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Abstract

The problem of high-precision bottom-following in the proximity of the seabed for open-frame unmanned underwater vehicles
(UUVs) is addressed in this paper. The suggested approach consists of the integration of a guidance and control system with an active
multi-hypothesis extended Kalman "lter, able to estimate the motion of the vehicle with respect to the bottom pro"le. The guidance
module is based on the de"nition of a suitable Lyapunov function associated with the bottom-following task, while the motion
controller is a conventional autopilot, performing autoheading, autodepth, and autospeed. The motion of the vehicle is estimated
from range and bearing measurements supplied by a high-frequency pencil-beam pro"ling sonar. Moreover, a general-purpose
sensor-based guidance and control system for advanced UUVs, able to manage active sensing-based guidance and motion estimation
modules, is presented. An application of the proposed architecture to execute high-precision bottom-following using Romeo,
a prototype UUV, developed by the Robotics Dept. of the Istituto Automazione Navale, is described. Experimental results
of tests, conducted in a high-diving pool with the vehicle equipped with a sonar pro"ler, are presented. ( 1999 Published by Elsevier
Science ¸td. All rights reserved.
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1. Introduction

High-precision motion control of unmanned under-
water vehicles (UUVs) at low speeds in the proximity of
the seabed is required in many operational applications
such as visual surveys of the seabed, mosaicking, censuses
of marine life or features, and constant-speed dragging of
sensors/samplers to obtain regular measurements. The
operating vehicle, generally an open-frame UUV equip-
ped with a scienti"c payload, is required to be able to
follow the sea bottom at short distances (less than 2 m) at
a speed of some tenths of centimeters per second (typi-
cally lower than 0.5 m/s).

The task of bottom-following, i.e., &&maintaining a "xed
altitude above an arbitrary surface whose characteristics
may or may not be known'' (Bennett et al., 1995), has
been extensively treated in the literature in the case of
torpedo-like, survey-class autonomous underwater ve-
hicles (AUVs). In particular, the case of AUVs equipped
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with one or two downward-looking sonar altimeters,
which measure the vehicle's distance from the bottom
and enable it to estimate the seabed pro"le, has been
investigated in Bennett et al. (1995). Aspects concerning
the estimation of the bottom slope in relation to the
vehicle, the management of transitions between di!erent
slope sections, and the relations between bottom-follow-
ing and other tasks, are examined in Santos et al.
(1995a, b).

In this paper the problem of bottom-following is
addressed for a class of open-frame UUVs, moving
at low speeds very close to the seabed. In these opera-
tional conditions, the use of high-frequency pencil-
beam pro"ling sonars (which have a shorter operating
range and ensure higher precision than traditional echo-
sounders) and recursive "ltering techniques allows
high-precision estimates of the UUV motion with respect
to the seabed pro"le. Recent experimental results
have also demonstrated that estimator perfor-
mances can be enhanced by feature-related control of
the motion of the pro"ler sonar (Caccia et al.,
1997).
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A general-purpose sensor-based guidance and control
system for advanced UUVs, able to manage the active
sensing-based guidance and estimation techniques men-
tioned above, has been designed. The architecture con-
sists of conventional UUV autopilot and navigation
systems, integrated with motion-task-oriented guidance,
an environment-based motion estimator and external
sensor controller modules, as discussed in Section 2,
where the distinction between a task-independent lower
level (autopilot and external sensor controller) and
a task-based upper level, consisting of guidance and
active estimation modules, is emphasized.

The bottom-following task is de"ned in Section 3.
A guidance algorithm, based on the de"nition of
a Lyapunov function of the error in the distance from the
seabed and the choice of autopilot set-points to make it
negative de"nite, is presented.

The bottom-estimation technique is discussed in
Section 4. The bottom pro"le and its distance from the
vehicle are estimated by an active multi-hypothesis ex-
tended Kalman "lter, which processes the pro"ler sonar
range and bearing measurements.

The proposed sensor-based guidance and control sys-
tem has been implemented on Romeo, a prototype UUV
developed by C.N.R.-I.A.N. for marine science applica-
tions and robotics research (Veruggio et al., 1996), and
tested in a pool.

Section 5 describes the hardware and software archi-
tecture of Romeo, while experimental tests and results
are presented in Section 6.

