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Abstract: We address the problem of range-based marine vehicle positioning in the presence
of unknown but constant ocean currents. The goal is to estimate the position of one or more
vehicles from a sequence of range measurements to fixed or moving acoustic beacons with known
locations. In contrast to most range-based positioning algorithms, we address the case where the
currents are unknown and seek to estimate them explicitly as well. This increases the complexity
of the problem at hand and raises interesting observability issues. In particular, the vehicles must
undergo sufficiently exciting maneuvers so as to maximize the range-based information available
for joint current /multiple vehicle position estimation. The main contribution of the paper is the
computation of vehicle trajectories for range-based vehicle positioning system in the presence
of constant, unknown currents by maximizing the determinant of a suitable Fisher information
matrix (FIM), subject to collision avoidance and maneuvering constraints. A numerical solution
is proposed for the general set-up of multiple vehicles and beacons. Analytical solutions are
obtained for the case of one vehicle and one static beacon. The efficacy of the strategies proposed
for vehicle trajectory optimization is shown by numerical simulations.
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1. INTRODUCTION

We study the problem of optimal motion planning for
range-based marine vehicle positioning in the presence of
unknown currents. This research work is motivated by the
need to develop low cost, easy to deploy and operate AUV
positioning systems. In this context, range-based position-
ing systems have recently emerged as a viable alternative
to conventional acoustic based navigation methods such
as LBL (Long Baseline) and USBL (Ultras Short Base-
line) systems. In its essence, the problem of range-based
positioning can be formulated as that of estimating the po-
sition of one or more vehicles based on the measurements
of their ranges to fixed or moving acoustic beacons, the
positions of which are known in advance.

In contrast to most range-based positioning algorithms,
we address the case where the currents are unknown and
seek to estimate them explicitly, as well. This increases the
complexity of the problem at hand and raises interesting
observability issues. The latter have been the subject
of a large number of publications in the area, see for
example (Gadre et al., 2005), (Crasta et al., 2013) and the
references therein. However, the issue of optimal trajectory
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computation so as to increase the range-based information
available for vehicle positioning in the presence of ocean
currents is still a subject of research. This is in contrast to
the case where currents are absent, for which theoretical
and experimental results are available. As a representative
example, we cite the work in (Moreno-Salinas et al., 2016)
where the authors address not only the problem of range-
based positioning but also the dual problem of target
localization in the absence of currents, with due account
for system implementation and field testing.

The present paper extends the techniques proposed in
(Moreno-Salinas et al., 2016) to deal explicitly with the
presence of unknown currents. The final goal is to estimate
the position of one or more vehicles from a sequence of
range measurements to fixed or moving acoustic beacons
with known locations. In this situation, the vehicles must
undergo sufficiently exciting maneuvers so as to maximize
the range-based information available for joint current
/multiple vehicle position estimation. By adopting a clas-
sical estimation setting, the optimal vehicle trajectories
are obtained by maximizing the determinant of a suitable
defined Fisher information matrix (FIM), subject to colli-
sion avoidance and maneuvering constraints. A numerical
solution is proposed for the general set-up of multiple
vehicles and beacons. Analytical solutions are obtained
for the case of one vehicle and one static beacon. The
efficacy of the strategies proposed for vehicle trajectory
optimization in the more general case of multiple vehicles
and beacons is shown by numerical simulations.
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The paper is organized as follow. Section 2 introduces
the basic notation required and contains some preliminary
results. Section 3 summarizes the process and measure-
ment models for the problem at hand and introduces the
problem formulation. In Section 4 we derive the Fisher
information matrix that is at the core of our work and
show how to compute its optimal value. In Section 5 we
provide an analytical solution to the single vehicle, single
(stationary) beacon scenario. Section 6 contains illustra-
tive numerical examples. Finally, Section 7 contains the
main conclusions.

