multiple darker horizontal stripes may appear locally,
forming multiple resonance peaks. Figure 3 shows a spectrogram of the normal speech of
the phrase “we are ready” recorded by the same person under a normal atmosphere.

Comparing the spectrograms of speech under a helium–oxygen environment and a
normal atmospheric environment, it can be seen that the pitch periods change significantly,
and the parameters of the resonance peak characteristics also change, following the rules
summarized in relevant studies, such as [18–20].
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Figure 2. Spectrogram of helium speech of “we are ready”.

Figure 3. Spectrogram of normal speech of “we are ready”.

The process of extracting spectrograms is shown in Figure 4. After framing and
windowing helium speech in the preprocessing stage, we carry out a fast Fourier transform
on each frame signal as follows:

Sk

(
ejω

)
=

∞

∑
m=−∞

s(m) · w(k − m) · e−jωm (1)

where s(k) is the helium speech signal to be processed, and the window function w(n) is the
Hamming window:

w(k) = 0.54 − 0.46cos(
2πk

K − 1
), 0 ≤ k ≤ K − 1 (2)

where K is the length of the Hamming window.
The amplitude or absolute average of the FFT of the helium speech signal, Sk

(
ejω), is

the spectrogram of the helium speech.
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Figure 4. Process of spectrogram extraction.

4. Acoustic Model in Helium Speech Recognition
The helium speech recognition system uses DFCNN and CTC as acoustic models.

Among them, the DFCNN directly learns previously obtained helium speech acoustic
features to capture further historical information and future information with stronger
robustness and expressive ability. There are convolutional layers instead of fully connected
layers in the DFCNN, and each convolutional layer contains a small convolution kernel.
We also added a pooling layer after the convolutional layer to represent the long-term
correlation characteristics of helium speech better. As the spectrogram becomes smaller
and smaller in neural networks, the acoustic features of helium speech will become more
and more obvious, and the learning outcomes become better and better.

In this paper, our designed DFCNN consists of a total of 54 layers, including 16 two-
dimensional convolutional layers and 8 max-pooling layers. A max-pooling layer is inserted
after every two convolutional layers, reducing pixel kernels by projecting maximum values
onto smaller grids. For DFCNN modeling, the function model.summary (.), from the Keras
library on the Python version 3.9 platform, can be used to output the model architecture.

For non-convolutional layers, the number of parameters per layer is given by

Param = (Number of input data dimensions + 1) × Number of neurons (3)

where Param is the number of parameters per layer. For convolutional layers, the number
of parameters per layer is given by

Param = (Length of convolutional kernel × Width of convolutional kernel ×
Number of channels +1) × Number of convolution kernels

(4)

The DFCNN generates the ordered feature sequences from spectrograms, while CTC
facilitates the mapping from feature sequences to pinyin sequences. The CTC algorithm
is a neural network algorithm for inductive character connectivity, which would enhance
the system robustness for texts of varying lengths and alignments. The core of CTC lies
in using probability induction to identify a path with the highest probability and derive
the outputs. In this work, CTC is used primarily to solve alignment issues between
helium speech acoustic features and phonetic sequences, remove repeated characters, silent
segmentation markers, and so on. Figure 5 illustrates the number of parameters for each
layer of the DFCNN.
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Figure 5. Number of parameters in each layer of the DFCNN.

For different speakers with varying speaking rates, CTC effectively addresses input–
output alignment. Let the input audio features be denoted as

x = [x1, x2,. . ., xT] (5)

where T is the number of input audio features, and let the corresponding output phonetic
sequence be denoted as

y = [ y1, y2, . . . , yN ] (6)

where N is the number of output phonetic features. For a given posterior probability p(y|x),
the loss function of CTC is defined as the negative log-likelihood of the posterior probability
as follows:

Loss(x) = ∑
(x,y)∈D

−logp(y|x) (7)

where D represents the training set.
To avoid consecutive identical phonetic characters, we introduce a placeholder symbol

“−”, which corresponds to “no character” and is removed in the final output. Notably, the
alignment between input x and output y is monotonic; that is, when the present input xt

advances to input xt+1, corresponding to the next time slot, y may either remain unchanged
or move to output yn+1, corresponding to the next time slot. Additionally, the input and
output follow a multiple-input–single-output relationship.