2. Sensor-based guidance and control system

A general-purpose sensor-based guidance and control
system for UUVs is described below. Attention is focused
on the guidance of the vehicle in respect to its operational
environment. In this way, &&external sensors'', which
measure interactions between the robot and the environ-
ment in preferred directions (Samson et al., 1991), are
considered. Here the aspects of this architecture con-
cerned with the execution of the task of bottom-following
are presented, while an application to the horizontal
motion guidance and control of a prototype UUV is
described in Caccia et al. (1998). Since the unpredictabil-
ity of subsea environments and the limitations of the
state-of-the-art machine-intelligence techniques makes
real-world operations reliable only in the presence of
possible human intervention (Sayers et al., 1996), a basic
requirement in developing guidance and control systems
for operational UUVs is to enable the human operator to
tele-operate the robot, by interacting with each level of
the control architecture (Sheridan, 1989). In this way,
a modular guidance and control system has been de-
signed, integrating conventional autopilot and navi-
gation modules with an &&external sensors'' controller, an

Fig. 1. Bottom-following architecture for UUVs.

active estimator of the motion in respect to the opera-
tional environment, and guidance modules. The resulting
system architecture is depicted in Fig. 1, where sub-
modules and data #ow required to execute the bottom-
following task are pointed out.

The UUV autopilot controls the vehicle's heading, atti-
tude (pitch and roll), depth, and horizontal speed (surge
and sway). As discussed in Fossen (1994), in most
practical applications, autopilots constituted by simple
uncoupled controllers of PID-type are su$cient. In par-
ticular, typical survey applications can be executed by
vehicles performing automatic control of heading (PID-
type), depth (PID-type) and surge (PI-type). The auto-
pilot is organized in four layers. The "rst layer is the
automatic control mode, which generates the forces and
torques to be applied to the vehicle to obtain the desired
behavior. In the second layer, the thrust mapping func-
tion maps the required forces and torque in the vector of
thrust to be applied to the actuators, according to the
vehicle's thruster con"guration and user-de"ned require-
ments such as low-power consumption or motion pre-
cision. In the third layer the voltage mapping function
maps the thrust vector containing the desired motor
thrusts into a voltage vector to be sent to the boards of
the servo-motor drivers. Finally, in the lowest mode, each
thruster voltage can be set directly.

The vehicle motion is estimated by the navigation
system. Data supplied by a compass, a gyro, inclino-
meters, a depth-meter, a current-meter and/or a Doppler
velocimeter, are integrated to estimate the vehicle kin-
ematics state required by the Autopilot. In addition, the
integration of acoustic positioning systems and/or linear
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accelerometer measurements can allow the vehicle's
absolute position to be estimated.

The autopilot and navigation systems are independent
of the task the robot has to accomplish and are su$cient
to enable the human pilot, helped by video feedback from
a TV camera mounted on the vehicle, to tele-operate the
vehicle. This is the case in many operational ROVs.

The guidance system generates autopilot set-points to
perform motion tasks of di!erent types. Since in the
operational area, the vehicle moves in the proximity of
environmental features such as the seabed or man-made
structures, a number of operational motion tasks can be
de"ned in respect to the interactions between the vehicle
and its surroundings. These motion functions can be
classi"ed into safety tasks such as obstacle, bottom and
surface avoidance, and environment-based tasks as bot-
tom-following, ice-canopy following, and wall-following
with a pre-de"ned orientation. Moreover, the vehicle can
be required to move in an earth-"xed reference frame to
operate in a well-de"ned area. In this case, free-space
motion tasks are executed, such as reaching a target
frame (position and orientation) and remaining station-
ary on site, even in the presence of disturbances (Caccia
et al., 1998).

Underwater optic and acoustic visual sensors can
provide feedback on the interactions between the UUV
and the operational environment. Since it is possible to
focus the attention of pro"ling sonars and pan-tilt TV-
cameras in particular directions, the most advanced
UUVs provide an external sensor controller, able to ac-
quire data and to control the motion of these devices
both in the environment and in the vehicle "xed reference
frame.