2. PRELIMINARIES

We find it convenient to identify R? with the complex
plane C by letting the complex number a+ b be described
by [a bT € R% where 7 := y/—1. For every z € C, we
let arg(z) € [0,27) whenever z # 0, Z € C, and |z]| :=
VzZ > 0 denote the argument, the complex conjugate,
and the modulus of z, respectively. Using Euler’s formula,
z € C can be written in exponential (phasor) form z =
|| e 2r8(2),

For n € N, we let I, := {1,...,n}. In this paper, we use
i € I, to denote the i*" vehicle, a € I, to denote the a'®
beacon, and k € {0} UT,,_» to denote that k*® sample.
We denote the Euclidean norm in R™ by || - || and the unit
sphere in R™ by S™, that is, S™ := {x € R™: ||x]| = 1}. By

T" we mean the n-torus, that is, T" := S! x --- x S =
(SH)". We define g: [0,27) — S! and gt: [0,27) — S?
by g() = [cos® sinf]T and gt () = [~sind cosd]T,

0 € [0, 27), respectively.

By I, and 0,,x, we mean the identity matrix of size n
and the zero matrix of size m X n, respectively. Given
A e R"™ " we let vec(A) € R™ denote the column
vector obtained by stacking the columns of the matrix A
on top of one another. Given w € R", diag(w) denotes the
diagonal matrix whose diagonal elements are the elements
of w. Similarly, given A; € R"*", j € I, we can
define diag(A41,...,As) and we define the direct sum of
Al, . ,AS by ®jeHS Aj = diag(Al, . ,AS).
Finally, we recall the following result (Popescu et al.,
2004).
Lemma 1. Consider Q;; € R"*", 4,5 € I,,, and Q;; = ;5
and @Q;; > 0 with b;; := trace(Q;;) is a constant. Define
Q c Rrmxnm g44 M c Rmxm by
Qll le bll T blm
Do and M := | :
le o Qmm bml o
Then, the det(Q) is maximized when Q;; = (nilbij) I,,
i <4, 1,5 €L, and the maximum value of the det(Q) is
given by (n=™det(M))" . [ |

3. PROBLEM FORMULATION

Q=

bmm

Consider p > 1 vehicles and ¢ > 1 beacons. Referring
to Fig. 1, the kinematic model of the i*® vehicle, i € I,,,
(Margarida et al., 2015) is described by

A [y — gin(yli (4]
1] _ |cos(x 4 ) sm(x ) v
P sin(x[1) cos(x[") 0| Ve (1)
9 = ol 2)
ve =0, (3)

where ¢t € [0,t7], pl/ € R? is the instantaneous inertial
position vector of the i*? vehicle, vl7: [0,%;] — [0, 00) is the
relative speed with respect to the water, i.e. vl = |[v[],
¥l [0,t¢] — [0,2m) is the relative (to the water) course
angle that gives the orientation of the vehicle’s flow-frame
with respect to an inertial frame, and r[: [0,tf] - Ris

the relative course angle rate. The symbol v. € R? denotes
the constant ocean current vector. In what follows, with
an obvious abuse of the notation, we will refer to relative
course angle and relative course angle rate simply as course
angle and course angle rate, respectively. Using a state-

space formulation, x! = (pll, x4, v.) € M. := R? x
0,27) x R? is the state vector and ul’l := (vl rl) € ¢ :=
0,00) x R is the input. To avoid any collisions, for all
t € [0,ty], the vehicles must satisfy

1) —pY ()] = R, i.j €T, i <,
Ip!(t) = blI(@)] > R, i €1, a €,
for all ¢t € [0,tf], where R > 0 is a safety radius.

Consider a finite set of fixed/moving beacons B :=

{bl, ... bld} ¢ R?, which we assume are known func-
tions of time (see Fig. 1). Each vehicle is equipped with
sensors that measure distances to these beacons. The in-
stantaneous measurements of distances collected at time
t € [0,tf], denoted Y (¢), are corrupted by additive white
Gaussian noise as follows:

Y (t) = D(t) +n(t),

where D € R?*P (the matrix of true instantaneous dis-
tances) and 7 € R9*P are given by

dyy - dip mi - Mp

)y 1= >

dg1 -+ dgp Mgl == Tigp

and n4; ~ N(0,02,), « € I, i € L,. In the above, for
i €I, and a € I, let dl*! denote the relative position
vector of the AUV with respect to the beacon bl that

is, dl*d := pll — bl and let dy; := ||dl*!|| denote the
corresponding relative distance.