Typically, CTC follows a recurrent neural network (RNN). For a given input x, the
output of the RNN is z = [z1, z2,. . ., zT]. We denote the feature dimension of xt as u, and
the feature dimension of zt as v. For each component zt, we select an element to form an
output path l. The space of the output path is denoted as LT. We define a mapping F that
represents the transformation of the intermediate output path. We also need to merge
adjacent characters and remove placeholders to obtain the final output y. The posterior
probability of y to x p(y|x) equals the sum of probabilities of all valid paths as follows:

p(y|x) = ∑F(l)=y p(l|x) (8)
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where p(l|x) is the posterior probability of path l to x. The calculation of the posterior
probability p(y|x) is detailed in Appendix A.

The CTC-based acoustic model operates independently of language models. When
the language application scenarios are changed, we can seamlessly switch the language
models. In other words, when the speech content shifts from lifestyle topics to professional
topics, CTC can easily exchange language models.

5. Language Model in Helium Speech Recognition
Processing methods for natural language processing are mainly divided into two

categories, rule- and statistical-based methods, where the former are often more effective.
The language model in our helium speech recognition system is a statistical language model
used to convert phonetic sequences to words.

For most languages, such as English and Chinese, each pronunciation can correspond
to multiple words, while each word is read using only one sound at a time. In connecting
the corresponding words of each pronunciation in an orderly manner, a directed graph
can be formed to represent the dependency relationship between phonetic sequences and
words, as shown in Figure 6. Suppose the input is the phonetic sequences y1, y2, . . . , yN ,
the candidate words for pronunciation y1 are w11, w12, and w13, while the candidate words
for pronunciation y2 are w11, w12, and so on.

 

 

 

 

 

 

 

 

 

w11

w12

w13

w21

w22

w31

w32

w33

wn1

wn2

y1 y2 y3 yn

Beginning

·
·
·

Figure 6. Directed graph in statistical language model.

In a statistical language model, according to the Markov hypothesis, the probability of
each word appearing is only considered to be related to the previous words, which is called
a binary language model. Thus, if S represents a sentence with a string of words w1, w2, . . .,
wN, where N is the length of the sentence, the probability of sentence S being present is
given by

p(S) = p(w1, w2, . . . , wN) = p(w1)p(w2|w1)p(w3|w2) . . . p(wN |wN−1) (9)

where p(w1) is the probability that word w1 is present, p(wN |wN−1) is the conditional
probability that word wN is present if word wN−1 is present. According to the law of large
numbers, when there are enough statistical measures, these probabilities can be obtained
based on word frequency.

In our maximum entropy Markov model (MEMM), we use a maximum entropy model
to learn the conditional probability P(st|st−1, ot) to perform the maximum likelihood
estimation under the given training data conditions as follows:

Pw(y|x) =
exp(∑i wi fi(x, y))

Zw(x, y)
(10)

where st and ot represent the state and observation at time t, Zw(x, y) = ∑y exp(∑i wi fi(x, y))
is the normalization factor, w is the maximum entropy model parameter, λi denotes model
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parameters, and fi(x, y) is the feature function. Therefore, the conditional probability is
presented as

P(st|st−1, ot) =
exp(∑a λa fa(ot, st))

Z(ot, st−1)
(11)

where λa is the learning parameter, a =< b, s >, b is the observed feature, and s is the target
state. The feature function fa(ot, st) is given by

fa(ot, st) =

{
1 i f b(ot) is true and s = st

0 otherwise
(12)

Once the Markov model is trained (i.e., once the transition probabilities from phonetic
sequences to words and from words to words are known), we can use the Viterbi algorithm
to decode phonetic sequences into words. This decoding process can be taken as a dynamic
programming problem, which is essential to finding the path with the highest probability
from the starting point to the endpoint in a directed graph. Then, we arrange the probabili-
ties of each step in order of size and set a threshold to exclude paths with low probabilities.
This process repeats until the finish line is reached. The final output is the text of the path
with the maximum probability.

The Viterbi algorithm takes two inputs: One input is a hidden Markov model,
λ = (A, B, π), where A =

[
aij]N×N is the state transition probability matrix, B =

[
bj(k)]N×M

is the observation probability matrix, and π = (πi) is the initial state probability vector.
The other input is the observation sequence O = (o1, o2, . . . , oT). Then, the output of the
conversion algorithm is the optimal path I∗ =

(
i∗1 , i∗2 . . . , i∗T

)
.