In particular, high-frequency pencil-beam pro"ler
sonars can provide high-precision measurements of
the interactions between the vehicle and the environment
at short ranges. In this case, the sonar controller pilots
the pro"ler sonar head motion in order to satisfy the
human operator and/or the requirements of the data-
processing algorithm. The sonar pro"ler motion and
data acquisition can be controlled at various levels. Con-
tinuous pings in a "xed direction, and clockwise and
counterclockwise radar-like circular scans and sweeps in
a circular sector are described in a vehicle/sensor-"xed
reference frame. Sweeps between the absolute horizontal
or vertical directions have to be described in an earth-
"xed reference frame, and need vehicle heading or pitch
data to be acquired. These di!erent pro"ler motion
modes correspond to di!erent layers of the Sonar Con-
troller.

The motion of the vehicle in respect to basic features
detected in the operational environment is estimated
by the environment-based motion estimator. Where it is
possible to control the sensor attention, the estimator
performances are increased by adopting task-driven and
feature-related active sensing techniques. Task-driven

control of visual attention can be performed indepen-
dently of the estimation processing (Swayn and Stricker,
1993). For instance, when the task of obstacle detection is
performed, a pro"ling sonar looks ahead, sweeping
across a sector in the vehicle "xed reference frame. Fea-
ture-related control of visual attention allows the es-
timator performance to be improved, controlling the
sensor movements on the basis of the result of the estima-
tion processing. In the case of bottom-following, a more
precise tracking of the desired distance from the seabed in
the presence of sudden changes in the bottom pro"le is
allowed by the availability of a high-precision estimator
of the bottom slope and the vehicle's distance from the
seabed. A feature-related control of the pro"ler sonar is
performed to increase the precision in the slope estimate
tracking the linear surface, which currently approximates
the seabed pro"le. In particular, the bottom pro"le is
tracked by the pro"ler sonar, sweeping a circular sector
with extremes b(1) and b(2) (see Fig. 1), determined by the
bottom estimator.

A more detailed description of the bottom-following
and bottom-estimation modules is given in the next two
sections.

3. Bottom-following: task de5nition and guidance module

Here, the task of bottom-following is de"ned as navi-
gating at a "xed distance from the seabed, represented as
an arbitrary surface whose characteristics may or may
not be known. The interactions between the UUV and
the seabed are measured by range data supplied by
a high-frequency pencil-beam pro"ling sonar, sweeping
the bottom pro"le along the vehicle's longitudinal direc-
tion. Fig. 2 depicts a UUV moving in the proximity of the

Fig. 2. Nomenclature for a bottom-following UUV.

M. Caccia et al./Control Engineering Practice 7 (1999) 459}468 461



seabed. De"ne z and u as the vehicle depth and surge,
respectively, d as the distance of the vehicle from the
bottom, a as the bottom slope, and o and b as the sonar
range and bearing, respectively.

Since this research is focused on high-precision bot-
tom-following for operational open-frame UUVs, which
are generally structurally stable in pitch and roll, the
vehicle pitch in not considered.

Referring to Fig. 2, the guidance task of bottom-
following can be described by the function

e"d!d*, (1)

where d* is the desired vehicle distance from the seabed.
It is possible to write the following Lyapunov function

of the task variable e, which represents the distance error:

<"1
2
e2"1

2
(d!d*)2. (2)

Since the speed of the vehicle in the direction perpendicu-
lar to the bottom pro"le is (see Fig. 2)

dQ"!zR cos a!u sin a, a3A!
n
2

,
n
2B , (3)

the "rst time derivative of < can be expressed as

<Q "!(d!d*)(zR cos a#u sin a), u'0, (4)

where the vehicle is assumed to move forward, i.e. u'0.
<Q is negative de"nite if

zR cos a#u sin a"k (d!d*), k'0, u'0, (5)

where k is a given constant.
Eq. (5) is satis"ed by choosing

u*"vN cos a

zR *"!vN sin a#k
d!d*

cos a
, vN'0,

(6)

where vN is the "xed vehicle speed in the direction parallel
to the bottom pro"le, and the term k (d!d*)/cosa com-
pensates for the bottom distance error. Of course, in real
applications this component is saturated, obtaining

u*"vN cos a,

zR *"!vN sin a#sat
w Ak

d!d*

cos a B ,
(7)

where sat
w

stands for the saturation function, i.e.,

sat
w
(x)"G

!w if x(!w,

x if Dx D)w,

w if x'w.