D =

-©

Fig. 1. Hlustration of a single vehicle with three beacons
in the presence of ocean currents.
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The solution to (1)-(3) at time ¢ € [0,ts] for the initial

condition X[Oﬂ = (p([)],xg],vco) € M, and the input

ull = (vl 1) is given by

x0(0) =)+ [ et e + v,
0

/0 " (), vCO> e

Let m € N, m > 4 and consider a strictly monotonically
increasing time sequence {tx}7 ;' C [0,¢;] of length m
with ¢o := 0 and ¢,,—1 = ty. For the sake of simplicity,

we let pg] = pm(tk), Ve, = Veltr), XE? = Xm(tk),
gl = g(x!(ty)), Yi := Y(tx), and Dy := D(tz). Then,
for ¢t € [tg, tk+1), (4) can be written as

() = xl7 1 ( | OB + - ver

k /t t Pl (7)dr, vCO> )

Assumption 1. We assume that the inputs are piecewise
constant and are bounded (above and below), that is, for
all k € {0} UT,,_q,

UM (t> = ’D][CZ] S [0,’1711]3], te [tk7tk+1);
(e = 1) € [~Pub. Tun], £ € [th ).
With these assumptions, from (5) we get

) =+ 7 (=), t € o tir)  (6)
and using (6) in (5) we get

pll(t) = py’ + (jg) {(g;[f])L ~ (8" (t)))L}

- tk)VCov te [tkvtk-i-l)’ (7)

whenever F,[j] # 0.

With this background, we now formulate the following
question: “Given the time-history of the beacon positions
m a given time window, what is the best sequence of
actions for each of the AUVs (in terms of vehicle speed
and course rate histories) so as to collectively mazimize
the information available to compute their unknown initial
positions and the unknown constant ocean current?”

In what follows, to answer this question we adopt the
classical set-up of estimation theory exploited in (Moreno-
Salinas et al., 2016) for range-based positioning in the
absence of currents, to which we refer the reader for
background information.

4. FISHER INFORMATION MATRIX

In this section we derive the FIM for the model described
before, consisting of the vehicle kinematics and measure-
ment equations. The objective is to estimate the initial
positions of the AUVs and the unknown current. As is
well known, the inverse of the FIM is instrumental in com-
puting a lower bound on the covariance of the estimates
of a deterministic parameter that can be achieved with
any unbiased estimator. This result yields the celebrated
Cramér-Rao Lower Bound (Trees et al., 1968), which we
seek to reduce by maximizing the determinant of the FIM,
subjected to collision and vehicle maneuvering constraints;
see Moreno-Salinas et al. (2016) for the simplified case
where there are no currents.

Following a by now standard procedure, for a given
number of samples m > 2, with input sequence U :=
(ug, ..., Um—1) and unknown parameter 8 € R™, we denote
the corresponding FIM by FIMy(6) € R™*™. The FIM
with respect to the unknown parameter of interest 6 is
given by

FIMy(8) := E{[Vo (logLo(y))] [Vo (log La(y))]" } .

where y € R™ is the measurement vector, Lg(y) is the
likelihood function of the measurement with respect to
the parameter 6, and E and V are the expectation and
gradient operators, respectively. To maximize the Fisher
information, we define a scalar function

J(U) := Indet(FIMy(6)),

and minimize Indet((FIMy(0))71), that is, —J(U). We
next derive the FIM for the problem under consideration.

For the sake of simplicity, we use the following compact

notation:
ai [ad]
ﬁ([;] = d([) ] . dm—l c RZXm’ (8)
dai 0 deoim—1
Q= diag(to,tl,...,tm,l) S Rmxm7 (9)
ol = @, o) e RIS, (10)
el = ), A) e R, (1)
U, = (’u“h’ﬂ”) . (12)

4.1 FIM for a single vehicle

First we derive the FIM for a single vehicle (p = 1) with
q beacons. Consider the i'» AUV motion described by

[i] (4]
Pri1 P Veq
o= o] e ]+

()6 6 Y],

=0 \Tk
0
i =d+n, (14)
where dgc] and 77;[9] are the i*" columns of Dy, and 7y,
respectively. In this particular case, we have 8; = (pgZ ] ' Veo)

and we let FIMI[i (0;) € R*** denote the corresponding
FIM for this set-up.