In order to ensure that each word corresponds to the correct phonetic sequences, it
is necessary to find the optimal path with the highest probability within the sentence.
According to dynamic programming, if the optimal path passes through node i∗t at time t,
then the path from node i∗t to end node i∗T must be optimal among all possible paths from i∗t
to i∗T . Therefore, we only need to find the maximum probability of each local path with state
i at time t from time t = 1, until we obtain the maximum probability of each path with state
i at time t = T. The maximum probability at time t = T is the probability P* of the optimal
path, while the endpoint of the optimal path i∗T is obtained. Afterwards, in order to find
each node of the optimal path, we start from endpoint i∗T , gradually find nodes i∗T−1, . . . , i∗1
from back to front, and obtain the optimal path I∗ =

(
i∗1 , i∗2 . . . , i∗T

)
. In importing the local

probability δ and reverse pointer ψ, the maximum value of the probability in all individual
paths (i1, i2, . . . , it) with state i at time t is given by

δt(i) = maxi1,i2,...,it−1 P(it = i, it−1, . . . , i1, ot, . . . , o1|λ) i = 1, 2, . . . , N (13)

where the recursive formula for δ is

δt+1(i) = max1≤j≤N [δt(j) aji
]
bi(ot+1) i = 1, 2, . . . , N; t = 1, 2, . . . , T − 1 (14)

The (t − 1)th node of the path with the highest probability among all individual paths
(i1, i2, . . . , it−1) with state i at time t is given by

ψt(i) = argmax1≤j≤N [δt−1(j) aji
]

i = 1, 2, . . . , N (15)

Thus, we obtain the four steps of the Viterbi conversion algorithm as follows:

(1) Initialization. ∆1(i) = πibi(o1), i = 1, 2, . . . , N, ψ1(i) = 0, i = 1, 2, . . . , N.
(2) Recursion. For t = 2, 3,. . ., T, δt(i) = max1≤j≤N [δt−1(j) aji

]
bi(ot), i = 1, 2, . . . , N;

that is, the selected node is the one with the highest transition probability from
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the previous node to the current node. Similarly, for t = 2, 3,. . ., T, ψt(i) =

argmax1≤j≤N [δt−1(j) aji
]
, i = 1, 2, . . . , N; that is, the path recorded by the reverse

pointer is the upper layer starting point with the highest transition probability.
(3) End Recursion. Choose the state with the highest local probability, that is,

P∗ = max1≤i≤NδT(i), i∗T = argmax1≤i≤N [δT(i)].
(4) Backtracking. For t=T−1, T−2,. . .,1, i∗t = ψt+1

(
i∗t+1

)
, find the optimal path for con-

verting phonetic sequences to words.
(5) End.

6. Helium Speech Recognition Algorithm
After the optimal path backtracking, the phonetic sequences should be converted to

words with the optimal path. Then, helium speech recognition based on spectrograms with
deep learning can be summarized as follows:

(1) Establishing the helium speech database. Establish the isolated helium speech word
database and continuous helium speech database separately for training.

(2) Preprocessing. Preprocess the helium speech data and extract helium speech spectro-
gram features from the training helium speech.

(3) Training the helium speech recognition system. Input the extracted spectrogram
features into the DFCNN to reduce the feature dimension, and then apply CTC to the
features with reduced dimensions to obtain the phonetic output sequence with the
highest probability. Finally, input the phonetic sequences into the language model
based on statistical methods to obtain the output words.

(4) Validating the helium speech recognition system. Input the validation dataset into the
helium speech recognition system to obtain the word error rate (WER) of the system.

(5) Testing the helium speech recognition system. Input the testing dataset into the helium
speech recognition system to obtain the WER of the system.

In the algorithm above, we only test the proposed helium speech recognition system.
In practical use, only steps (2) and (3) are required.

7. Simulation Results
We simulated our helium speech recognition algorithm based on spectrograms. As

there is no publicly available helium speech database at present, we used a self-made
helium speech database. We selected English as the saturation diving working language
for divers. Its reading content mainly includes five sections: common words, article
paragraphs, diving technical terms, daily conversations, and technical instructions. The
data were collected from divers using helium−oxygen gas during saturation diving to
depths of 150 m or so while reading aloud. The recordings were made using high-sensitivity
microphones and professional recorders to ensure high audio quality. As saturation divers
cannot record in real environments for a long time, the total duration of the dataset was
only 108 min, recorded by three divers. These three divers had extensive diving experience
and were capable of accurately reading professional terms and technical descriptions. Each
diver’s average reading time was approximately 36 min. The dataset was stored in WAV
format with a sampling rate of 16 kHz. These data were later segmented into smaller
speech fragments for use in speech processing and analysis, facilitating model training and
testing. The helium speech database is described in more detail in [20].