(8)

Since <*0 and <Q )0, for the Barbalat lemma
lim

t?=
< (t)"0, which complete the proof of conver-

gence.
The reference heave value computed in Eq. (7) is trans-

formed into the desired depth for the UUV autopilot on

the basis of the estimated vehicle depth according to the
following relation:

z*"zL#zR **t, (9)

where z* and zL are, respectively, the reference and esti-
mated depth, and *t is the sampling time.

4. Bottom estimation

Referring to Fig. 2, the bottom estimator state and
measurement equations are

d(k#1)"d (k)#dQ (k)*t,

dQ (k#1)"dQ (k)#w
d
Q (k),

a(k#1)"a (k)#wa (k),

(10)

o(k)"
d (k)

cos [b
k
!a (k)]

#l (k) (11)

which represent a linear system with a nonlinear and
time-varying measurement channel a!ected by noise. The
noise l is supposed to be Gaussian at zero mean and
covariance R. The measurement equation is a function of
the pro"ler bearing b

k
which can be actively controlled

by the motion-estimation module. The system noise
w
d
Q takes account of the slow changes in the vehicle depth,

whose measurement is not considered by this "lter.
The state of system (10) can be estimated by an ex-

tended Kalman "lter, in consideration of the good results
obtained in Cristi et al. (1996) and Caccia et al. (1997).
The state noise wa allows the "lter to follow gradual
changes in the bottom slope. However, particularly big
values of wa make the estimate more sensitive to
measurement noise, so the resulting "lter is unable to
follow sudden slope changes without prejudicing high-
precision estimation.

This problem can be tackled successfully by applying
an active multi-hypothesis approach.

This approach basically consists of three actions:

1. track the current surface which approximates the
bottom pro"le;

2. detect a change in the bottom slope;
3. estimate the new slope and go back to action 1.

In nominal conditions, the active estimator controls the
pro"ler bearing on the basis of the current estimate of the
bottom slope and of the memorized last tracked surface.
The pro"ling sonar sweeps a sector centered orthogon-
ally to the tracked re#ecting surface:

b(1)"aL !*b, b(2)"aL #*b, (12)

where b(1) and b(2) are the swept sector extremes, *b the
swept sector semi-amplitude, and aL the estimated bottom
slope. In addition, the active estimator memorizes the
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last tracked surface slope. The pro"ler is forced to move
forward every time the last tracked surface is detected.
This feature-related control of the pro"ling sonar to
track the current estimated surface allows the e!ects of
the linearization of the measurement equation to be
reduced, to avoid the alternate tracking of di!erent surfa-
ces and to minimize the presence of many missed sonar
echoes when the vehicle follows a descending pro"le
(Caccia et al., 1997).

The problem of detecting any change in the bottom
pro"le and estimating the new slope of the bottom sur-
face is successfully faced by means of a normalized square
innovation test and a multi-hypothesis approach.

Calling [dL dQ L aL ] the estimated state, the innovation
and its covariance are de"ned as

e(k/k!1)"o (k)!
dL (k/k!1)

cos [b
k
!aL (k/k!1)]

(13)

and

S
k@k~1

"H
k@k~1

P
k@k~1

HT
k@k~1

#R, (14)

where H
k@k~1

indicates the measurement matrix, com-
puted as the Jacobian of the channel function evaluated
at the predicted state, and P

k@k~1
is the one-step predic-

tion covariance.
When the normalized square innovation

e(k/k!1)S~1
k@k~1

e (k/k!1) (15)

exceeds a threshold (which can be selected either on the
basis of a chi-square distribution (Bar-Shalom and Fort-
mann, 1988) or heuristically), the measurement at time
k is not considered as having originated from the tracked
re#ecting surface (Maksarov and Durrant-White, 1995).
In this case the measurement can either be an outlier, or
correspond to a new re#ecting surface, whose slope has
to be evaluated. Where the measurement is an outlier, it
is rejected, and the "lter performs a prediction step.

To make a decision about the nature of an unpredicted
measurement, a bank of n EKFs corresponding to di!er-
ent sea-bed slopes and to a measurement outlier is trig-
gered and run for m steps (decision interval). Then, an
Arbiter determines the new bottom slope, evaluating
a cost function of each "lter residual:

"lter
k@k

"argmin
i

m
+
j/0

e2
i
(k!j/k!j!1), (16)

where

i3[0 . . n]W<

with

<"Mi : e
i
( j/j!1)S~1

i
( j/j!1)e

i
, ( j/j!1)(d

∀j3[k!m, k]N. (17)

< is the set of valid hypotheses after m measurements, i.e.
of the hypotheses that satisfy a normalized square in-
novation test at each step of the decision interval.