Straightforward computations show that

FIM[l Z Z onk) (VQ dalk) )
a€ly k€{0}UL,_1
(15)
where
1 d[m] 4
Vo, dai, (i | €R" 16
0 kT don k Lkd ] ( )

Substituting (16) into (15), and sunphfying further yields

Bl
=> o,

FIM (6 l] C’M
a€ly

where
Al = PUPLHT,
Bl = PGP,
Ciil i PG (U,
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Notice that

trace(Al) = m, (17)

trace(BL) = Z 7 (18)
ke{0}UL, 1

trace(Clil) = Z (t)?. (19)

ke{0}UL,, 1
Therefore,

trace(FIM[l]

Z o, m —+ Z (tk>2

a€ly ke{0}UlL,—1
4.2 FIM for multiple vehicles

We next derive the FIM for multiple vehicles. We now
have U := (Uy,...,U,), 6 := (01,...,0,) and we let
FIMy(0) € R**4P denote the FIM for this set-up. The
FIM for the complete system is given by

FIMg0) =YY Y 022 (Vodair) (Vodair)" .

i€l a€lly ke{0}UI,, 1
where

Vodair = € R,

Vo, daik

1 l04(i—1)x1
O4(p—i)x1

ai,k
Simplifying further yields
FIMy(0) = P FIM (6
i€,
Note that the overall FIM depends on (vl »[1), i € L,.

In the following subsection we find the maximum value of
the FIM determinant.

4.3 Optimal Fisher determinant

Consider the cost functional described by
J(U) = log det(FIMy(0)) = > logdet(FIM{ (6;)).
i€l

In the above equation, the second equality follows from
the fact that

P Fiag 0:) | = [ det(F10 (8))).

i€l i€l

(20)

Thus, it suffices to maximize the FIM associated with each
of the vehicles to maximize the overall FIM. We have the
following result.

Proposition 2. Consider ¢ € I, and assume that o,; =

o, a € I;. Denote
> alte)?,

bll =qm, b12 = Z qtk, and 622 =

ke{0}UL,,—1 ke{0}UL,,—1
and, let
S Al =M S B =g and Y ol = P2,
a€ly 2 a€ly a€ly
(21)

Then, det(FI MI[}{ (6,)) is maximum and is given by

(272 det(./\/l))2 )

where

b21 b22

M= {bu b12} c R2%2.

In particular, for uniform sampling we have
(i ¢ 402 2

(22)

Proof. Let Qi1 := Zaeﬂq Ag]7 Q12 = Zaeﬂq B([Xi], and
Qo2 = Zaeﬂq C([)f]. By the hypothesis of the Proposition,
Q11 -0, Q12 = 0, and Q9o = 0. Define

Q = |:Q11 QlQ] c R4X4. (23)

Q12 Q22

By setting Q = FIM[[?I, (0;) in Lemma 1 it follows that
det(F1 M[[}] (6;)) is maximum and the maximum value of
det(FIM (8,)) is given by (272 det(M))” .
In particular, if ¢, = kT, then
i T4q4
FIME (6,)) = H(m? - 1)
e 0) = (s ) = 1)

This completes the proof. |

(24)

The above result gives the maximum value of the cost
functional with respect to a single vehicle. The following
corollary of Proposition 2 follows immediately from (20).

Corollary 3. The optimum value of the det(FIMy(0)) is
given by
(272 det(M)) ™.
In particular, for uniform sampling
det(FIMy(0)) = [( q" )m4(m2 - 1)2r. (25)
230408

In this section we derived the optimal value for the cost
functional adopted (FIM determinant), but we gave no
insight into the optimal trajectories of the vehicles. In
general, it is not possible to characterize these trajectories
analytically. For this reason, we will resort to numerical
optimization methods to compute the optimal vehicle
trajectories that maximize the determinant of the FIM,
subject to collision and vehicle maneuvering constraints.
Before we explore numerical solutions, however, in the next
section we characterize analytically the solutions obtained
for the tractable case of a single vehicle and a single static
beacon.

