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ArchaeotechnologyFeature

Over the last 40 years, there has been a discernible increase in the number of scholars who have focused their research on early industrial organizations, 
a field of study that has come to be known as Archaeotechnology. Archaeologists have conducted fieldwork geared to the study of ancient technologies in a 
cultural context and have drawn on the laboratory analyses developed by materials scientists as one portion of their interpretive program. Papers for this 
department are solicited and/or reviewed by Michael Notis, a professor and director of the Archaeometallurgy Laboratory (www.Lehigh.edu/~inarcmet) at 
Lehigh University.

The assessment of corrosion on the 
USS Arizona included the pioneering 
development of a minimum-impact cost-
effective technique to determine the cor-
rosion rate of steel-hulled shipwrecks in 
seawater. The technique, with potential 
application worldwide, is illustrated 
in this paper with the application to a 
World War II Japanese midget submarine 
submerged in deep waters off the Oahu, 
Hawaii, coast.

INTRODUCTION

 In the early morning hours of
December 7, 1941, five Japanese class
I fleet submarines launched five midget
submarines ten miles off Pearl Harbor.
The mission was to covertly slip into the
harbor, wait until the attack by Japanese
forces on Pearl Harbor began, then fire
their torpedoes. Each vessel was 23.7 m
long, had a beam of 1.8 m, and a 1.4 m
conning tower. Each submarine carried
a crew of two and two torpedoes. At
3:57 a.m., Ensign R.C. McCloy, mine-
sweeper Condor’s officer of the deck,
spotted something off his port bow and
called over Quartermaster R.C. Uttrick.
“That’s a periscope sir, and there aren’t
meant tobeanysubs in this area.”Ensign
McCloy blinked a semaphore to USS
Ward, “Sighted submerged submarine.
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. . .” Captain William W. Outerbridge,
who earned his command only two days
before, sounded general quarters, but
secured at 4:35 a.m. having made no
contact. At 5:50 a.m., Antares’ skip-
per, Commander Lawrence C. Grannis,
reported another sighting to Ward. By
6:40 a.m., Captain Outerbridge spotted
a conning tower trailing Antares at the
entrance to Pearl Harbor, closed to 45.7
m, and fired a 10.2 cm round into the
target. Although surviving documenta-
tion does not reveal that the site was the
submarine sunk by Ward, evidence from
the site, such as a shell hole at the star-
board base of the conning tower (Figure
1) corresponds to the action report filed
by Ward identifying the submarine as
the first vessel sunk by the U.S. Navy
in the Pacific war of World War II.1 The
#3, 10.2 cm gun from Ward, which fired
the shot that sank the submarine, is now

located on the Capitol Mall in St. Paul,
Minnesota (Figure 2).
 At 7:53 a.m., the Japanese initiated a
surprise air attack against U.S. Forces
stationed at Pearl Harbor and other
military sites on Oahu, Hawaii. During
the first wave, consisting of 183 fighters
and torpedo bombers, Arizona became
a total loss when a bomb penetrated the
deck and sympathetically detonated its
forward magazine. After the second
wave of the attack consisting of 167
aircraft was over, 22 additional ships
were damaged or totally lost with 2,403
killed in action, 1,173 of whom were lost
on Arizona.
 In August 2002, researchers in a
HawaiianUnderseaResearchLaboratory
(HURL) submersible discovered this
Japanese midget submarine approxi-
mately 4.83 km offshore from the
entrance to Pearl Harbor, in 406.7 m of

Figure 1. A shell hole 
at the starboard base 
of the conning tower 
on the Japanese 
midget submarine. 
Photo courtesy of the 
National Oceanic and 
Atmospheric Admin-
is t ra t ion/Hawai ian 
Undersea Research 
Laboratory.
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water. In a later submersible descent,
several small segmentsofmarineconcre-
tion were recovered from the aft end of
the midget sub by the robotic arm of
HURL’s Pisces submersible (Figure 3).
These samples were analyzed in metal-
lurgical and chemistry laboratories at
theUniversityofNebraska–Lincoln,and
x-ray diffraction measurements were
conducted at the Air Force Research
Laboratory, Eglin Air Force Base,
Florida. The purpose of this paper is to
review Corrosion Equivalent Corrosion
Rate (CECR)methodology,2 aminimum
impact technique pioneered on Arizona,
and its application to estimate the aver-
age corrosion rate of the external hull of
themidget submarine.Asecondpurpose
is to present the results of x-ray diffrac-
tion studies on the concretion samples
and to relate these results to physical and
chemical properties of the submarine’s
concretion.