Since no &&a priori'' information is available on the
bottom pro"le, it is not guaranteed that any hy-
pothesized slope will correspond to the real one. A rea-
sonable criterion to tackle this problem is to "x a step *a
in the slope variation, and run n"2p#1 "lters with
initialized slopes corresponding to

aL !p*a,2 , aL !*a, aL , aL #*a, . . aL #p*a (18)

(where aL is the current estimated slope and p a positive
integer) and the uncertainty in the slope estimation is of
the order of *a. The ith hypothesis "lter is initialized with

dL
i
"dL cos(aL

i
)/cos(aL ). (19)

The resulting active multi-hypothesis EKF bottom-
estimator scheme is shown in Fig. 3.

5. Application: Romeo bottom follower

The active sonar-based bottom-following system de-
scribed in the previous sections has been tested on
Romeo, an open-frame tethered UUV, designed and de-
veloped by the Robotics Department of C.N.R.-I.A.N. for
shallow water (up to 500 m depth) marine science ap-
plications, and for research in the "eld of intelligent
vehicles. In particular, Romeo has been designed to sat-
isfy marine scientists' requirements of carrying di!erent
kinds of payloads, acquiring real-time high-quality video
images, and maneuvering with high precision in the prox-
imity of the seabed and man-made underwater structures
(Nokin, 1994). To guarantee high precision and agility in
maneuvering, great attention has been devoted to pro-
pulsion, seeking to ensure maximum controllability and
precision on the horizontal plane, while keeping pitch
and roll to a minimum. Complete motion controllability
is enabled by four horizontal and four vertical thrusters.
In addition, environment-based guidance and motion-
estimation systems enable the vehicle to perform auto-
matically a number of basic motion tasks in scienti"c
missions.

Fig. 4 shows the vehicle in bottom-following con"g-
uration for robotics research. The vehicle weighs about
380 kg in air, and measures 130]90]96 cm (lwh). The
main elements constituting the vehicle are: steel frame,
thrusters, buoyancy system, one main cylinder for the
electronics, two cylinders for the batteries, one cylinder
for the battery chargers, one cylinder for the additional
equipment, one cylinder for heading/attitude and inertial
sensors (at this time a Watson heading reference unit;
Everett, 1995), one package of permanent sensors as
CTD (conductivity, temperature, depth), two echosoun-
ders, video camera and still camera.
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Fig. 4. Romeo in bottom-following pool tests con"guration.

Fig. 3. Active multi-hypothesis extended Kalman "lter for bottom
estimation.

In high-precision bottom-following applications, the
distance of the vehicle from the seabed is measured by
a high-frequency (1.25 MHz) pencil-beam pro"ling sonar
Tritech ST-1000. This device is mounted below the ve-
hicle, to track the bottom pro"le along its longitudinal
axis. The pro"ler sonar head can rotate at increments of

1.8 or 3.63 according to suitable commands received via
a RS-232 serial link. Detailed information about the
sonar device can be found in Moran (1994) and Cristi
et al. (1996).

The software structure is based on the inter-task com-
munication facilities supplied by commercial real-time
operating systems. In particular, each task is provided
with a set of queues, in which data to be sent to, or
received from, other tasks can be stored or retrieved
(Bono et al., 1997). As shown in Fig. 5, "ve synchronous
tasks at 10 Hz implement the basic guidance, navigation,
motion-estimation, autopilot and sonar-control mod-
ules. These tasks exchange commands and replies via
message queues, and data by a semaphored shared mem-
ory. In particular, the guidance task can activate the
motion-estimation procedures required by the maneuver
it is executing. Physical devices are piloted by the auto-
pilot and sonar-control tasks. Since the Tritech ST-1000
pro"ler sonar is asynchronous, it is managed by a dedi-
cated task (&&tSt1000'' driver), which receives commands
from the sonar controller, sends them to the physical
device, receives range data and puts them in a dedicated
queue. All the sensor data are synchronized by the &&input
data synchronization task''. This task, which is scheduled
at 10 Hz, reads data from synchronous A/D and serial
devices, as the CTD and heading reference unit, and from
asynchronous devices such as the Tritech ST-1000. Raw
sensor data are recorded in a shared memory, and made
available to the navigation and motion-estimation tasks
for "ltering. The shared memory also contains controller
and "lter parameters and reference values.