5. OPTIMAL TRAJECTORIES: SINGLE-BEACON
(STATIC) SCENARIO

We consider the case of single-beacon navigation, with a
single vehicle and a static beacon. We make p = g = 1,
and we drop all super and sub scripts. Without loss of
generality, we assume that the beacon is fixed at the
origin. Let J; denote the direction of vector d;lpk, that

is, d;lpk = g(dk). Then,

A 1 (1 +cos(26y))  sin(20y) }
QkE{O}UHmfl- sin(20x) (1 — cos(26k))
1 21 (1 + cos(20 sin(24
B=5 >, _tk(tk;n(zgk)k)) tk(ﬁk— cés(écgk))]
ke{0}Ul,, 1
1 [(te)2(1 + cos(201))  (tr)? sin(26)
C= le{o%%ml— ¥ (t)2 sin(20) (tk)lel—cos(gdk))]'

The optimality conditions given in (21) imply that
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Z cos(20) =0= Z sin(20y),
ke{0}UL,—1 ke{0}UL, 1

Z tpcos(20x) =0= Z ty sin(20), (26)
ke{0}ULn—1 ke{0}Ul, 1

Z (tk)Q cos(20;) =0 = Z (tk)2 sin(20g).
ke{0}UL,, 1 ke{0}Ul,, 1

Using complex number notation, the above optimality
conditions can be written in compact form as

Z /2% — Z tpe?2% = Z (t)2e??0% = 0.

ke{0}ULn—1 ke{0}Uln—1 ke{0}ULy, 1

Further, the above three complex equations can be ex-
pressed by one single equation as

Z ape’®* = 0. (27)
ke{0}UL, 1
In (27), with a = 1 we can recover the first set of

equations in (26). Similarly, in (27) setting ar = t; and
ar = (t;)? we can recover the second and third sets of
equations, respectively, in (26).
We next prove the main results of this section.
Theorem 4. Let m > 8 be an even integer and &y € [0, 27).
Denote Z; :={1,---,(m/2) — 1}, Zo = {m/2,--- ,m — 2}
and

5= (’717 s 77%71) € T%_17

J
V1,05 = ZVS; J S Il7
s=1

Ge(’?) = Z Sin(73)7

s€Ty
Fo(¥) = (m—1)+ Y (m—2s—1)cos(y,. ),
s€Ty
He(3):= Y (s + (m—s—1)%)sin(y,.. o),
s€Tly

Go:={x€ T2 71 Fo(x) = Go(x) = Ho(x) = 0}.
Consider 4 € G, and define

5 0.5 (200 +71,...k) k€1,
# 0.5 (m + 260 — M,..om—k—1) k € Ia,

with d,,—1 — 6o = m/2. Then, (27) holds.

Proof. Under the hypotheses of the Theorem, the opti-
mality conditions in (21) yield

~25in(200)Ge(3) =0,

2¢c0s(2d9)Ge(¥) =0,

—¢08(200)Fo(7) — (m — 1) sin(29) G (%) =0,
—sin(260)Fe () 4+ (m — 1) cos(200) Ge(F) =0,
—(m — 1) cos(2d0)Fe(¥) — sin(200)He (¥) =0,
—(m — 1)sin(2dg)Fe(¥) + cos(2d0)He () =0.

672350 {64J50 (m — 1)Fe("—)’) + 6JW/2He(:7):| =0.

Since ¥ € G, it follows that F(7) = G.(¥) = He(¥) = 0.
Thus, the above equations are satisfied and this completes
the proof.

Theorem 5. Let m > 8 be an odd integer and let
0o € [0,27). Denote Jy = {1,---,(m—3)/2}, Jo =
{(m+1)/2,--- ,m —2}, and

m—3
)

'7:(’71>a’VT"T*")€T 2

J
1,5 = Z’Ysa ] € «717

Go(¥) := Y _ sin(v,),
seJ1
F,(7)=(m—-1)+ Z (m—2s—1)cos(m,..s),
seJ1
Ho(¥) = Y (s + (m—s—1)%)sin(y,.. o),
seJ1

Go:i=9x € T Fo(x) = Go(x) = Ho(x) = 0}-

Consider 4 € G, and let §p € [0,27) and v, € [0,27),
s€{l,...,% — 1} be such that

—

m_q
2
2Wm1—200=T=2_ 7.
s=1
Define
0.5 (200 +71,...x) ke,
0 =< 0.5 (2(50 + ’Yl,..‘,k) k= (m— 1)/27

0.5(m+280 —71,..m—k—1) k€ To.