TEST SITES

USS Arizona

 The Arizona remains submerged
where it was sunk by Japanese forces on
December 7, 1941. An estimated 1.9
million liters of fuel oil remain aboard,
either in original bunkers or trapped
beneath overheads of numerous undam-
aged compartments. Limited salvage
operationson thevesselwere terminated
in 1942. A thorough archeological
documentationof thewreckwas initiated
by the National Park Service and the
U.S. Navy at the request of the USS
Arizona Memorial superintendent in
1983. A detailed document including
history,drawings,photographs,analysis,

and recommendations for site manage-
mentwaspublished in1990.3 This initial
document reported the earliest attempt
to examine in-situ corrosion processes
onasunkensteel ship.An interdisciplin-
ary research program, the USS Arizona
Preservation Project, began in 1999 to
conduct a comprehensive study of cor-
rosion,structural integrity,microbiology,
sub-surface geology, and oceanography
relevant to the in-situ site formation
processes affecting the vessel. The data
are providing critical inputs to a finite
element model, which will constitute a
composite research product to be used
by managers in making future preserva-
tion decisions about the ship.
 Several documents have been pub-
lished since the Preservation Project’s
inception. The following references are
specific to corrosion studies on the Ari-
zona, and serve as the background for
research done on the Japanese midget
submarinethat is thesubjectof thispaper.
References 4–7 contain information

concerning themetallurgy,4 potential/pH
and metal coupon data,5,6 and minimum
impact corrosion rate measurement
technique.2,7

Japanese Midget Submarine

 The midget submarine hull was fab-
ricated from cold-rolled MS44, low-
carbon, basic open-hearth steel to an
original wall thickness of 8 mm.8 With
no direct access to the submarine’s hull,
itwas impossible toobtainmetal samples
that could directly reveal the extent of
metal loss by laboratory metallographic
methods. Ultrasound measurements
were not attempted because experience
with the heavily concreted Arizona hull
has not provided conclusive data,6 and
the method has not proven to be reliable
with current technology. Electrochemi-
cal methods might be useful, but instan-
taneous data may not accurately reflect
long-termcorrosion. Inaddition, itwould
be expensive to monitor and service in-
situ instrumentation on site. As a result,
the Japanese midget submarine discov-
ered in 2002 appeared to be a suitable
test site for the application of CECR
methodology.2,7

METAL/CONCRETION 
INTERACTIONS

USS Arizona

 FeCO
3

(siderite), CaCO
3

(aragonite),
and Fe

3
O

4
(magnetite) were the three

major minerals present in Arizona con-
cretion identified by a Siemens x-ray
diffractometer. Ironcontentsvariedfrom
18–65wt.%,withanaverageof approxi-
mately 50 wt.% using environmental
scanning-electron microscope (ESEM)

Figure 2. A number 3 
gun, USS Ward, stand-
ing in front of the Min-
nesota Capitol, St. Paul, 
Minnesota. Robert Hall 
photo.

Figure 3. The aft end of 
the Japanese midget 
submarine during col-
lection of concretion 
samples. Photo cour-
tesy of the National 
Oceanic and Atmo-
spheric Administration/
Hawaiian Undersea 
Research Laboratory.
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Table l. Physical and Chemical Properties of Japanese Midget Submarine Concretion, and 
Calculated Concretion Equivalent Corrosion Rate (CECR) 

Fe  d Density* H2O icoor(CECR)**
Sample (wt.%)  (cm) (g/cm3) (wt.%) (mmpy)

S1 52.7  0.335 2.017 25.5 0.012
S2 55.5  0.272 2.511 20.7 0.012
S3 61.8  0.523 1.619 50.3 0.017
S4 63.0  0.424 1.520 54.5 0.013
S5 58.3  0.447 1.809 39.6 0.015
S6 54.7  0.345 2.005 27.8 0.012
Average 57.7  0.39 1.91 36.4 0.014

* ASTM Designation D792-00
** Equation 1

cross section scanning.7 Based on these
observations, studies were initiated on
Arizona to correlate iron content in the
concretion with the average corrosion
rate obtained from analysis of metal
coupons removed from the hull in 2002.
Results of this correlation are shown in
Equation 1, where i

corr
(CECR) is given.