During the DFCNN training process, there were 1,603,156 parameters and 1,603,156
trainable parameters. In the experiment, the frame length of the speech data is set to 32 ms,
the frame shift was set to 16 ms, and the number of points of the fast Fourier transform was
set to 512.
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In this paper, we use the word error rate (WER) to measure the recognition rate of the
helium speech recognition algorithm as follows:

WER =
Number o f error words
Total number o f words

× 100% (16)

Table 1 shows the performances of the helium speech recognition algorithm based
on spectrograms (HRABS) in the training process of isolated words of helium speech. As
the number of training iterations increases, the loss value gradually decreases and tends
to stabilize. Moreover, the WER of the isolated word recognition both in the training set
and validation set continuously decreases. From Table 1, we can also see that the WER of
the validation set is significantly higher than that of the training set. This is because the
spectrogram features of words trained have already been retained in the model.

Table 1. WERs of isolated words of helium speech in training.

Loss Value WER% (Training Set) WER% (Validation Set) Number of
Training Iterations

2.3741 78.9 88.9 5
1.5671 16.6 25.6 10
1.4662 5.0 7.1 15
1.3827 0.0 2.8 20
1.2716 0.0 2.1 25
1.2214 0.0 2.1 30

Table 2 presents the performances of HRABS in the training process of continuous
helium speech. Table 2 shows that the loss value of the model is only reduced to 14.1225
after one round of training, which is high. This is because there were many more training
data, about 1000 training data points. As the number of training rounds increases, the loss
value gradually decreases, and the WER of word recognition in the training and validation
sets also decreases. The training would end when the model loss value tends to stabilize.

Table 2. WERs of continuous helium speech in training.

Loss Value WER% (Training Set) WER% (Validation Set) Number of
Training Iterations

14.1225 34.8 98.3 1
7.8949 5.1 81.1 4
3.8561 1.2 30.3 8
1.9213 0.0 22.4 12
1.6363 0.0 16.5 17
1.3762 0.0 10.4 24
1.2323 0.0 7.0 26
1.1751 0.0 5.7 30
1.0479 0.0 4.1 31
1.0827 0.0 4.0 35

We also compared our helium speech recognition algorithm based on spectrograms
(HRABS) with a DNN [19] and AMGAN [20]. Table 3 shows the WERs of the isolated
helium speech words and continuous helium speech, respectively, with two different
unscrambling algorithms. Those obtained with HRABS are much smaller than those
based on the DNN and AMGAN, both in isolated helium speech words and continuous
helium speech. In particular, the WER of continuous helium speech unscrambling with the
algorithm based on a DNN is close to 20%, which is too high to be used in practice.
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Table 3. WERs of helium speech unscrambling with different algorithms.

WER of Isolated Helium
Speech Words (%)

WER of Continuous
Helium Speech (%)

HRABS 2.11 4.01
DNN 12.64 19.45

AMGAN 8.21 11.67

Table 4 shows the robustness of these two different unscrambling algorithms to differ-
ent divers. We use the mean square error of the WERs to denote the fluctuation in WERs
for different divers. It is clear that these fluctuations of the algorithms based on the HRABS
and AMGAN are both much lower than those based on the DNN. This is to say that our
unscrambling algorithm and AMGAN both have better robustness to different divers.

Table 4. WERs of continuous helium speech unscrambling for different divers.

WER of Diver
1 (%)

WER of Diver
2 (%)

WER of Diver
3 (%)

Mean Square
Error of WERs

HRABS 4.68 4.63 4.23 0.20
DNN 17.12 19.12 22.12 2.05

AMGAN 10.98 12.34 11.68 0.56

To demonstrate the superiority of our proposed system, we also compared it with three
other systems: a spectrogram-based helium speech recognition system in which MEMM
is replaced with HMM (system-HMM), a spectrogram-based helium speech recognition
system in which CTC is replaced with a transformer-based model (TBM) (system-TBM),
and a spectrogram-based helium speech recognition system with only CTC and no DFCNN
(system-CTC).

Table 5 shows that the performances of the other three algorithms were poor due to a
lack of the unbiasedness and robustness of MEMM, a lack of the high flexibility of CTC, or
a lack of the feature extraction capability of NND.

Table 5. WERs of spectrogram-based helium speech recognition systems with different algorithms.

WER of Isolated Helium
Speech Words (%)

WER of Continuous
Helium Speech (%)

HRABS 2.11 4.01
System-HMM 20.12 25.32
System-TBM 10.44 13.23
System-CTC 14.47 19.84

From Tables 3–5, it can be concluded that the helium speech unscrambling algorithm
based on HRABS has better performance and better robustness to different divers.