6. Experimental tests

At sea deployment, the operation and recovery of an
underwater vehicle are time consuming and demand
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Fig. 5. Romeo's software design.

Fig. 6. Genoa pool's bottom pro"le.

a highly skilled team. In addition, it is quite di$cult to
perform repeatable tests in the open sea, due to un-
predictable and time-varying sea conditions (Bono et al.,
1997). For these reasons, some tests can be carried out in
enclosed areas such as harbors or pools, where the struc-
ture of the operational environment is known, and the
vehicle performance can be monitored and evaluated in
a set of repetitive tests in quite similar conditions.

On the basis of these considerations, experimental tests
have been carried out in a high-diving pool, made avail-
able by the Genoa City Council. The pool measures

33.3]23 m, and its bottom pro"le presents a slope of
about 223. Its maximum depth is about 5 m (see Fig. 6).

The goal of the tests was to evaluate the possibility of
maintaining the vehicle at very short range from the
bottom (less than 1 m), to allow the acquisition of high-
quality video images. Therefore, Romeo was equipped
with a Tritech ST-1000 pro"ler sonar, set for the max-
imum range of 5 m. The sonar head swept the pool
bottom below the vehicle at 1.83 increments, with
a sampling frequency of 5 Hz, according to the active
sensing techniques discussed in Section 4.
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Fig. 7. Tritech ST-1000 range measurements; reference and estimated
bottom range (Romeo is moving upwards).

Fig. 8. Estimated bottom slope and Tritech ST-1000 bearing (Romeo is
moving upwards).

The vehicle moved straight ahead up and down the
bottom pro"le in the direction of maximum slope.
Autodepth and autoheading were performed by de-
coupled PID controllers with a reset function on the
integrator. Heading and heading rate measurements
were supplied by a Watson heading reference unit. Data
supplied by a very shallow water depth-meter (10 m
max.) enabled the vehicle depth to be estimated by means
of a linear Kalman "lter. Surge was controlled in an open
loop by "xing a steady-state value of the thrust in the
longitudinal direction according to an approximate
square relationship with the corresponding vehicle surge.

The covariances of the system and measurement
noises are, respectively, cov(w

d
R )"sqr(0.01), cov(wa)"

sqr(0.01n/180) and R"cov(l)"sqr(0.05), while the
estimated covariance of each extended Kalman "lter

Fig. 9. Reference and estimated depth (Romeo is moving upwards).

Fig. 10. Longitudinal and vertical thrust (Romeo is moving upwards).

is initialized as P
*/*5

"diag([cov(dL ) cov(dQ L ) cov(aL )]"
diag([sqr(0.5) sqr(0.3) sqr(*an/180)]), where the range is
measured in meters, the linear speed in m/s and the
angles in radians. When a possible change in the bottom
pro"le is detected, 7 EKFs are considered, with hy-
pothesized slopes at intervals of *a"103 (see Eq. (18)).

Some test results are presented below.
In the "rst case, the vehicle followed the ascending

pro"le of the pool at a nominal cruise speed equal to 10
cm/s and a reference distance from the bottom of 80 cm.

Tritech ST-1000 range measurements are plotted in
the upper picture of Fig. 7. At short ranges, less than 1 m,
the measurement noise is low: the standard deviation is
less than 5 cm, considering also the uncertainty related to
the vehicle attitude. As shown in the picture, some iso-
lated measurement outliers (spikes) are present and easily
detectable. The lower picture of Fig. 7 shows the refer-
ence distance from the bottom, together with the
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Fig. 11. Tritech ST-1000 range measurements; reference and estimated
bottom range (Romeo is moving downwards).