(All equations are shown in the table on
page 17.) In this equation, K = 0.020 for
i
corr

in millimeters per year (mmpy);
is concretion density (g/cm3); wt.% Fe
is weight percent iron; d is concretion
thickness (cm); and t = 61 is exposure
time (y).

 Japanese Midget Submarine

 AswithArizonaconcretion,aSiemens
x-raydiffractometerwasused toscan the
cross section of the midget submarine
concretionsamples fromshipside tosea-
side at distances 0.03 cm, 0.05 cm, 0.08
cm,  0.13 cm, and 0.17 cm for siderite,
goethite (FeOOH), and magnetite.11 The
diffractometerwassituatedon thecalcu-
lated 2-theta peak for each mineral, and
then scanned on either side from 0.5 to 1
degree so as to include the entire profile
caused by line broadening. Figures 4,
5, and 6 show the profiles for siderite,
goethite, and magnetite, respectively,
as a function of 2-theta angle and linear
intensity (counts per second, Cps). As a
general rule, intensity is approximately
proportional to the concentration of a
measured compound. Siderite occurs
throughout thecross section,butappears
to reach maximum concentration at the

interior of the concretion toward seaside
at 0.17 cm. Goethite is highest in con-
centration toward shipside at 0.03 cm,
and lowest toward seaside at 0.17 cm.
Similarly, magnetite is highest in con-
centration toward shipside at 0.03–0.05
cm and lowest toward seaside at 0.17
cm. Aragonite does not appear in the
x-ray scans of the submarine concre-
tion, although it does appear in Arizona
concretion as mentioned previously.
 Maximum siderite toward seaside
(Figure 4) suggests that iron diffusion
through the concretion is fast relative
to siderite formation kinetics. The exact
mechanism by which siderite forms is
unknown, but it is probably related to
iron exchange with calcium in calcium
carbonate.12 North reported that the
original aragonite skeletal material was
converted into various iron compounds
with siderite being the most common.
Maximumgoethiteandmagnetite toward

shipside (Figures 5 and 6, respectively)
suggests that oxygen diffusion is fast
relative to iron oxide formation kinetics.
The presence of goethite in the concre-
tion rather than at the metal/concretion
interface, as in the case of Arizona, may
explain the higher iron content in the
midget submarine concretion than in
Arizonaconcretion.Althoughachloride-
containing oxide, akaganeite, appears in
Arizona scale, no chloride containing
oxides appear in the midget submarine
concretion.Other research indicates that
akaganeite forms after the concretion is
exposed to air,13 which may explain the
presence of this mineral in Arizona con-
cretion,but itdoesnotexplain itsabsence
in the midget submarine concretion.

CORROSION

Concretion Equivalent 
Corrosion Rate 

 From a collection of midget subma-
rine concretion samples, the six largest
were designated as samples S1, S2, S3,
S4, S5, and S6. To begin, concretion
density was measured, then thickness
and water content were determined.
Last, the samples were ground to a fine
powder and delivered to the Department
of Chemistry analytical laboratory at the
University of Nebraska-Lincoln for iron
analysis using wet chemical methods.
The data, including CECR data from
Equation 1, are given in Table I.
 The CECR predicts an average cor-
rosion rate of 0.014 mmpy, correspond-
ing to a total hull loss of 0.9 mm, with
approximately 7.1 mm of metal remain-
ing. For comparison, Arizona concre-
tion contained significantly lower iron,
varying between 22–48 wt.%, greater
concretion thickness, averaging 1.8 cm,

Figure 4. An x-ray diffraction intensity profile for siderite across the Japanese midget 
submarine concretion.
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Equations

  (1)

  (2)

  (3)

greater concretion density, varying from
1.9–2.5g/cm3, and lowerwater retention
at approximately 14 wt.%.