8. Conclusions
In order to recognize helium speech in the context of saturated diving effectively, we

proposed a helium speech recognition method based on spectrograms. This algorithm
extracts spectrograms from helium speech as acoustic features, combines a deep convolu-
tional neural network and connectionist temporal classification to construct an acoustic
model of helium speech, and then uses a statistical language model to recognize saturated
diving helium speech. We evaluated the performance of the helium speech recognition
algorithm based on the Python platform. The simulation results demonstrated that the
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algorithm can effectively recognize isolated words of helium speech with 97.79%, and
continuous words of helium speech with 95.99%. It showed excellent performance in
helium speech recognition, with significant improvements in clarity and intelligibility
compared to traditional methods. These results not only enrich the theoretical foundation
in the field of helium speech recognition but also provide effective technical support for
practical applications.

However, this study has several limitations. First, the recognition performance of
continuous helium speech shows that the recognition algorithm has limited generalization
ability. This limitation may affect the model’s ability to generalize under various accents
and speaking styles. Additionally, the lack of samples from different regions and cultural
backgrounds may reduce the model’s adaptability when processing diverse speech inputs.

To address these issues, future work should focus on enhancing the dataset’s diversity.
Strategies include expanding the data collection to include divers from different regions
and linguistic backgrounds. Increasing the amount of helium speech data is important.
Furthermore, applying state-of-the-art transformer-based models or hybrid CNN-RNNs
may improve the generalization ability in accents and intonations. Finally, this study
mainly examined the application of spectrograms in helium speech recognition based
on a fully convolutional neural network with connectionist temporal classification and a
maximum entropy hidden Markov model. Future work could explore the performance
of other deep learning models in helium speech correction to identify more optimized
solutions. Hopefully, more researchers will conduct in-depth investigations in this field,
thus advancing the development of helium speech recognition technology.
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Appendix A
Assuming that the outputs at different times are independent of each other, the

posterior probability p(l|x) is equal to the product of the appearing probabilities of the
characters, which make up the path as follows:

p(l|x) = ∏T
t=1zt

lt (A1)

where lt denotes the output character at time t, and zt
lt

is the probability of selecting lt at
time t. Therefore, we obtain

p(y|x) = ∑F(l)=y∏T
t=1zt

lt (A2)

Define αt

(
y
′
k

)
as the sum of the probabilities of all paths which pass through character

y
′
k at time t, from slots 1 to t, as follows:

αt

(
y
′
k

)
= ∑F(l) = y,

lt = y
′
k

∏t
t′=1

zt
′

l
t′

(A3)
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For t = 1, the characters can only be placeholders or y1. Then, we have

α1(−) = z1
−

α1(y1) = z1
y1

α1(y1) = 0, t > 1
(A4)

Generally, we have

αt

(
y
′
k

)
=

(
αt−1

(
y
′
k

)
+ αt−1

(
y
′
k−1

)
+ αt−1(−)

)
· zt

y′k
(A5)

Similarly, we define βt

(
y
′
k

)
as the sum of the probabilities of all paths, which pass

through character y
′
k at time t, from slots t to T as follows:

βt

(
y
′
k

)
= ∑F(l) = y,

lt = y
′
k

∏T
t′=t

zt
′

l
t′

(A6)

For t = T, the characters can only be placeholders or y|y′ |−1. Then, we obtain

βT(−) = z1
T

βT

(
y|y|

)
= zT

y|y|

βT

(
y|y|−t

)
= 0, t > 0

(A7)

Further, we obtain

βt

(
y
′
k

)
=

(
βt+1

(
y
′
k

)
+ βt+1

(
y
′
k+1

)
+ βt+1(−)

)
· zt

y′k
(A8)

As the derivative of p(y|x) in [18] with respect to y
′
k is only related to the path passing

through the character y
′
k, we have

p(y|x) = ∑F(l) = y,
lt = y

′
k

p(l|x) = ∑F(l) = y,
lt = y

′
k

∏T
t=1zt

lt (A9)

Due to
αt

(
y
′
k

)
· βt

(
y
′
k

)
= ∑F(l) = y,

lt = y
′
k

zt
y′k

∏T
t=1zt

lt (A10)

we finally have

p(y|x) = ∑F(l) = y,
lt = y

′
k

αt

(
y
′
k

)
· βt

(
y
′
k

)
zt

y′k

(A11)

To reduce computational complexity, we may obtain an approximate output via a
given input as follows:

y∗ = argmaxy p(y|x) (A12)
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