Fig. 12. Estimated bottom slope and Tritech ST-1000 bearing (Romeo
is moving downwards).

estimated bottom range, while the estimated bottom
slope is plotted in the upper picture of Fig. 8. In each
"gure, the moments when the bottom pro"le angle is
changed are indicated by circles. As expected, the vehicle
distance from the bottom presents a discontinuity when
the change in the bottom pro"le is detected. However,
the requested distance from the seabed is quickly tracked
again, and, except during this transition phase, the esti-
mated bottom distance error is always lower than 10 cm.
In these operational conditions, the TV cameras moun-
ted on the vehicle could acquire very stable and well-
de"ned images of the pool #oor. As shown in the lower
picture of Fig. 8, active sensing keeps the sonar sweep
centered on the direction perpendicular to the estimated
slope.

On the basis of the estimated distance from the bot-
tom, the reference heave and depth are computed accord-
ing to the formulae (7) and (9), respectively. Fig. 9 shows
the reference and estimated depth.

The control actions, which are the vertical and hori-
zontal thrusts applied to the vehicle, are plotted in
Fig. 10. In particular, the upper picture, where the thrust
applied to the vehicle in the longitudinal direction is
plotted, shows how the vehicle surge decreases when
the bottom slope decreases to maintain the motion paral-
lel to the seabed pro"le, as stated in Eq. (7). The
lower picture shows the vertical thrust applied to the
vehicle.

The results of a test performed with Romeo moving
along the descent pro"le of the pool are given below.

Also in this case, the range measurements are charac-
terized by noise with standard deviation of about 5 cm,
and by the presence of some outliers as shown in the
upper picture of Fig. 11. Although the performance of the
active bottom estimator is good, the bottom slope
changes are immediately detected, and the slope estimate
is stable and precise (see Fig. 12), the performance in
bottom range control is worse than in the previous case
(see Fig. 11, lower picture). Anyway, the vehicle is always
maintained at a range from the bottom, of less than
1.1 m. In this way, the TV camera used to pilot the
vehicle, which usually looks ahead and downwards, can
collect video images of the pool #oor, even when the
vehicle moves down. This fact facilitates the intervention
of the human operator, enabling him/her to maintain
continuous visual feedback from the seabed with a "xed
camera. A set of bottom-following tests have been per-
formed keeping Romeo within di!erent range from the
pool bottom. Results are quite similar to those of the
cases previously discussed.

Since the depth signal was rather noisy, and (in order
to be able to track the system dynamics even in the
presence of high vertical thruster forces), the linear
Kalman "lter for depth estimation had been tuned with
a fairly high covariance of the system noise, the estimated
depth zL can be su$ciently noisy to make sign(z*

t`*t!z*
t
)

Osign(zR *) with t3[t
0
, t

1
] and sign(zR *)"const for

t3[t
0
, t

1
], where z* is computed as shown in Eq. (9).

This fact can induce a reduction in performance, as in
the second experiment discussed above.

On this basis, current research at CNR-IAN is being
focused on the identi"cation of the hydrodynamic deriva-
tives of the vehicle in order to implement more precise
dynamic motion estimators, and on the design, imple-
mentation and testing of a UUV autopilot constituted of
basic nonlinear velocity controllers. Such an autopilot
could then be interfaced with a task-function-based
guidance system, able to generate the desired linear and
angular velocities on the basis of the speci"ed tasks, e.g.
&&bottom following at "xed distance'', where the desired
surge and heave are computed according to Eq. (7).
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7. Conclusions

This paper addresses the problem of accurate bottom-
following for UUVs moving at low speeds in the proxim-
ity of the seabed. Its accomplishment is required by many
applications in marine science and o!-shore operations.
The proposed solution is based on the integration of
active multi-hypothesis EKF motion and environment
estimation techniques, Lyapunov-based guidance sys-
tems and a conventional UUV autopilot. The resulting
bottom-following architecture can operate on a large
class of advanced UUVs, and has been operationally
tested on Romeo, a UUV prototype developed by
C.N.R.-I.A.N.

Pool test results have revealed the feasibility of the
method, which can be easily implemented in a real-time
control architecture for UUVs. In particular, the method
enables the system to perform the bottom-following task
with the high degree of precision required by operational
applications as (semi-)automatic video monitoring of
benthic areas. The vehicle is able to maintain a constant
range from the bottom, of less than 1 m.

Current research is focused on enhancing system per-
formance by implementing model-based dynamic motion
estimators and a velocity control-based autopilot, which
more naturally matches with a task-based guidance and
control system.
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