Corrosion Mechanism—Limiting 
Current

 In sea water, oxygen reduction at
cathodic sites is typically the driving
force for the corrosion process. Assum-
ingoxygenreduction is theonlycathodic
reaction, the limiting corrosion rate is
calculatedusingFick’sFirstLawaccord-
ing to Equation 2, where: i

corr
(l) is the

limiting corrosion rate (mpy), J = KDC/
d is the oxygen flux through concretion
(g O

2
/cm2/s), K = 0.012 for i

corr
in mmpy,

D is the diffusion coefficient for O
2

in
water (cm2/s), d is concretion thickness
(cm), n is the number of equivalent
electrons transferred per gram atomic

weight, F is the Faraday constant (A·s/
e–), and C is the oxygen concentration
at the concretion/seaside interface, or
gradient across the concretion assuming
C at the concretion/metal interface 0
(mg/L).
 The diffusion coefficient for oxygen
in water, D, is estimated at 8.8°C using
D

25
· (T/T

25
)(

25
/ ), where D

25
is the dif-

fusion coefficient for oxygen at 25°C,
is theviscosityofwater, andTisabsolute
temperature. At 8.8°C, D equals 1.72
10–5 cm2/s14 and C(sat) = 47.24%. Based
on a mean temperature of 8.8°C at a
water depth of 406.7 m,and a mean
salinity of 34.1, C(sat) converts to C =
4.42 mg/L, with a standard deviation of
0.9 mg/L.15 From Table I, d (average) =
0.39cm,n=2/16=0.125,andF=96,500
A·s/e–.When thesevaluesaresubstituted
into Equation 2, Equation 3 results.
 Comparison to the CECR indicates
that i

corr
(O

2
reduction) is greater than i

corr

(CECR) by approximately 0.014 mmpy.
This difference may be caused by rate-
limited mineral formation kinetics in the
concretion. It is of interest to note that
thecorrosion rate fromcouponmeasure-
ments on Arizona is greater than that
calculated from Equation 2, the opposite
of that observed on the midget subma-
rine.6 The authors suggest that hydrogen
discharge, stimulatedbymicrobialactiv-
ity, supports corrosion on Arizona, but
is less of a factor on the midget subma-
rine.16

CONCLUSION

 Based on CECR, the average cor-
rosion rate of the Japanese midget
submarine hull, submerged in 406.7 m
of sea water, is estimated to be 0.014
mmpy, corresponding to a 61 year loss
ofapproximately11%of itsoriginalhull
thickness. Iron in the midget submarine
concretion appears in the form of the
minerals goethite, magnetite, and sider-

i CECR
K d wt Fe

tcorr ( )
( .% )

Figure 6. X-ray diffraction intensity profiles for magnetite across the Japanese midget subma-
rine concretion. The double peaks at 0.17 cm result from heterogeneity in the concretion.

Figure 5. X-ray diffraction intensity profiles for goethite across the Japanese midget 
submarine concretion.

i O reduction i l
KDC
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ite. Formation kinetics of these minerals
may be rate limiting. Unlike Arizona
concretion, aragonite was not detected.
Highwater retention,combinedwith low
concretion thickness, may explain the
highoxygenavailabilityat themetal/con-
cretion interface.Tolendsupport to these
conclusions, two avenues of approach
are being pursued. The first is to search
for other marine sites where it is feasible
to collect concretion samples, and mea-
sure on-site environmental parameters:
oxygen saturation (%), temperature,
salinity, and pH. The second approach
is to conduct an in-depth study of con-
cretion morphology with corresponding
experimental measurement of iron and
oxygen diffusivity, and kinetics of for-
mation of iron-bearing minerals in the
concretion.
 While water depth reflects environ-
mentalproperties, incorporationof these
environmental properties directly into
Fick’s First Law for limiting current can
beusedtobetterunderstandthecorrosion
process.
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