Then, (27) holds.
Proof. Let

A=cos (260 +7
Then the optimality conditions in (21) yield

M) andézsin(250+’yl %>

11111 p) [RRE)

—25in(260)Go(3) + A=0
2c0s(200)Go (%) + 0

m—1

— c08(200)Fo (%) — (m — 1)sin(260)Go (7) + (m; 1) A=0

—sin(260)Fo (%) + (m — 1) cos(280)Go () + (

m—1\2 .
—(m — 1) cos(260)Fo(¥) — sin(260)Ho () + (T) A=0,

m—1\2
—(m — 1) sin(260)Fo () + cos(200)Ho () + (T) B=0.

In complex form, the above equations can be re-written
as

Since 4 € G,, it follows that F(7) = G, (¥) = Ho(¥) = 0.
Thus, the above equations are satisfied. |

The significance of the above two results is that they
allow for the construction of optimal vehicle trajectories
in simplified situations, without resorting to numerical
optimization methods. The discussion of this issue is
eschewed, due to space limitations.



46 N. Crasta et al. / IFAC-PapersOnLine 49-23 (2016) 041-047

6. NUMERICAL EXAMPLES

In what follows, we study three different scenarios: i)
single vehicle with a single beacon, ii) single vehicle with
multiple beacons, and iii) multiple vehicles with a single
static beacon. To solve these problems, we resort to numer-
ical methods to maximize the determinant of the FIMs
associated with each of the vehicles using the Simulated
Annealing technique! . In all of the followmg examples,
we assume constant linear vehicle speed vl = ¢[2 =
2m/s, sampling time T" = 4s, and 07 = 02 = 0.1m.
The optimization variable is the course rate r, which is
piecewise constant, and bounded by 7/6 in magnitude.
For computational efficiency, in the case of a large number
of sampling points the optimal trajectory is approximated
using a sequential procedure that involves a number of
optimization steps. At each step, an optimal path with
a small number m samples is computed, where the first
point of the current trajectory is the last point of the
trajectory computed in the previous step. The final path
is thus obtained as the concatenation of optimal paths of
m samples each.

6.1 Single vehicle with one beacon

We consider a single vehicle in the presence of an unknown
ocean current, with the vehicle measuring ranges with
respect to a single beacon. The initial position of the
vehicle is unknown. Two cases are studied: a) static beacon
and b) moving beacon.

Static beacon  In the first case, the beacon is static
at bll = 0; we take ten samples, i.e. m = 10, and
compute the optimal vehicle trajectory in a single step.
With these values, from (24) for ¢ = 1, the optimal value
of Indet(FIMy(0)) is given by 34.6240. Fig. 2 shows
the optimal trajectory starting from the initial position
pi) = [-2.1313 — 3.1195]T [m] with a current v, =
[0.4 0]T [m/s]. Although we have resorted to numerical
optimization, the optimal positions of the vehicle along

the computed trajectory are consistent with the analytical
result of Theorem 4.

10t -
5 =5
</

= 0 e [1] ob[l]
E - Od - -
~ s g &

-10t

15} - #

fo—
-20
15 S0 s 0 5 10
X [m]

Fig. 2. Optimal vehicle trajectory for 10 range measure-
ment points (samples) and a current of 0.4 m/s along
the X-axis.

1 Global Optimization Toolbox: Simulated Annealing, http://es.
mathworks.com/help/gads/index.html, The MathWorks, Inc., 1994-
2016.

Moving beacon ~ We consider two different cases. We
start by addressing the case where the beacon moves in
a straight line starting from the origin of the inertial
frame along the positive X-axis with a constant inertial

speed of 0.5m/s, i.e. bE] = 0.5kT[1 0]*[m]. We take five
samples (m = b5) for each optimization step. From (24),
with ¢ = 1, the maximum In det(F 1My (0)) is 29.0173. We
assume there is a current of 0.3 m/s along the Y-axis, i.e.
Ve, = [0 0.3]7 [m/s]. Fig. 3 shows the optimal trajectory
for this particular case; the computed average value of the
cost function adopted is 28.4066, which is quite close to
the optimal value of 29.1073.

80F
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Fig. 3. Optimal vehicle trajectory for a current of 0.3 m/s
along the Y-axis and the beacon moving in a straight
line with a speed of 0.5 m/s along the X-axis.

We now consider the case where the beacon moves along
a circumference of radius 100m with a linear speed
of 0.25m/s, or equivalently, with an angular speed of

0.0025 rad/s. The initial position for the beacon is bg] =

[110 0]T [m]. In this case the current is of 0.4 m/s along
the X-axis. The optimal trajectory is shown in Fig. 4.
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Fig. 4. Optimal vehicle trajectory for a current of 0.4m/s
along the X-axis and the beacon moving in a circular
path.

6.2 Single vehicle with multiple fized beacons

In this second scenario we consider the special case where
the vehicle measures ranges to two known static beacons.
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Interestingly enough, the solution to this problem can be
found analytically by seeking inspiration from the solution
to the problem of target localization in 2D using two range
measuring sensors (Moreno-Salinas et al., 2013). Exploit-
ing this concept, it can be shown that the optimal vehicle
positions are such that the relative position vectors of the
vehicle with respect to the two beacons are orthogonal. In
other words, the optimal positions to acquire range mea-
surements are on the circumference that passes through
the two fixed beacons and is centered at the mid point
of the line joining them. Thus, in this example, we will
see that once the vehicle converges to the circumference
thus defined, it continues to move along this circumference,
yielding the optimal FIM.

The numerically computed trajectory shown in Fig. 5
is composed of individual trajectories of seven points
each (computed at each iteration step), and the bea-
cons are separated by 100 [m]. In this case, the opti-
mal Indet(FIMy(0)), considering two beacons and seven
range measurements, is 34.5221. For a current of 0.5 m/s
along the X-axis we can notice in Fig. 5 how the vehicle
keeps moving in the circumference defined by the two
beacons, thus yielding the maximum FIM determinant.

60 =3

b2

Fig. 5. Optimal vehicle trajectory for a current of 0.5 m/s

along the X-axis and two fixed beacons. Here p([)l] =

0 20]" [m], b =[=50 0]T [m] and bl? =[50 0]T
mj.

6.3 Multiple vehicles and one beacon

In this last example we consider two vehicles and a single
static beacon. This case is similar to the one with a single
vehicle, but we must now into account collision avoid-
ance between vehicles, so that the optimal trajectories are
limited by the requirement to maintain a safety distance
between vehicles. In this example the current is again of 0.5
m/s along the Y-axis of the inertial coordinate frame. The
optimal trajectories obtained with the optimization algo-
rithm are shown in Fig. 6, considering m = 10 measure-
ments points (one single step in the iteration procedure).
The optimal Indet(FIMy(0)) for the first and second
vehicle is given by 33.4725 and 32.3285, respectively, both
of which are close to the optimal value of 34.6240.

7. CONCLUSIONS

In this paper we explored trajectories for the planar range-
based positioning problem of single and multiple AUVs

. . . . . . . . . .
-5 -10 -5 0 5 10 15 20 25 30

Fig. 6. Optimal vehicle trajectory for 10 range measure-
ment points (samples), with a current of 0.5 m/s
along the Y-axis and with the final point of the
trajectory given as an additional constraint. Here

py) = [~15 0] [m], py’ = [15 0] [m] and bl!) = 0

[m].

in the presence of constant unknown ocean currents. The
trajectories were obtained by maximizing the determinant
of a suitably defined Fisher information matrix with the
initial vehicle positions and constant ocean current playing
the roles of parameters to be estimated. Under some mild
assumptions, we derived the optimal value of the Fisher
determinant and a set of analytical solutions. Finally,
via numerical simulations we presented different scenarios
with multiple vehicles and beacons.
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